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Abstract. It has been shown that the sequence of Smith invariants defined by
certain sequences of products of matrices, with entries in a local principal ideal
domain, are combinatorially described by tableau-pairs (T, K) where T is a tableau
of skew-shape which rectifies to the key-tableau K. It is a fact that the set of all
shuffles of the columns of a key-tableau is a subset of its Knuth class. Here, under
the condition that the word of T is a shuffle of the columns of the key-tableau K,
we show the converse, that is, every tableau-pair under the aforesaid restrictions
has a matrix construction. In the case of a four-letter alphabet, since we are able
to give an explicit description of the Knuth class of a key-tableau as a union of
the shuffles of certain subsets of words containing the key-tableau columns, our
construction is general. This may be seen as an indication of a general procedure
if a subset of shuffling generators of a generic key-tableau Knuth class is provided.
At the moment however, this seems to be a very difficult problem.

1. Introduction

Given an n by n nonsingular matrix A, with entries in a local principal ideal
domain with prime p, by Gaußian elimination one can reduce A to a diagonal matrix
∆a with diagonal entries pa1 , . . . , pan , for unique nonnegative integers a1 ≥ . . . ≥ an,
called the Smith normal form of A. The diagonal entries pa1 , · · · , pan are called
the Smith invariants or invariant factors of A, and a = (a1, . . . , an) the invariant
partition of A. It is known that a, b, and c are invariant partitions of nonsingular
matrices A, B, and C such that AB = C if and only if there exists a Littlewood–
Richardson tableau T of type (a, b, c), that is, a tableau of shape c/a which rectifies
to the key-tableau of weight b (also known as Yamanouchi tableau of weight b). (See
[1, 2, 3, 4, 5, 11, 12, 14, 17, 28].) The relationship between Smith invariants and the
product of Schur functions was noticed earlier by several authors [14, 17, 28]. For an
overview and other relations, see the survey by W. Fulton [12] as well as [11, 13].
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Given a natural number n ≥ 1, [n] denotes the set {1, . . . , n}. Let m = (m1, . . . ,
mt) be a finite sequence of nonnegative integers. The symmetric group St acts on se-
quences of t nonnegative integers via the left action sim = (m1, . . . ,mi+1,mi, . . . ,mt)
with si the simple transpositions of St, 1 ≤ i ≤ t − 1. Let α(m) be the unique
partition in the orbit Stm, and α(m)′ the conjugate partition. K(m) denotes the
key-tableau [21] of weight m, that is, the tableau of weight m and shape α(m), and
D[mk] denotes the n by n diagonal matrix having the ith diagonal entry equal to p
whenever i ∈ [mk] and 1 otherwise. The conjugate invariant partition of D[mk] is
the one-row partition (mk). We identify K(m) with the sequence of diagonal ma-
trices (D[m1], . . . , D[mt]) in the following sense: the sequence of conjugate invariant
partitions associated with the sequence of products of matrices

D[m1], D[m1]D[m2], . . . , D[m1]D[m2] · · ·D[mt]

is the nested sequence of partitions (m1) ⊆ α(m1,m2) ⊆ · · · ⊆ α(m) which defines
the key-tableau K(m) by telling us that for each 1 ≤ i ≤ t the first mi columns
contain the letter i. (We adopt the English convention for Young diagrams.) For
instance,

K(1032) =
1 3 3
3 4
4 is identified with (D[1], D∅, D[3], D[2]).

Let U be an n by n unimodular matrix, that is, the determinant of U is not di-
visible by p. Put ∆aUK(m) for the sequence ∆a, ∆aUD[m1], ∆aUD[m1]D[m2], . . . ,

∆aUD[m1]D[m2] · · ·D[mt]. The sequence of conjugate invariant partitions a0′ = a′ ⊆
a1′ ⊆ · · · ⊆ at

′
= c′, associated with that sequence of matrices, is such that

the skew-shape ak+1′/ak
′

has mk+1 boxes with at most one box in each column,
k = 0, 1, . . . , t − 1. Thus ∆aUK(m) is identified with the tableau-pair (T,K(m))
where T is the tableau of weight m defined by that nested sequence of the conjugate
partitions. It is shown in [6] that T rectifies to K(m). The reverse question arises
naturally: Given a tableau-pair (T,K) such that K is a key-tableau and T is a semi-
standard Young tableau that rectifies to K, does there exist a matrix construction of
the form ∆aUK(m) for that pair? This question has been already answered posi-
tively for some instances of the weight in the orbit of Stα(m) [1, 3, 4, 5, 7]. These
are precisely instances where the Knuth class of a key-tableau is equal to the set of
shuffles of its columns. In [6], a necessary and sufficient condition has been given for
the Knuth class of a key-tableau to be equal to the set of the shuffles of its columns.
In particular, the shuffles of the columns of a key-tableau are always contained in its
Knuth class. Here, in Section 4, an algorithm is provided for the matrix construction
of such a tableau-pair (T,K) whenever the word of T is a shuffle of the columns of
K. It is also shown how to extend our matrix construction to any pair (T,K), over
a four-letter alphabet, whenever T rectifies to the key-tableau K. In the case of a
four-letter alphabet it is shown in [6] that the Knuth class of a key-tableau is the
union of the shuffles of some subsets of words where the set of columns is included.

The matrix construction of a tableau-pair (T,K), where the word of T is a shuffle of
the columns of the key-tableau K, relies on the following idea: a semistandard Young
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tableau, with a word of length `, can be encoded by a biword Λ without repeated

biletters

(
πj
xj

)
where xj is a letter in column πj of T , for j = 1, . . . , `. Among the

semistandard Young tableaux with biword Λ there is one in compact form (a tableau
where the number of rows of size two of any two consecutive columns is maximal when
shifting down the rightmost with respect to the other). Let c/a be its skew-shape. A
semistandard Young tableau with biword Λ has therefore skew-shape (c′+e)′/(a′+e)′,
for some partition e. As the word of T is a shuffle of the columns of K, we may choose
a biword Π factorized into biwords whose bottom words are the columns of the key-
tableau K. These factors are identified with east–northeastward paths in the lattice
N2, seen as an N–matrix, whose vertices (πj, xj) are the biletters

(
πj

xj

)
. These lattice

paths do not intersect and satisfy some properties which allow us to define an injective
map to be used in the Main Algorithm in Section 4. The Main Algorithm depends
only on the biword Π identified with its lattice path representation. It provides
a matrix construction, for any T with that biword, based on elementary matrices
Tij(x) = I + xEij whose indices {i j} are generated by the vertices of those lattice
paths. If we want a simultaneous matrix construction of T and K, we have to select
a specific biword that one shows to exist always. This is achieved in Section 5 by
relating certain type of vertices in the lattice paths of the biword with the existence
of a commutation property when passing an elementary matrix Tij(x) past another
Tab(y).

The paper is organized in six sections. In the next section, which in its turn is di-
vided into three subsections, we provide the necessary definitions on tableau and word
combinatorics. Special attention is given, in Subsection 2.2, to key-tableaux and, in
particular, to those over a four-letter alphabet where the description of the Knuth
class is translated into the shuffling operation. In Section 3, divided into two subsec-
tions, a semistandard Young tableau is encoded by a biword without repeated letters.
When the word of the tableau is a shuffle of the columns of a key-tableau, we choose
a biword that factorizes into biwords which are identified with east–northeastward
lattice paths in N2. These nonintersecting lattice paths enjoy certain properties that
allow us to define in Algorithm 3.1 an injective map that will be an important tool
in the next section. Section 4 provides the Main Algorithm which generates a matrix
construction of T whenever the word of T is a shuffle of the columns of a key-tableau
K. Stated informally, the main theorem (see Theorem 4.4) is: there exists a biword
that generates simultaneously a matrix construction of T and K whenever the word
of T is a shuffle of the columns of the key-tableau K. In the succeeding section, a
biword obeying certain conditions is exhibited and the proof of the main theorem
is given. Finally, in Section 6, it is shown that, over a four-letter alphabet, every
tableau-pair (T,K), where T rectifies to the key-tableau K, has a matrix construc-
tion. In the last section, we discuss the generalization of our construction to a t-letter
alphabet, for t ≥ 5. A pertinent problem is the enumeration of the elements of a key-
tableau Knuth class which is related with the enumeration of distinct permutation
shuffles in the work of C. S. Barnes [8].
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2. Young tableaux, keys, and shuffles

2.1. Young tableaux, words, and Knuth equivalence. A partition a = (a1, . . . ,
al) is a weakly decreasing sequence of positive integers. We call l the length of a
which is denoted by `(a). We say that a is a partition of |a| := a1 + · · · + al. It is
convenient to set ak = 0 for k > `(a), and we identify a with (a1, . . . , a`(a), 0, . . . , 0),
where the tail of zeros is of arbitrary length. The unique partition of 0 is denoted
by (0). A (weak) composition m = (m1, . . . ,mt) is a finite sequence of nonnegative
integers. We also say that m is a weak composition of |m| := m1 + · · · + mt. The
symmetric group St acts on (weak) compositions with t entries via the left action
σm := (mσ−1(1), . . . ,mσ−1(t)), with σ ∈ St. The unique partition in the orbit Stm is
denoted by α(m). We think of a partition in terms of its Young diagram consisting
of a left-justified array of boxes that, according to the English convention, has ai
boxes in the ith row counting from top to bottom. For instance, the Young diagram
of a = (5, 2, 2, 1) is

.

The conjugate partition of a is the partition a′ whose Young diagram is obtained
from a by interchanging rows with columns. Another way to look at the conjugate
of a, which will be used in the sequel, is to say that if a = (a1, . . . , at) and `k
is the number of columns of length k in the Young diagram of a, 1 ≤ k ≤ t, then
a′ = (t`t , . . . , 2`2 , 1`1), where the notation i`i means that the positive integer i appears
`i times in the sequence a′. Conversely, we have ak = ak+1 + `k, for k = 1, . . . , t, with
at+1 := 0. positive integer i appears `i times in the sequence a′. For example, the
conjugate partition of a = (5, 2, 2, 1) is the partition (4, 3, 1, 1, 1) = (4, 3, 20, 13), and
its Young diagram is

.

A partition a is contained in a partition c, written a ⊆ c, if the Young diagram of a
is contained in the Young diagram of c. In this case, we define the skew-shape c/a
to be the set of boxes in the Young diagram of c that remains after we remove those
boxes corresponding to a. When a = (0), we obtain the Young diagram of c.

Let N be the set of positive integers with the usual order “ ≤ ”. If t ∈ N, [t]
denotes the set {1, . . . , t}, and [t]∗ the free monoid in the alphabet [t]. That is, the
collection of all finite words over the alphabet [t], with the concatenation operation.
A word over the alphabet [t] is defined to be a finite string of elements (known as
letters) of the set [t].

Given the word w = x1 · · · xk over the alphabet [t], the weight of w, in the alphabet
[t], is the vector (m1, . . . ,mt), where mx denotes the multiplicity of the letter x ∈ [t] in
the word w. Here k is the length of w, denoted by `(w). We have `(w) = m1+· · ·+mt

and, in particular, the length and the weight of the empty word is zero. A subword
of a word w is a word obtained by deleting the letters at some (not necessarily
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adjacent) positions in w. As usual, we write wk, k ≥ 0, to mean the concatenation
of w with itself k times. When one writes x1x2 . . . xk = 1m12m2 . . . tmt this means
that w is a weakly increasing word, called a row word, and x1 = · · · = xm1 = 1,
xm1+1 = · · · = xm1+m2 = 2, . . . , xm1+···+mt−1+1 = · · · = xk = t. Similarly we have a
weakly decreasing word when we write x1x2 . . . xk = tmt . . . 2m21mt . If the letters in w
are in strictly decreasing order, that is, xi > xi+1 for all i, w is called a column word.
A column word is often identified with its support, that is, with the set consisting of
its letters. For example, the word 431 is identified with the set {1, 3, 4}.

A (semistandard) Young tableau T of shape c/a (for short skew-tableau) is a
filling of the skew-shape c/a with positive integers, weakly increasing across each
row and strictly increasing down each column [10, 19]. If a = (0) then T is said to
be of partition shape. The (reading) word of T is the word obtained by reading its
columns from bottom to top, starting on the left and moving to the right. The weight
of T is the weight of its word. A Young tableau of partition shape is identified with
its (reading) word. The empty tableau is the Young tableau of shape (0) identified
with the empty word.

Example 2.1. A (semistandard) Young tableau T of skew-shape (4, 4, 2, 1)/(3, 2)
with weight (1, 2, 2, 1) and word 433221,

(2.1)

1
2 2

3 3
4 .

A Young tableau T of shape c/a and weight (m1, . . . ,mt) may also be seen as a
nested sequence of partitions T = (a0, a1, . . . , at), where a = a0 ⊆ a1 ⊆ · · · ⊆ at = c,
such that for k = 1, . . . , t, the skew-diagram ak/ak−1 has mk boxes with at most one
box in each column, and it is filled with the letter k [22]. In Example 2.1, we may
write T = (a0, a1, a2, a3, a4), where a0 = (3, 2) ⊆ a1 = (4, 2) ⊆ a2 = (4, 4) ⊆ a3 =
(4, 4, 2) ⊆ a4 = (4, 4, 2, 1).

The Knuth or plactic congruence ≡ [20, 10, 18, 19] on the words over the alphabet
[t] is the congruence in [t]∗ defined by the transitive closure of the relations

uxzyv ≡ uzxyv, x ≤ y < z,

uyzxv ≡ uyxzv, x < y ≤ z,

where x, y and z are letters in [t], and u and v are words in [t]∗. Every Knuth class
has one and only one Young tableau of partition shape. Henceforth, each Knuth or
plactic class consists of all words Knuth equivalent to the unique Young tableau in the
Knuth class. Using jeu de taquin slides every semistandard tableau can be rectified
to the unique tableau in the Knuth class of its word [10, 26, 27]. In Example 2.1, T is
rectified to 4321 32 ≡ 433221. Two Young tableaux are said to be Knuth equivalent
if they can be obtained from another by jeu de taquin slides. Equivalently, they have
the same rectification.

The overlap of a pair (u, v) of column words u and v is the maximum number of
rows of length two that one can obtain by putting the column u to the left of the
column v so that the two columns together form a skew-tableau. For instance, the
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overlap of (43, 21) is zero while the overlap of (43, 32) is one. A skew-tableau is said to
be in compact form if the number of rows of size two of any two consecutive columns
is the overlap of the words comprising those columns. For instance the skew-tableau
in Example 2.1 is in compact form. Any skew-tableau may be put in compact form
using jeu de taquin slides in consecutive rows.

2.2. Key-tableaux and shuffles. A key-tableau K is a tableau whose columns are
pairwise comparable in the inclusion order [21]. Given a composition m, the key-
tableau of weight m is the tableau K(m) of shape α(m) whose first mj columns
contain the letter j for all j. This defines an obvious bijection between key-tableaux
and compositions [24]. A key-tableau is also a tableau whose weight is a permutation
of its shape. The key-tableau K(m) [6, 21] may be written as

(2.2) K(m) = v`tt v
`t−1

t−1 . . . v
`1
1 ,

where {1, . . . , t} = vt ' vt−1 ' · · · ' v1 6= ∅ are column words such that α(m) =
(`1 + . . .+ `t, . . . , `t−1 + `t, `t), and its conjugate is α′(m) = (t`t , . . . , 1`1). Let σ ∈ St,
written as a word a1a2 . . . at in [t]∗, be such that {a1, . . . , ai} is the support of vi,
for i = 1, . . . , t. One has σα(m) = m = (m1, . . . ,mt), with mj =

∑t
k=σ−1(j) `k for

all j. Therefore the key K(m) may be encoded by a permutation σ and a nonneg-

ative integral vector (`t, . . . , `1), that is, K(σ, (`t, . . . , `1)) := v`tt v
`t−1

t−1 . . . v
`1
1 . (This

presentation of a key-tableau will be used in Section 6.)

Example 2.2. The key-tableau

K(1, 2, 2, 1) =

1 2
2 3
3
4 = 4321 32

has shape (2, 2, 1, 1) and weight m = (1, 2, 2, 1).

The Knuth class of the word 433221 of the skew-tableau T in Example 2.1 is the
key-tableau K(1, 2, 2, 1) = 4321 32 (the empty space means the ending of a column
and the starting of a new one) which can be encoded either by permutation 2314 or
3214, and the nonnegative integral vector (1, 0, 1, 0).

Let w = x1 · · ·xk ∈ [t]∗. Given I = {i1 < · · · < ir} ⊆ [k], w|I denotes the subword
xi1 · · ·xir . In particular, w|I is the empty word if I = ∅. Two subwords w|I and w|J
of w are said to be disjoint if the sets I and J are disjoint.

The word w = x1 · · ·xk is said to be a shuffle of the words u and v if there
exists a partition {I, J} of the set [k] such that u = w|I and v = w|J . Let
u1, . . . , uq ∈ [t]∗ be q words of lengths k1, . . . , kq, respectively. If q = 0 the shuf-
fle is the empty word. If q ≥ 1, let {I1, . . . , Iq} be a partition of the set [k].
Then the word w|{I1, . . . , Iq} defined by w|Ij = uj, for j = 1, . . . , q, is a shuffle
of u1, . . . , uq [15, 25]. The words u1, . . . , uq are said to be the shuffle components
of w|{I1, . . . , Iq}. Indeed w|{I1, . . . , Iq} = w|{F1, . . . , Fq} whenever {I1, . . . , Iq} =
{F1, . . . , Fq}. However, a word may have different shuffle decompositions of the same
words, that is, w|{I1, . . . , Iq} = w|{J1, . . . , Jq} with {I1, . . . , Iq} 6= {J1, . . . , Jq} set
partitions of [k]. For example, if w = 433221 ∈ [4]∗, we have w|{{1, 2, 5, 6}, {3, 4}} =
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w|{{1, 2, 4, 6}, {3, 5}}. The set of the shuffles of the q words u1, . . . , uq, is the set of
all words obtained by shuffling together the q words u1, . . . , uq,

tt(u1, . . . , uq)

={w|{I1, . . . , Iq} : {I1, . . . , Iq} a set partition of [k], w|Ij = uj, 1 ≤ j ≤ q}.
Let K(m) = v`tt v

`t−1

t−1 . . . v
`1
1 be the key as in (2.2), and σ ∈ St such that σα(m) =

m. By Greene’s Theorem [16], the set tt (v`tt , v
`t−1

t−1 , . . . , v
`1
1 ) is always a subset,

in general proper, of the Knuth class of K(m). In [6] it was proved that, if f1 ⊇
f2 ⊇ · · · ⊇ fk are nonempty column words, then the Knuth class of K = f1 . . . fk
is equal to the set of all shuffles of its columns if and only if each column is either
an interval of f1, or is obtained from an interval of f1 by removing a single letter.
It is clear that this property is true for any key K(m) = v`tt v

`t−1

t−1 · · · v`11 over the
alphabet {1, 2} or {1, 2, 3}. However, over the alphabet {1, 2, 3, 4}, considering S :=
{1423, 1432, 4123, 4132} ⊆ S4, this property holds if and only if either σ /∈ S, or
σ ∈ S but `2 = 0 or `4 = 0.

Denote by v̂5
n5 the multiset consisting of n5 words v̂5 := 431421 ≡ K(2, 1, 1, 2).

The Knuth class of a key over the alphabet {1, 2, 3, 4} was characterized in [6], in
terms of the shuffling operation, as follows.

Theorem 2.1. [6] Let σ ∈ S4, and let (`4, . . . , `1) be a sequence of nonnegative
integers. The Knuth class of K(σ, (`4, . . . , `1)) = v`44 v`33 v`22 v`11 is{
tt(v`44 , v

`3
3 , v

`2
2 , v

`1
1 ), if σ ∈ S4 \ S, or σ ∈ S and (`2 = 0 or `4 = 0),⋃min{`2,`4}

n5=0 tt(v̂ n5
5 , vn4

4 , . . . , v
n1
1 ), if σ ∈ S and `2 6= 0, `4 6= 0,

where ni = `i, i = 1, 3, and ni = `i − n5, i = 2, 4.

3. Biwords and nonintersecting E-NE lattice paths

3.1. Biwords. Our aim is, given a (skew) semistandard Young tableau in compact
form, to encode it by a biword so that, identifying their biletters with points in the
lattice N2, seen as an N–matrix, one is able to define the elementary matrices of our
matrix construction in Section 4. All the tableaux with that biword will be related
with the tableau in compact form.

Given n, t ∈ N, a biword over the alphabet [n]× [t] is an ordered pair of words of
the same length, written as (

u
v

)
=

(
π1 · · · πk
x1 · · · xk

)
,

with u = π1 . . . πk ∈ [n]∗ and v = x1 . . . xk ∈ [t]∗. Each biword

(
u
v

)
can also be

seen as a word whose letters are the biletters

(
π1

x1

)
, . . . ,

(
πk
xk

)
. We only consider

biwords with pairwise distinct biletters, that is,

(
πi
xi

)
6=
(
πj
xj

)
, for every i 6= j. Two

biwords are said to be equivalent if they have the same set of biletters. Among the
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biwords having the same set of biletters as

(
u
v

)
we consider two special ones, Σ and

Σ′. The weakly increasing rearrangement of

(
u
v

)
using the anti-lexicographic order

on biletters with priority in the top entry [19], that is,

(
π
x

)
≤
(
π′

x′

)
if and only if

π < π′, or π = π′ and x ≥ x′, gives the biword

(3.1) Σ =

(
1f1 · · · nfn

w1 · · · wn

)
,

for some integers fi ≥ 0, such that w = w1 · · ·wn ∈ [t]∗, with wi a column word

of length fi. The weakly decreasing rearrangement of

(
u
v

)
using the lexicographic

order in biletters with priority on the bottom entry [19], that is,

(
π
x

)
≥
(
π′

x′

)
if and

only if x > x′, or x = x′ and π ≥ π′, gives the biword

(3.2) Σ′ =

(
Jt · · · J1

tmt · · · 1m1

)
,

for some integers mi ≥ 0, such that J = Jt · · · J1 ∈ [n]∗, with Ji a column word of
length mi. We have then the word-pair (J, w) ∈ [n]∗ × [t]∗ such that the weight of w
is equal to (m1, . . . ,mt) = (#J1, . . . ,#Jt) and the weight of J is (`(w1), . . . , `(wn)).
(Recall that column words are identified with their supports.)

Young tableaux in compact form are in one to one correspondence with classes of
biwords without repeated biletters. Young tableaux with the same biword have the
same word pair (J, w), hence their skew-shapes are (c′ + e)′/(a′ + e)′, where e is any
partition of length at most n, and c/a is the skew-shape of the compact tableau with

that biword. For instance,

1
2 2

3 3
4 and

1
2 2

3
3
4 have the same biword. Let T be

a tableau of skew-shape with n columns (possibly some are empty), where the word

w has weight m = (m1, . . . ,mt). Let

(
πj
xj

)
be the biletter where xj is the letter in

column πj of T , for j = 1, . . . , `(w). Any biword over the alphabet [n]× [t] with these

biletters is said to be a biword of T . In particular, Σ =

(
1f1 · · · nfn

w1 · · · wn

)
is the

biword of T where the factor

(
ifi

wi

)
indicates that wi is a column word of length fi

filled in column i, counting from left to right, of the skew-shape T . For each i in [t],
Ji ∈ [n]∗ is the column word defined by the indices of the columns of T where the mi

letters i of w are placed. The column words J1, . . . , Jt are called the indexing sets of
T and J = Jt · · · J1 the indexing-set word.
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A biword class, over the alphabet [n] × [t], without repeated biletters, shall be
represented in the lattice N2 by identifying its set of biletters

(
y
i

)
with the set of

points (y, i), where y ∈ Ji, for i = 1, . . . , t, called the lattice diagram of the biword
class. Those points, graphically represented as •, are called lattice points or vertices
of a biword in the class. For convenience, in drawing the lattice N2, we adopt the
matrix convention, that is, the first coordinate, the row index, increases as one goes
downwards, and the second coordinate, the column index, increases as one goes from
left to right.

Example 3.1. The skew-tableau T in Example 2.1 has biword Σ =

(
11 2 3 44
43 3 2 21

)
and the corresponding lattice diagram, contained in {1, 2, 3, 4} × {1, 2, 3, 4}, is

(3.3)

T =

1
2 2

3 3
4 ←→

3 4
3

2
1 2

(
11 2 3 44
43 3 2 21

)
↔

1 2 3 4

1

2

3

4

• •
•

•
• •

1

.
Note that the lattice vertex marginal cardinalities, by rows respectively columns, are
(2, 1, 1, 2), which are the corresponding lengths of the columns of T , and (1, 2, 2, 1),
which are the corresponding multiplicities of each letter in T .

3.2. Nonintersecting E-NE lattice paths. In this section we consider biwords
where the bottom word w of Σ is in the Knuth class of the key-tableau (2.2) and is
a shuffle of its columns, that is, w is in the set tt(v`tt , . . . , v

`1
1 ). We are interested in

the biwords Π equivalent to Σ with bottom word the key v`tt · · · v`11 . They are in one
to one correspondence with the shuffle decompositions of w in tt (v`tt , . . . , v

`1
1 ). Let

{F t,`t , . . . , F t,1, . . . , F 1,`1 , . . . , F 1,1} be a set partition of {1, . . . ,∑t
k=1 k `k} such that

Σ|F k,j =

(
Ik,j

vk

)
, for k ∈ [t] and j ∈ [`k], which generates the biword

(3.4) Π =

(
I t,`t · · · I t,1 · · · I2,`2 · · · I2,1 I1,`1 · · · I1,1

vt · · · vt · · · v2 · · · v2 v1 · · · v1

)
,

where each Ij,i is a weakly increasing word with |Ij,i| = j, for j = 1, . . . , t, and
i = 1, . . . , `j. In the lattice diagram of Π we link the vertices of any two consecutive

biletters in the factor

(
Ij,i

vj

)
of Π, for 1 ≤ i ≤ `j, 1 ≤ j ≤ t, with a straight line.

Considering the last and the first biletters of this factor, respectively, as the starting
and the ending points, one gets a lattice path with j vertices made of eastward E
and northeastward NE steps. These lattice paths do not have vertices in common
since the biletters of Π are pairwise distinct. This means that the biword Π (3.4) is
graphically represented by `t + · · · + `1 nonintersecting northeastward-eastward E-
NE lattice paths, where `j of them have length j, for j = 1, . . . , t. Conversely, every

word in tt (v`tt , . . . , v
`1
1 ) may be obtained in this way using the points of the lattice

diagram of Π to draw all the `t + · · · + `1 nonintersecting northeastward-eastward
lattice paths, where `j of them have j vertices, for j = 1, . . . , t. For the rest of the
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paper, we identify a biword Π with its lattice path representation in N2 where each

factor

(
Ij,i

vj

)
, for i = 1, . . . , `j, j = 1, . . . , t, is seen as the lattice path of length j

whose vertices are the biletters of this factor.

Example 3.2. The word in the second row of the biword Σ in (3.3) is a shuffle of
4321 and 32. We may sort the biletters of Σ in several ways, in order to obtain all
biwords Π as in (3.4), which is equivalent to draw in the lattice diagram (3.3) all the
sets of two nonintersecting paths of lengths four and two using northeast-eastward
steps. We have then four types of northeast-eastward nonintersecting paths:

1 2 3 4

1

2

3

4

• •
•

•
• •

1

,

1 2 3 4

1

2

3

4

• •
•

•
• •

1

,

1 2 3 4

1

2

3

4

• •
•

•
• •

1

,

1 2 3 4

1

2

3

4

• •
•

•
• •

1

,

each corresponding to the biwords
(3.5)

Π=

(
1144 23
4321 32

)
, Π′=

(
1234 14
4321 32

)
, Π†=

(
1244 13
4321 32

)
and Π‡=

(
1134 24
4321 32

)
,

respectively.

Remark 3.1. As the vi’s are column words, the lattice paths do not have northward
steps. Recalling that the column words of a key-tableau are pairwise comparable for
the inclusion order, the sets of column indices of any two paths of Π are comparable
for the inclusion order. In particular, any pair of two lattice paths of Π is such that,
if one of the paths has a vertex in a column of N2 and the other has not, then the
set of the indices of the columns of the latter is contained in the set of the former.
The lattice paths with the longest length have vertices in all columns of the lattice
diagram of Π. We may therefore identify Π with a collection of nonintersecting E-NE
paths in [n]× [t] such that the sets of the indices of the columns are comparable for
the inclusion order.

We still have to fix more terminology. Given two lattice paths u and v having each
a vertex in column k, we say that u is above [respectively below] v in column k if
the vertices (a, k) ∈ u and (x, k) ∈ v satisfy a < x [respectively a > x]. Given two
consecutive vertices (a, b) and (x, y) of a lattice path, we say that (a, b) is positively-
linked to (x, y) if b < y (recall that we have always a ≥ x). Otherwise, (a, b) is said
to be negatively-linked to (x, y). If (a, b) is positively-linked to (x, y) and a > x, then
(a, b) is called an obstacle. An obstacle is a vertex where a northeast step starts. A
lattice path without obstacles is a lattice path with only east steps, that is, all the
vertices of the path are in the same row.

For instance, in the lattice representation of Π′ (3.5), the path

(
1234
4321

)
is above

the path

(
14
32

)
in column 2, and below it in column 3. The vertex (4, 1) is an obstacle

NE-linked to (3, 2), and thus the vertex (3, 2) is negatively linked to (4, 1).
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We define now a map s : Π −→ N which assigns to each vertex of Π the index
of a specific row in the lattice diagram of Π. This map will be used in the matrix
construction given by the Main Algorithm in Section 4. The algorithm below defining
this map is based on the following two observations which are a consequence of
Remark 3.1. Pick a vertex (ã, b̃) in Π. If (ã, b̃) is the initial vertex of a path, the first
vertex of Π (if any) that one meets when one moves to the west is an obstacle. If

(ã, b̃) is not the initial vertex of a path, and if the first vertex of Π one meets, when

one moves to the west, does not belong to the path containing (ã, b̃), then (ã, b̃) is
negatively linked to an obstacle. Moreover, if the first vertex, that one has met in
the west, is not an obstacle but it is positively linked, say to (ã, f̃), then (ã, b̃), or

some vertex (ã, d̃), d̃ ≥ b̃, in the same path, is itself an obstacle in a path with a

vertex in column f̃ > d̃ ≥ b̃. See Example 3.5.

Algorithm 3.1. Consider the biword Π in (3.4) and its lattice path representation.
Let (a, b) be a vertex of Π. Let y := 0 if (a, b) is the initial vertex of a path, otherwise,
let y be the index of the column containing the vertex positively linked to (a, b). Write

(ã, b̃) := (a, b), set x := ã and implement the following algorithm:
Begin
1. Starting in (ã, b̃) move one step (1, 0) in N2 to the west. Do b̃ := b̃− 1.

If b̃ = y, then x := ã and stop.
Else b̃ > y and go to 2.

2. If (ã, b̃) is an obstacle of Π, then move northeast along the path linking positively

the obstacle (ã, b̃) to the vertex (c̃, d̃) ∈ Π, with d̃ ≤ b. Set (ã, b̃) := (c̃, d̃) and go to
1.

Else go to 3.
3. If (ã, b̃) is positively linked to some vertex (ã, d̃) with b̃+ 1 < d̃, then set b̃ := d̃

and go to 1.
Else, go to 1.

End.

Remark 3.2. When applying the above algorithm, we always move to the west until
we reach column y, except when we meet an obstacle, as in step 2, in which case we
move northeast, or we meet a vertex positively linked to some other vertex in the
same row to the east of our current position, as in step 3, in which case we move
east. After an east move, in step 3, we will be forced to make a northeast move along
an obstacle. Since the number of obstacles is finite, the algorithm must terminate.

The last point in N×Z≥0 that one reaches in the algorithm is (x, y) which may or
may not be in Π. Nevertheless, x is the row index of the last vertex of Π \ {(x, y)}.
Definition 3.1. Let (a, b) ∈ Π. The sequence of vertices of Π \ {(x, y)} that one
passes in the algorithm above from the vertex (a, b) ∈ Π to vertex (x, y) ∈ N × Z≥0

is called the (a, b)-path.

The (a, b)-path contains at least the vertex (a, b) ∈ Π, and has odd length. This
procedure defines the map

s : Π −→ N,
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where s(a, b) := x is the row index of the last vertex in the (a, b)-path.

Example 3.3. Consider the biword Π in (3.5). The vertices in one row always
belong to a unique path. Thus, we have always s(a, b) = a for every vertex (a, b) in
Π. Consider now Π′ in w(3.5). There exists a row containing vertices belonging to
different paths. To compute the (4, 2)-path, notice that (4, 1) is an obstacle. Thus,
one must move along the line linking this obstacle to (3, 2). Since there are no
more obstacles in row 3 to the west of (3, 2), the (4, 2)-path is (4, 2), (4, 1), (3, 2) and
s(4, 2) = 3. Starting from any other vertex (a, b) of Π, we will face no obstacle, and
thus s(a, b) = a.

Example 3.4. Consider the biword Π =

(
22233 1344 345 2
54321 5321 531 1

)
whose lattice path

representation is

(3.6)

1 2 3 4 5

1

2

3

4

5

•
• • • •
• • • •
• • •
•

1

.

We have s(4, 3) = 2 since the obstacle (4, 2) is linked to a vertex in row 3, and (3, 2) is
another obstacle that appears to its left, linked to a vertex in row 2. The (4, 3)-path
is (4, 3), (4, 2), (3, 3), (3, 2), (2, 3) of length five. Similarly, we find that s(3, 3) = 2,
s(3, 5) = 1, and s(2, 1) = 1 whose (2, 1)-path consists only of (2, 1). For any other
vertex (a, b) of Π, we get s(a, b) = a.

Example 3.5. Consider now the following lattice path representation:

1 2 3 4 5 6 7

1

2

3

•
• •

• • •
• • • •

1

.

We have s(3, 6) = s(2, 6) = 1. For any other vertex (a, b) of Π, we get s(a, b) = a.

Lemma 3.1. Let F be the set of all initial vertices of lattice paths of Π. Then the
map s : F → N sending (a, b) ∈ F into s(a, b) is an injection.

Proof. Let A and B denote the (a, b) and (c, d)-paths, respectively, where (a, b) and
(c, d) are distinct initial vertices of lattice paths in F . We will show that, after any
common vertex, the two paths A and B follow distinct directions: one goes west and
the other goes northeast, continuing their way in different rows. Thereby A and B
can not have the last Π vertex in the same row. If A and B would have the last Π
vertices in the same row, they should coincide. But then one goes west and stops
in this row, and the other goes northeast and stops in a row above. This is absurd.
Hence, s(a, b) 6= s(c, d).



MATRIX TABLEAU-PAIRS 13

Let (e, f) inA∩B. The vertex (e, f) appears inA either if e = a, or if it is negatively
linked to an obstacle in A, or if it is negatively linked to a vertex (e, f −k), k ≥ 2, in
A. In the first case, the vertex (e, f) must be an obstacle in A, and therefore when
constructing the path B we must move northeast by step 2, while in A we move west.
In the second case, in the path A we move west by step 1, while in the path B we
move northeast, since (e, f) must be an obstacle. If (e, f) is the first vertex where
the two paths meet, then (e, f) has to be an obstacle. By induction assume that the
paths A and B have never shared a common line connecting two consecutive vertices
of a path in Π. Finally, in the third case, the path A arrives at vertex (e, f) after
passing through a vertex, say (e, y) with f − k < y < f , negatively linked to an
obstacle in A. After (e, f) we go to west by step 1 and then northeast. If (e, f) ∈ B,
then the lattice path B arrives at this vertex by step 1. After this vertex, either we
go northeast along an obstacle, or go east if (e, f) is positively linked to some vertex
(e, f + k′). In any case, after these steps, we will move northeast using a lattice path
distinct from the one used in A. Therefore, after (e, f) the two paths A and B follow
distinct directions, and, in particular, the paths A and B never share a common line
connecting two consecutive vertices of a path in Π. As the number of vertices is finite
it follows that s(a, b) 6= s(c, d). �

4. Matrix tableau-pairs with key and shuffle conditions: statement
of results

Let Rp be a local principal ideal domain with maximal ideal (p). A unit in Rp is
an element that is not divisible by p. Every nonzero element x may be written in
the form µpk with k ≥ 0 and µ a unit in Rp, both uniquely determined by x. Two
elements x and y are said to be associated if x = µy for some unit µ in Rp. In this
paper, all matrices are n by n and nonsingular with entries over Rp. Given a matrix
A, AT denotes its transpose. A matrix is said to be unimodular if its determinant
is a unit. Let Un be the group of n by n unimodular matrices over Rp. Given n
by n matrices A and B, we say that B is left equivalent to A (written B ∼L A) if
B = UA for some U ∈ Un; B is right equivalent to A (written B ∼R A) if B = AV
for some V ∈ Un; and B is equivalent to A (written B ∼ A) if B = UAV for some
U, V ∈ Un. The relations ∼L, ∼R and ∼ are equivalence relations in the set of all n
by n nonsingular matrices over Rp. (For more details see [23].)

Let A be an n by n nonsingular matrix. By the Smith normal form theorem,
Theorem [9, 23], there exist nonnegative integers a1, . . . , an with a1 ≥ · · · ≥ an ≥ 0
such that A is equivalent to the diagonal matrix diagp(a1, . . . , an) having pai in the i-
th diagonal position. The sequence a = (a1, . . . , an) of the exponents of the p-powers
in the Smith normal form of A is a partition of length ≤ n, uniquely determined by
the matrix A. We call a the invariant partition of A. Given a subset J ⊆ [n], put
DJ := diagp(χ

J), where χJ is the nonnegative integer vector having 1 at position i
if i ∈ J , and 0 otherwise. If σ ∈ Sn, Pσ denotes the permutation matrix having
δiσ(j) in position (i, j). As usual, if u and v are positive integers, (u v) denotes the
transposition of u and v.

Let (i, j) ∈ [n] × [n]. We denote by Eij the n by n matrix having a 1 in position
(i, j) and 0′s elsewhere, and we define the elementary unimodular matrices Tij(x) as
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follows:

Tij(x) = I + xEij, where i 6= j and x ∈ Rp;

Tii(v) = I + (v − 1)Eii, where v is a unit of Rp.

It is obvious that EijErs = δjrEis. Therefore, if i 6= j and r 6= s, we find that
Tij(x)Trs(y) = I + xEij + yErs + xyδjrEis. The lemma below states two kinds of
rules to be used in the sequel: (I) for commuting either two elementary matrices
Tij(x), or an elementary matrix Tij(x) with an elementary diagonal matrix D[m];
(II) is concerned with the appearance of a permutation matrix when one elementary
matrix passes past another. The proof is left to the reader.

Lemma 4.1. Let i, j, r, s,m ∈ [n], and x, y, v ∈ Rp, such that v is a unit. Then,
(I) (Commutation rules)
(i) Tij(x)Trs(y) = Trs(y)Tij(x), whenever i 6= s and j 6= r.
(ii) Tij(x)Tjs(y) = Tjs(y)Tij(x)Tis(xy), if i 6= s, i 6= j.
(iii) Tii(v)Trs(x) = Trs(ux)Tii(v), for some unit u.
(iv) Tji(y)Tij(xp) = Tij(u1xp)Tii(u2)Tjj(u3)Tji(u4y)

= Tij(u1xp)Tji(u5y)Tii(u2)Tjj(u3), for some units ui, i = 1, . . . , 4, 5.
(v) Tij(x)D[m] = D[m]Tij(x), if i, j > m.
(vi) Tij(x)D[m] = D[m]Tij(xp), if i > m ≥ j ≥ 1.
(vii) Tij(xp)D[m] = D[m]Tij(x), if j > m ≥ i ≥ 1.
(II) (Anti-commutation rule)
(viii) Tji(−1)Tij(1) = Tjj(−1)Tij(1)P(i j), i 6= j.

The lemma says that there exists always a unimodular elementary matrix E such
that

Tji(τ)Tab(τ
′) = Tab(%

′)Tji(%)E, with %, τ and %′, τ ′ pairs of associated elements,

whenever τ , τ ′ are not both unities, or (a, b) 6= (i, j) if i 6= j. Otherwise, the passage
of a matrix Tij(τ), with i 6= j, to the left of a matrix Tji(τ

′), with τ and τ ′ both
unities, leads to the appearance of a nonidentity permutation matrix.

Following [3, 5, 7], we introduce the definition of a matrix realization of a pair of
tableaux (T, F ), where T and F have the same weight m and F has partition shape
b. Let Br be a matrix with invariant partition (1mr , 0n−mr), for r = 1, . . . , t. If ar

is the conjugate of the invariant partition of A0B1 · · ·Br, 0 ≤ r ≤ t, then it is clear
that (a0 = a, a1, . . . , at = c) is a tableau with weight m = (m1, . . . ,mt) and shape
c/a. Similarly, if br is the conjugate of the invariant partition of B1 · · ·Br, 1 ≤ r ≤ t,
then (b1, . . . , bt = b) is a tableau of shape b with weight (m1, . . . ,mt) as well (see [7]).

Definition 4.1. Let T = (a0, a1, . . . , at) and F = (0, b1, . . . , bt) be tableaux of
weight m = (m1, . . . ,mt). We say that a sequence of n by n nonsingular matri-
ces A0, B1, . . . , Bt is a matrix realization of the pair (T, F ) (or realizes (T, F )) if:

I. For each r ∈ {1, . . . , t}, the invariant partition of the matrix Br is
(1mr , 0n−mr).

II. For each r ∈ {0, 1, . . . , t}, the invariant partition of the matrix Ar :=
A0B1 · · ·Br is the conjugate of ar.
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III. For each r ∈ {1, . . . , t}, the invariant partition of the matrix B1 · · ·Br is the
conjugate of br.

The tableau-pair (T, F ) is said to be a matrix-tableau pair.

Example 4.1. Let a = (3, 2, 1) and F = 11122. The sequences

diagp(a), UD[3], D{4,5},

with U running over the unimodular matrices of order five, give rise to tableaux T
of skew-shape whose words w are congruent with tableaux P running over {11122;
21 112; 21 21 1} the set of all tableaux of weight (3, 2) with partition shape. For
instance, for U = I, U = P4321, and U = P12543P4321, respectively, we have:

(a) T =

2 2
1

1
1 , w = 11122; (b) T =

1 2
1

1
2 , w = 21112; and

(c) T =

1 1
2

1
2 , w = 21211.

Actually, I and II, in Definition 4.1, say that the invariant partitions of A0, A0B1,
. . . , A0B1 · · ·Bt define T , while III says that the invariant partitions of B1, B1B2,
. . . , B1B2 · · ·Bt define F . Recall that the key K(m) is the only tableau of weight
m = (m1, . . . ,mt) and conjugate shape

∑t
i=1(1mi), and when written as a sequence

of partitions it takes the form K(m) = (0, (1m1),
∑2

i=1(1mi), . . . ,
∑t

i=1(1mi)).
Thus, when F = K(m), in order to verify property III, it is sufficient to show

that B1 · · ·Bt has invariant partition (1m1) + · · · + (1mt). For the purpose of this
paper, we shall consider only pairs (T,K(m)) such that the word of T is a shuffle of
the columns of K(m). In [6], it has been shown that (T,K(m)) is a matrix-tableau
pair only if the word of T is an element of the Knuth class of K(m). Therefore, the
following problem arises:

Given a tableau-pair (T,K(m)) such that the word of T is a shuffle of the columns
of the key K(m), is (T,K(m)) a matrix-tableau pair?

The next algorithm and Theorem 4.4 give an answer to this problem. To this end,
we need the following definition and lemma.

Definition 4.2. Given σ ∈ Sn and x ≥ y in [n], we define the n by n matrix
S(x, y, σ) = Eu v if σ(u) = x > σ(v) = y, and the zero matrix otherwise.

Clearly, I + S(x, y, σ) = Tuv(1) with σ(u) = x and σ(v) = y. In particular,
I + S(x, x, σ) = I.

Lemma 4.2. Given σ ∈ Sn and x ≥ y in [n], we have, for any partition a of length
≤ n,

(4.1) diagp(a)Pσ(I + S(x, y, σ))(I − S(x, y, σ)T ) ∼L diagp(a)P(x y)σ.

Proof. Let u, v ∈ [n] be such that σ(u) = x and σ(v) = y. Then, (I + S(x, y, σ))(I −
S(x, y, σ)T ) = Tuv(1)Tvu(−1). By Lemma 4.1 (viii), the left hand side of (4.1) can
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be written as

(4.2) diagp(a)PσTuv(1)Tvu(−1) = diagp(a)PσTvv(−1)Tvu(−1)P(uv).

Since x ≥ y, we have

(4.2) ∼L diagp(aσ(1), . . . , aσ(n))P(uv) ∼L diagp(a)PσP(uv) = diagp(a)P(x y)σ.

�

Main Algorithm. Let Π be the biword (3.4). Our algorithm is presented as a
three-step definition:

Step 1. For each k = t, . . . , 1, let Xk ⊆ N2 be the set of initial vertices of the `k
lattice paths of length k of Π, and define

s(Xk) := {s(x, j) : (x, j) ∈ Xk} = {s0
`t+1+···+`k+1+1 < · · · < s0

`t+1+···+`k+1+`k
} ⊆ [n],

where we set `t+1 := 0. Let σ1 ∈ Sn such that σ1(i) = s0
i , for i ∈ [`1 + · · ·+ `t].

Step 2. For k = 1, . . . , t− 1, let

J ′k := {x ∈ Jk : (x, k) is positively-linked} = {xk1 < · · · < xkqk} ⊆ Jk

and νk0 := id ∈ Sn. For each k = 1, . . . , t − 1 and j = 1, . . . , qk, let (ykj , kj) be the

vertex negatively-linked to (xkj , k), and define inductively

Sk+1
xk

j y
k
j

:= S(xkj , s(y
k
j , kj), ν

k
j−1σk), and νkj := (xkj s(y

k
j , kj))ν

k
j−1.

Define θk+1 := νkqk , σk+1 := θk+1σk, and

Sk+1 :=

qk∏
j=1

(I + Sk+1
xk

j y
k
j
)(I − Sk+1

xk
j y

k
j
)T .

Step 3. Let T be a tableau with biword Π, and let c/a be its skew-shape. Let
A0 := diagp(a

′), put Bk := SkD[mk], for k = 1, . . . , t, with S1 := Pσ1 , and define
inductively

Ak := Ak−1Bk.

Remark 4.1. (a) The Main Algorithm only depends on the biword Π.
(b) Lemma 3.1 asserts that the permutation σ1 ∈ St, given in Step 1 of the Main

Algorithm, is well defined.
(c) The matrix Sk+1

xk
j ,y

k
j
, defined in Step 2 of the Main Algorithm, is the zero matrix

whenever s(ykj , kj) = xkj , that is, if xkj = ykj . Therefore, the sequence A0, B1, . . . , Bt,
obtained through the application of the Main Algorithm may be simplified if we use
a biword Π whose graphical representation has a reduced number of links between
vertices in distinct rows.
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(d) Fix a k ∈ {1, . . . , t − 1}, set uj := σ−1
k (νkj−1)−1(xkj ), and vj :=

σ−1
k (νkj−1)−1 (s(ykj , kj)). Then I + Sk+1

xk
j ,y

k
j

= Tujvj
(1), (I − Sk+1

xk
j y

k
j
)T = Tvjuj

(−1), and

Sk+1 =

qk∏
j=1

Tujvj
(1)Tvjuj

(−1).

(e) For i = 1, . . . , t, |Ji| = mi =
∑t

k=σ−1(i) `k ≥ 0.

(f) Set Ik := [`t+1 + · · ·+ `k+1 + 1, `t+1 + · · ·+ `k+1 + `k], for all k = 1, . . . , t. Then,
σ1(Ik) = s(Xk), for 1 ≤ k ≤ t. In particular, s(Xk) = ∅ if and only if `k = 0.

(g) σk+1 = θk+1 · · · θ2σ1.

We say that a partition a dominates a partition b if |a| = |b| and the Young diagram
of a is obtained by lifting some boxes in the Young diagram of b.

Proposition 4.3. Let (T,K(m)) be a tableau-pair such that T rectifies to K(m) and
the word of T is a shuffle of the columns of K(m). Let Π as in (3.4) be a biword
of T . Then the sequence A0, B1, . . . , Bt generated by the Main Algorithm is a matrix
realization for T . In particular, B1, . . . , Bt is a matrix realization of a Young tableau
F of weight m whose shape dominates α(m).

Given a tableau T with rectification a key-tableau and whose word is a shuffle of
its columns, there are, in general, several shuffle decompositions for the word of T ,
each corresponding to a biword Π. In the next section, we show that it is always
possible to choose a biword Π where the shuffling decomposition satisfies additional
properties so that the sequence B1, . . . , Bt generated in the Main Algorithm is also
a matrix realization of K(m).

Main Theorem 4.4. Let (T,K(m)) be a tableau-pair such that the word of T is a
shuffle of the columns of K(m). Then there exists a biword Π of T such that the
sequence A0, B1, . . . , Bt generated by the Main Algorithm is a matrix realization for
the pair (T,K(m)).

As already pointed out, it has been proved that (T,K) is a matrix tableau-pair
only if the word of T is in the plactic class of K [6]. Thus, when the plactic class of
K is the set of all shuffles of its columns, we obtain the following characterization of
matrix tableau-pairs (T,K).

Corollary 4.5. Let T be a (skew) Young tableau with rectification P . Let K be a
key whose plactic class is equal to the set of all shuffles of its columns. Then, (T,K)
is a matrix tableau-pair if and only if P = K.

Before giving the proofs of the statements above, we work out some examples.

Example 4.2. Consider the biword Π =

(
1144 23
4321 32

)
as in (3.5) (see Example 3.2).

The word 433221 is in tt (v1
4, v

0
3, v

1
2, v

0
1). Let T be a tableau with biword Π. Then

T has word 433221, indexing sets J1 = {4}, J2 = {3, 4}, J3 = {1, 2}, J4 = {1},
and weight (1, 2, 2, 1). The initial vertices of the lattice paths v4 and v2 are (4, 1)
and (3, 2), respectively. Recalling Example 3.3, we have s0

1 = s(4, 1) = 4 and s0
2 =



18 OLGA AZENHAS AND RICARDO MAMEDE

s(3, 2) = 3, and thus s(X4) = {4} and s(X2) = {3}. Then, by Step 1 of the Main
Algorithm, we must consider σ1 ∈ S4 satisfying σ1(1) = 4 and σ1(2) = 3. Take, for
instance, σ1 = (14)(23). Next, define

I + S2
4,4 = I + S(4, 4, σ1) = I, and σ2 = (4 4)σ1 = σ1;

I + S3
3,2 = I + S(3, 2, σ2) = T23(1);

I + S3
4,1 = I + S(4, 1, (3 2)σ2) = T14(1), and σ3 = (4 1)(3 2)σ2;

I + S4
1,1 = I + S(1, 1, σ3) = I, and σ4 = (1 1)σ3 = σ3.

Finally, let a′ = (2, 2, 1, 0) + (2, 1, 1, 0) and define the matrices A0 = diagp(a
′), B1 =

Pσ1D[1], B2 = D[2], B3 = T23(1)T32(−1) T14(1)T41(−1)D[2], and B4 = D[1].
Clearly, A1 = A0B1 ∼ diagp(a

′ + χJ1) and A2 = A0B1B2 ∼ diagp(a
′ + χJ1 + χJ2).

Since σ3([2]) = J3, by Lemma 4.2, we find that

A3 ∼L diagp(a
′ + χJ1 + χJ2)Pσ2B3 ∼L diagp(a

′ + χJ1 + χJ2)Pσ3D[2]

∼R diagp(a
′ + χJ1 + χJ2 + χJ3).

Since A4 ∼ diagp(a
′+χJ1 + · · ·+χJ4), the sequence A0, B1, . . . , B4 satisfies conditions

I and II of Definition 4.1. It remains to show that this sequence also defines the key
K = 4321 32. Bearing in mind Lemma 4.1, we may write

B1B2B3B4 = Pσ1D[1]D[2]T23(1)T14(1)T32(−1)T41(−1)D[2]D[1]

= Pσ1T23(p)T14(p2)D[1]D[2]T32(−1)T41(−1)D[2]D[1]

∼L D[1]D[2]T32(−1)T41(−1)D[2]D[1]

∼R D[1]D[2]D[2]D[1].

Therefore, the sequence A0, B1, B2, B3, B4 is a matrix realization of the pair

(T =

1
2

2
3

3
4 , K =

1 2
2 3
3
4 ).

In the next examples, we show that different shuffle decompositions may give
different matrix realizations of the same tableau T described in the previous example.
Moreover, there are shuffle decompositions that do not produce the tableau-pair
(T,K) in Theorem 4.4. More precisely, we shall see that some shuffle decompositions
may lead in our matrix construction of B1B2 · · ·Bt to condition (viii) in Lemma 4.1,
and, therefore, we are driven away from the key-tableau K.

Example 4.3. Consider the biword Π† =

(
1244 13
4321 32

)
as in (3.5), which is different

from the one considered in Example 4.2. Note that s0
1 = s(4, 1) = 4 and s0

2 = s(3, 2) =
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3. Following the Main Algorithm, we may define σ1 = (1 4)(2 3) ∈ S4, the matrices

I + S2
4,4 = I + S(4, 4, σ1) = I,

I + S3
3,1 = I + S(3, 1, σ1) = T24(1),

I + S3
4,2 = I + S(4, 2, (3 1)σ1) = T13(1),

I + S4
2,1 = I + S(2, 1, (4 2)(3 1)σ1) = T12(1),

and the permutations σ2 = σ1, σ3 = (4 2)(3 1)σ1 and σ4 = (2 1)σ3. Finally, define
A0 = diagp(a

′), B1 = Pσ1D[1], B2 = D[2], B3 = T24(1)T42(−1)T13(1)T31(−1)D[2],
and B4 = T12(1)T21(−1)D[1]. Applying the same arguments as the ones used in
Example 4.2, we may show that the sequence A0, B1, B2, B3, B4 is a matrix realization
for (T,K), and it is clearly different from the one obtained in Example 4.2.

Example 4.4. Consider now the biword Π′ as in (3.5) (see Example 3.2). We shall
see that, in this case, the sequence of matrices obtained by the Main Algorithm is
not a matrix realization of (T,K). Following Step 1 of the Main Algorithm, we may
define σ1 = (14)(23), since s0

1 = s(4, 1) = 4 and s0
2 = s(4, 2) = 3. By Step 2, we

define the matrices

I + S2
4,3 = I + S(4, 3, σ1) = T12(1),

I + S3
3,2 = I + S(3, 2, (4 3)σ1) = T13(1),

I + S3
4,1 = I + S(4, 1, (3 2)(4 3)σ1) = T24(1),

I + S4
2,1 = I + S(2, 1, (4 1)(3 2)(4 3)σ1) = T12(1),

and the permutations σ2 = (4 3)σ1, σ3 = (4 1)(3 2)σ2 and σ4 = (2 1)σ3. Finally,
we define the matrices A0 = diagp(a

′), B1 = Pσ1D[1], B2 = T12(1)T21(−1)D[2], B3 =
T13(1)T31(−1)T24(1)T42(−1)D[2], and B4 = T12(1)T21(−1)D[1].

As in Example 4.2, using Lemma 4.2, we find that A0, B1, B2, B3, B4 satisfy con-
ditions I and II of Definition 4.1. Let us now compute the invariant partition of
B1B2B3B4. Using Lemma 4.1, (ii), (v), and (vii), we may write

(4.3) B1B2B3B4 ∼L D{1}T21(−1)D{1,2}T31(−1)T42(−1)D{1,2}T12(1)T21(−1)D{1}

= D{1}T21(−1)T12(1)D{1,2}T31(−1)T32(−1)T42(−1)D{1,2}T21(−1)D{1},

and by Lemma 4.1, (vi), we find that

(4.3) ∼R D{1}T21(−1)T12(1)D{1,2}D{1,2}D{1}.

Since by Lemma 4.1, (viii), T21(−1)T12(1) = T22(−1)T12(1)P(1 2), we obtain

B1B2B3B4 ∼ D{1}T22(−1)T12(1)P(1 2)D{1,2}D{1,2}D{1}

∼L D{1}P(1 2)D{1,2}D{1,2}D{1}

∼R D{1}D{1,2}D{1,2}D{2}.

The sequence B1, B2, B3, B4 gives the Young tableau F =

1 2
2 3
3 4 6= K =

1 2
2 3
3
4 and,

therefore, A0, B1, B2, B3, B4 is a matrix realization for the pair (T, F ) with F 6= K.
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5. Proof of the Main Theorem

For any biword Π as in (3.4), the sequence of matrices A0, B1, . . . , Bt generated by
the Main Algorithm always defines a tableau-pair (T, F ), where T is a Young tableau
with biword Π which rectifies to a key-tableau K(m), and F is some Young tableau
with weight m whose shape dominates α(m). To prove that F is the rectification of
T , we need restrictions on the biword Π, as we have seen in Example 4.4. The proof
of the main theorem, Theorem 4.4, has therefore two parts. Firstly, we show that
the matrix sequence (A0, B1, . . . , Bt) generated in the Main Algorithm, by a biword
Π as in (3.4), defines any Young tableau T with that biword. Secondly, we show
that we may always select an appropriate biword of T such that the matrix sequence
B1, . . . , Bt defines its rectification.

5.1. Biwords generate matrix-tableaux. In this section, we only assume that we
have applied the Main Algorithm to a biword Π, without any additional conditions.

Lemma 5.1. Let t ≥ 1 and k ∈ {1, . . . , t}. Let (x, k) and (y, k + ε), ε ≥ 1, be two
consecutive vertices of a lattice path of Π. Then θk+ε · · · θk+1(x) = y.

Proof. Case 1. Assume s(y, k + ε) = y. This means that there are no vertices in
positions (y, j), k < j < k + ε. Thus, following Step 2 of the Main Algorithm, we
may write

θk+ε · · · θk+1 = ρ2(x y)ρ1,

for some permutations ρ1, ρ2 ∈ Sn, such that ρ1(x) = x.
We claim that ρ2(y) = y. Note that, for this equality to be false, we should

have a vertex (y, j), with j > k + ε, negatively-linked to a vertex (a, i), for some
i ∈ [k, k + ε − 1], with a > x, and (y, k + ε) should be an obstacle. This is not
possible since the sets of column vertices of the lattice paths containing (y, k+ε) and
(a, i), respectively, must be comparable for the inclusion order. Therefore, ρ2(y) = y
and the result follows.

Case 2. Assume now that s(y, k+ ε) 6= y, and let (y, k+ ε), (a1, b1), . . . , (ar, br) be
the (x, k)-path (see Definition 3.1). Clearly, s(y, k + ε) = ar, the integer r is even,
and, for each odd integer i ∈ [r], the vertices (ai, bi) and (ai+1, bi+1) are consecutive
vertices of a lattice path, with ai−1 = ai and a0 = y. Without loss of generality,
assume that b1 ≤ b3 ≤ · · · ≤ br−1. Then, following Step 2 of the Main Algorithm, we
have

θk+ε · · · θk+1 = ρ1(a1 a2)ρ2(a2 a3) · · · ρr−2(ar−2 ar−1)ρr−1(ar−1 ar)ρr(x ar)ρ0,

for some ρi ∈ Sn, such that ρ0(x) = x. By an argument similar to the one used in
Case 1, we find that ρi(ai) = ai, for i = 1, . . . , r, and the result follows. �

Lemma 5.2. Let t ≥ 1 and 1 ≤ j ≤ t. Let (x, j) be the initial vertex of a lattice
path. Then,

(a) σj(σ
−1
1 (s(x, j))) = x.

(b) σj[mj] = Jj.

Proof. (a) Note that σj(σ
−1
1 (s(x, j))) = θj · · · θ2(s(x, j)). If there are no vertices

in row x to the left of column j, then s(x, j) = x, θj · · · θ2(x) = x, and thus
σj(σ

−1
1 (s(x, j))) = x.
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Suppose there is a vertex in row x to the left of column j. Extend the biword Π

to a biword Π0 by adding extra biletters

(
n+ u

0

)
for all u ∈ [`1 + · · · + `t], such

that

(
x
j

)
and

(
n+ 1

0

)
are consecutive vertices in Π0, and the initial vertex of

each lattice path is linked to a distinct vertex (n + u, 0). In particular, the vertices
(x, j) and (n + 1, 0) are linked. Put θ1 := ν(n + 1 s(x, j)), where ν is defined
as in Step 2 of the Main Algorithm. By Lemma 5.1, θj · · · θ2θ1(n + 1) = x, that
is, θj · · · θ2(s(x, j)) = x, and the result follows. (As the lattice diagram of Π0 is
contained in ([n] ∪ [`1 + . . .+ `t])× ({0} ∪ [t]), in Algorithm 3.1, we have to make a
shift and put y := −1 in the case of an initial vertex.)

(b) Let k ∈ {1, . . . , t}. Recall that Ik := [`t+1 + · · ·+ `k+1 + 1, `t+1 + · · ·+ `k+1 + `k]
and |Jj| = mj =

∑t
k=σ−1(j) `k. Thus, Ik ⊆ [mj] for k ∈ {t, . . . , σ−1(j)}. We use

induction on j to prove that, if x ∈ Jj is such that (x, j) is a vertex of a lattice path
of length k with k ∈ {t, . . . , σ−1(j)}, there exists ix ∈ Ik such that σj(ix) = x.

When j = 1, the letters in J1 correspond to initial vertices of the lattice paths of
length k, for k = t, . . . , ε, where ε := σ−1(1). Therefore, we may write

{(x, 1) : x ∈ J1} =
ε⋃
k=t

Xk.

By the definition of σ1, we have σ1(Ik) = s(Xk). Since s(Xk) = {x : (x, 1) ∈ Xk}, for
k = t, . . . , ε, the result follows.

Fix now j in {2, . . . , t}, and let y ∈ Jj be the row index of a letter j belonging to a
lattice path v of length k. Clearly, we must have k ∈ {t, . . . , σ−1(j)}. If (y, j) is the
initial vertex of v then, by (a), we have σj(σ

−1
1 (s(y, j))) = y, with σ−1

1 (s(y, j)) ∈ Ik.
Assume now that (y, j) is negatively-linked to a vertex (x, j − ε) with x ≥ y, and

ε ≥ 1. By induction, there exists ix ∈ Ik such that σj−ε(ix) = x, and by Lemma 5.1
we find that θj · · · θj−ε+1(x) = y. Thus,

σj(ix) = θj · · · θj−ε+1σj−ε(ix) = y.

By induction, our claim is proved. Thus, for each x ∈ Jj there is ix ∈ [mj] such that
σj(ix) = x. Since |Jj| = mj, we must have σj([mj]) = Jj. �

Corollary 5.3. If (x, j) is a vertex of a lattice path of length k with initial vertex
(y, j − ε), ε ≥ 0, then σ−1

j (x) = σ−1
j−ε(y) = σ−1

1 (s(y, j − ε)) ∈ Ik.
Proof. This follows from the proof of the previous lemma. �

Proof of Proposition 4.3. Let t ≥ 1. We have to show that, for each k ∈ {0, 1, . . . , t},
the matrix Ak, given by Step 3 of the Main Algorithm, is left equivalent to diagp(a

′+

χJ0 + χJ1 · · ·+ χJk)Pσk
, where σ0 := id ∈ Sn and J0 := ∅. The proof is by induction

on k. For k = 0, Pid = I and A0 := diagp(a
′), and in this case there is nothing to

prove. So let k be in {1, . . . , t}. By induction, Ak−1 is left equivalent to diagp(a
′ +

χJ1 · · ·+ χJk−1)Pσk−1
. Therefore, by definition of Bk, Ak is left equivalent to

(5.1) diagp(a
′ + χJ1 · · ·+ χJk−1)Pσk−1

SkD[mk].
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Recall that S1 = Pσ1 and Sk =
∏qk−1

i=1 (I + Sk
xk

i y
k
i
)(I − Sk

xk
i y

k
i
)T , for k > 1. Therefore,

by Lemma 4.2 and (5.1), Ak is left equivalent to

(5.2) diagp(a
′ + χJ1 · · ·+ χJk−1)Pσk

D[mk] = diagp(a
′ + χJ1 · · ·+ χJk−1)Dσk[mk]Pσk

.

By Lemma 5.2 (b), we have σk[mk] = Jk, and the result follows. �

5.2. Biwords again: a canonical biword. In the proof of Proposition 4.3 there
are no restrictions on the shuffle decomposition that we have considered in Π. The
sequence of matrices A0, B1, . . . , Bt given by the Main Algorithm satisfies always
conditions I and II of Definition 4.1 for any biword Π as in (3.4) of T . To prove
that B1, . . . , Bt defines the rectification of T , we need restrictions on the biword Π,
as we have seen in Example 4.4. We shall show that we may always choose a biword
equivalent to Π obeying conditions that are convenient for our purpose.

In a biword Π some vertices play a special role in the proof of our Theorem 4.4.
They are identified in the following definitions.

Definition 5.1. Given distinct lattice paths u , v of Π, a vertex (a, b) ∈ u is said to
be a right critical vertex of the pair (u , v) if it is positively-linked to a vertex (a′, b′)
such that (s(a′, b′), b) belongs to v . If b′ = b+ 1 the right critical vertex is of type I,
otherwise it is of type II.

Given pairwise distinct lattice paths v 1, . . . , v k, k ≥ 2, of Π, a vertex (a1, b1) ∈ v 1

is said to be a right critical vertex of type I (respectively of type II) of (v 1, . . . , v k)
with critical components v 2, . . . , v k−1, if
• (a1, b1) ∈ v 1 is a right critical vertex of type I (respectively of type II) of (v 1, v 2),

positively-linked to (a2, b2);
• for i = 2, . . . , k− 2, (s(ai, bi), b1) is a right critical vertex of (v i, v i+1) positively-

linked to (ai+1, bi+1), and
• (s(ak−1, bk−1), b1) is a right critical vertex of (v k−1, v k).

Since the lattice paths are distinct, a right critical vertex of type I is always an
obstacle. In the case of a right critical vertex of type II, b′ − b > 1 and we may
have a′ = a with an obstacle of another lattice path between (a, b) and (a, b′). The
following diagrams are schematic representations of right critical vertices of types I
and II, respectively, both with one critical component,

• •
• •
•

a3 · · ·
a2 · · ·
a1 · · ·

· · ·
· · ·
· · ·

b1...

b1 + 1
...

b3...

...
...

...

v3
v2

v1

• •
• •

• •
•

a3 · · ·
· · ·

a2 · · ·
a1 · · ·

· · ·
· · ·
· · ·
· · ·

b2...

b3...

b1...

...
...

...

v3 v2

v

v1

1

.

Definition 5.2. Given distinct lattice paths u , v of Π, a vertex (a, b) ∈ u is said to
be a left critical vertex of (u , v) if it is not negatively-linked to a vertex in column
b− 1 and there is an obstacle on its left in position (a, b− 1) belonging to v .

Given pairwise distinct lattice paths v 1, . . . , v k, k ≥ 2, of Π, a vertex (a1, b) ∈ v 1

is a left critical vertex of (v 1, . . . , v k) with critical components v 2, . . . , v k−1 if
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• (a1, b) ∈ v 1 is a left critical vertex of (v 1, v 2);
• for i = 1, . . . , k − 2, the obstacle (ai, b − 1) ∈ v i+1 is a right critical vertex of

type I of (v i+1, v i+2) positively-linked to a vertex (ai+1, b), and
• (ak−1, b− 1) is an obstacle of (v k−1, v k).

Schematically, with k = 2, either (a1, b) is the initial vertex of v 1 or it is negatively
linked to a vertex not in column b− 1.

•
• •
• •

a3 · · ·
a2 · · ·
a1 · · ·

· · ·
· · ·
· · ·

b − 1
...

b
...

...
...

v3

v2

v1

•
• •
• •

•

a3 · · ·
a2 · · ·
a1 · · ·

· · ·

· · ·
· · ·
· · ·
· · ·

b2...

b3...

b1...

...
...

...

v3

v2

v1

1

.

For instance, in the biword Π′ as in (3.5) the vertices (4, 2) and (2, 3) are a left crit-
ical vertex and a right critical vertex of type I of the two lattice paths, respectively.
They are the only critical vertices in this biword. Consider now the biword repre-
sented in Example 3.4. The vertex (4, 3) is a left critical vertex of

((
345
531

)
,
(

22233
54321

))
with

critical component
(

1344
5321

)
, and clearly it is also a left critical vertex of

((
345
531

)
,
(

1344
5321

))
.

In this biword, there is no other left critical vertex. Notice that (4, 3) is also a right
critical vertex of type II of

((
345
531

)
,
(

1344
5321

))
. This example shows that a vertex may be

simultaneously a left and a right critical vertex. The vertex (5, 1) is a right critical
vertex of type II of

((
345
531

)
,
(

2
1

))
, and the vertex (4, 2) is a right critical vertex of type I

of
((

1344
5321

)
,
(

22233
54321

))
.

In what follows, given a biword Π as in (3.4), we provide a procedure to adjust
the links between their vertices, to form a new biword Π′ equivalent to Π, where the
new lattice path decomposition satisfies some properties needed in the sequel.

Algorithm 5.1. Let Π be the biword (3.4) identified with its lattice path represen-
tation in [n]× [t]. For each vertex (a, b) of Π, we move along each column, from top
to bottom, and left to right, to check whether (a, b) is a left or a right critical vertex
of type I of a pair of lattice paths (u , v) such that both have vertices in columns
b, b+ 1, . . . , b+ r, with r ≥ 1, u is below v in columns b, . . . , b+ r− 1, and u is above
v in column b+ r. If so, we have two situations:

1- (a, b) is a left critical vertex of (u , v), and then (a, b−1) is an obstacle of v . The
lattice paths u and v , restricted to the vertices in columns [b, b+ r] and [b− 1, b+ r],
respectively, are the factors of the sub-biword

ΠL = uv

=

(
ar ar−1 · · · a1 a
b+ r b+ r − 1 · · · b+ 1 b

)(
cr cr−1 · · · c1 c a

b+ r b+ r − 1 · · · b+ 1 b b− 1

)
of Π, respectively, where a > c, ai > ci, for i = 1, . . . , r−1, and ar < cr. Then, relink
the vertices of u and v , between columns b and b + r, so that the sub-biword ΠL is
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replaced by

Π′L =

(
ar cr−1 · · · c1 c
b+ r b+ r − 1 · · · b+ 1 b

)(
cr ar−1 · · · a1 a a

b+ r b+ r − 1 · · · b+ 1 b b− 1

)
,

•
•

• • •
• •

• •

b− 1 b · · · b + 3

a3

c3

c2 = c1 = c

a2 = a1

a

−→

•
•

• • •
• •

• •

b− 1 b · · · b + 3

a3

c3

c2 = c1 = c

a2 = a1

a

1

.

2- (a, b) is a right critical vertex of type I of (u , v). The lattice paths u and v
restricted to the vertices in columns [b, b+ r] are factors of the sub-biword

ΠR = uv =

(
ar ar−1 · · · a1 a
b+ r b+ r − 1 · · · b+ 1 b

)(
cr cr−1 · · · c1 c

b+ r b+ r − 1 · · · b+ 1 b

)
of Π, where a > c = a1, ai > ci, for i = 2, . . . , r − 1, and ar < cr. Then, relink
the vertices of u and v , between columns b and b+ r, so that the sub-biword ΠR is
replaced by

Π′R =

(
ar cr−1 · · · c1 a
b+ r b+ r − 1 · · · b+ 1 b

)(
cr ar−1 · · · a1 c

b+ r b+ r − 1 · · · b+ 1 b

)
,

•
• • •

• •
• • •
•

b b + 1 · · · b + 4

c4 = c3 = c2

a4

a3 = c1

a2 = a1 = c

a

−→

•
• • •

• •
• • •
•

b b + 1 · · · b + 4

c4 = c3 = c2

a4

a3 = c1

a2 = a1 = c

a

1

.

Let u ′ and v ′ be the lattice paths obtained from u and v replacing, in the first
case, the factor ΠL by Π′L, and, in the second case, the factor ΠR by Π′R. In this way,
we obtain a new biword Π′ equivalent to Π, where the lattice paths u and v were
replaced by the new lattice paths u ′ and v ′, respectively. The vertex (a, b) belonging
to the new lattice path u ′ is no longer a critical vertex of (u ′, v ′). Moreover, during
this process no new critical points will occur in the vertices already checked. Before
moving to the top of the next column, we continue this analysis, restarting with the
same vertex (a, b) and moving down along column b.

As there is only a finite number of vertices, this algorithm produces a new biword
Π′, equivalent to Π, under the conditions of (3.4), satisfying the following proposition.
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Proposition 5.4. The biword Π′ obtained by the application of Algorithm 5.1 to
Π is such that, if u and v are two lattice paths each having vertices in all columns
b, . . . , b + r, for some b, b + r ∈ [t], with r ≥ 1, and, if (a, b) is either a left critical
vertex, or a right critical vertex of type I of (u, v), then the vertices of u are below
the vertices of v in columns b, b+ 1, . . . , b+ r.

Remark 5.1. A biword Π satisfies trivially the conditions of the proposition above
if either (1) two vertices in the same row belong to the same lattice path; or, (2) if
(a, b′) and (a, b), b′ < b, are two vertices of Π in distinct lattice paths, then (a, b′) is
single or only negatively linked, that is, s(a, b) = a.

When T rectifies to K(σα(m)), with σ the identity, or the reverse permutation in
St, or σ ∈ S3, the conditions in the proposition above are satisfied [4, 5, 7].

Example 5.1. (1) The biword Π as in (3.5) used in the matrix construction of
Example 4.2 satisfies Proposition 5.4.
(2) In Example 4.4 the biword Π′ as in (3.5) was used in the matrix construction, but
the sequence B1, . . . , B4 generated in the Main Algorithm does not define K. Notice
that both lattice paths u =

(
14
32

)
and v =

(
1234
4321

)
have vertices in columns 3 and 2; the

vertex in position (4, 2) is a left critical vertex of (u , v), and u is above v in column
3. Therefore Π′ does not satisfy Proposition 5.4. Applying the algorithm above, we
get Π† as in (3.5), which already satisfies the conditions of Proposition 5.4,

(5.3)

1 2 3 4

1

2

3

4

• •
•

•
• •

1

.

Π† was used in the matrix construction of Example 4.3 where the sequence B1, . . . , Bt

produces K.
(3) Consider now the lattice path representation of the biword

(
11355777 444466 223345
87654321 865431 865431

)
.

This biword does not satisfy the conditions of Proposition 5.4, since, for example,
the vertex (7, 3) is a right critical vertex of the lattice paths u =

(
11355777
87654321

)
and

v =
(

444466
865431

)
. Both have vertices in columns 3, 4, . . . , 7, and u is above v in column

7. Below are the successive steps of the application of Algorithm 5.1 to this biword.
Notice that the lattice path representation of the final biword satisfies the conditions
of Proposition 5.4,
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1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

• •
• •

• ••
• • • • •

• • •
• •
• • •

→

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

• •
• •

• ••
• • • • •

• • •
• •
• • •

1

,

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

• •
• •

• ••
• • • • •

• • •
• •
• • •

→

1

.

In the following, we assume that the biword Π satisfies the conditions of Proposi-
tion 5.4. Recall that we have encoded the tableau T by a biword which we identify
with its lattice path representation. This lattice path representation is used in the
Main Algorithm to construct a sequence of matrices A0, B1, . . . , Bt, for which we have
already proved that they define the tableau T . In order to show that A0, B1, . . . , Bt

is a matrix realization for the pair (T,K), with K the rectification of T , we must
show that B1, . . . , Bt defines the key K. The main pieces of our matrix construc-
tion, as observed in Remark 4.1 (d), are the elementary matrices Tij(1) whose indices
i, j depend on the lattice path representation of Π. The next lemmas characterize
these elementary matrices by relating their indices i, j with the particular lattice
path representation that we have chosen in Proposition 5.4. This allows us to use
the commutation rules of Lemma 4.1, and it allows us to avoid any occurrence of the
situation (viii) in Lemma 4.1, and, thereby, to show that the invariant partition of
B1, . . . , Bt is exactly the shape of the key-tableau K.

Lemma 5.5. Let (x, k) and (y, k + ε), ε ≥ 1, be two consecutive vertices of a lattice
path of length q in Π with initial vertex (u, k′). Then the permutation ν and the
matrix

Sk+1
x,y = S(x, s(y, k + ε), νσk)

defined in Step 2 of the Main Algorithm satisfy:
(a) ν(x) = x.
(b) ν−1(s(y, k + ε)) /∈ J ′k = {a ∈ Jk : (a, k) is a positively-linked vertex}.
(c) I + Sk+1

x,y = Tij(1), with i = σ−1
k (x) = σ−1

1 (s(u, k′)) ∈ Iq ⊆ [mk], and j /∈ [|J ′k|].
Proof. (a) and (b) are obvious. To prove (c), recall that by the definition of the
matrix I + Sk+1

x,y = (sij), we have sij 6= 0 only if νσk(i) = x and νσk(j) = s(y, k + ε).
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Using (a) and Corollary 5.3, we obtain

i = σ−1
k (x) = σ−1

1 (s(u, k′)) ∈ Iq ⊆ [mk].

Now, by (b), we find that σk(j) = ν−1(s(y, k + ε)) /∈ J ′k. If σk(j) /∈ Jk, by
Lemma 5.2 (b), we must have j /∈ [mk]. Assume now that σk(j) ∈ Jk \ J ′k. Then, we
must have σk(j) = a, where (a, k) is a not positively-linked vertex of a lattice path
of length q′, with q > q′. Thus j = σ−1

k (a) ∈ Iq ⊆ [mk] \ [|J ′k|]. �

Corollary 5.6. Each matrix I + Sk+1
x,y = Tij(1), defined in Step 2 of the Main Algo-

rithm, is upper triangular with i ∈ [mk] and j > i. Moreover, j ∈ [mk] if and only if
there is a vertex (a, k), not positively-linked, belonging to a lattice path v, and such
that (x, k) is a right critical vertex of type I or II of (u, v), where u is the lattice path
containing (x, k).

Example 5.2. Let Π =

(
1112223 2233 1
7654321 7542 4

)
and its lattice path representation

(5.4)

1 2 3 4 5 6 7

1

2

3

• • • •
• • • • •

• • •

1

.

Applying the Main Algorithm, we must set σ1 = (13), since s0
1 = s(3, 1) = 3, s0

2 =
s(3, 2) = 2 and s0

3 = s(1, 4) = 1, and thus σi = (3 2)σ1, for i = 2, 3, 4 and σ5 =
(3 2)(2 1)σ4. Consider the matrices S2

3,2 = S(3, s(2, 2), σ2), S5
2,1 = S(2, s(1, 5), σ4),

and S5
3,2 = S(2, s(2, 5), (2 1)σ4), produced in Step 2 of the Main Algorithm. Since

s(2, 2) = 2, s(1, 5) = 1 and s(2, 5) = 2, we get

(5.5) I + S2
3,2 = T12(1), I + S5

2,1 = T13(1), and I + S5
3,2 = T23(1).

Each matrix in (5.5) is upper triangular and satisfies Lemma 5.5. Notice that in
the last two matrices the column index 3 ∈ [3] = [m4]. This is consistent with the
previous corollary, since the vertex (1, 4) is not positively-linked, and (2, 4) and (3, 4)

are right critical vertices of type I of

((
1112223
7654321

)
,

(
1
4

))
and of

((
2233
7542

)
,

(
1
4

))
,

respectively.

In the next lemmas, we analyse the relationship between the critical vertices of
our chosen biword Π and the matrices defined in Step 2 of the Main Algorithm. This
analysis is important in order to prove that the invariant partition of B1, . . . , Bt is
the shape of K.

Lemma 5.7. For q = 1, r, let (xq, k) and (yq, k + εq) be a pair of linked ver-
tices belonging to the lattice path uq, with x1 < xr, and consider the matrices
I + S(xq, s(yq, k + εq), νqσk) = Tiqjq(1). Then j1 = jr if and only if (xr, k) is a
right critical vertex of type I or II of (ur, . . . ,u2,u1), k ≥ 2, with critical components
ur−1, . . . ,u2.
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Proof. The if part. Without loss of generality assume that (x2, k) is a right critical
vertex of type I or II of (u2,u1), without critical components. Then x1 = s(y2, k+ε2)
and we may write ν2σk = θ(x1 s(y1, k + ε1))ν1σk, where θ ∈ Sn satisfy θ(x1) = x1.
Since ν2σk(j1) = x1 we get ν2σk(j1) = θ(x1) = x1, and the result follows.

The only if part. Without loss of generality, assume that in the matrix Bk, defined
in steps 2 and 3 of the Main Algorithm, there are no matrices Tij1(1) between Ti1j1(1)
and Ti2j1(1). Then, we may write ν2σk = θ(x1s(y1, k+ε1))ν1σk, for some permutation
θ ∈ Sn satisfying θ(x1) = x1. By definition, we must have ν2σk(j1) = s(y2, k + ε2).
On the other hand, ν2σk(j1) = θ(x1 s(y1, k + ε1)) ν1σk(j1) = x1. Therefore, we find
that x1 = s(y2, k + ε2), and this equality means that (x2, k) is a right critical vertex
of type I or II of (u2,u1). �

Lemma 5.8. Suppose mk < mk+1, and let (x, k) and (y, k+1) be consecutive vertices
of the lattice path vl. Then I + S(x, y, νσk) = Tij(1) with mk < j ≤ mk+1 if and
only if there is a vertex (a, k+ 1) belonging to a lattice path v1 which is a left critical
vertex of (v1, . . . , vl), with σ−1

k+1(a) = j.

Proof. The if part. Without loss of generality, assume that (x, k+ 1) is a left critical
vertex of (u , v), with no critical components. Since σk+1([mk+1]) = Jk+1, there is
j ∈ [mk+1] such that σk+1(j) = x. Consider the matrix S(x, y, νσk). Clearly, we
may write σk+1 = θ(x y)νσk, where θ ∈ Sn satisfy θ(x) = x. Therefore, νσk(j) =
(x y)θ−1σk+1(j) = y, and thus I + S(x, y, νσk) = Tij(1), for some integer i ∈ [mk].
Finally, note that since the lattice path v has no vertex in column k, all vertices in
column k must be positively-linked. Thus, by Lemma 5.5, we find mk < j.

The only if part. Assume now that I + S(x, y, νσk) = Tij(1), for some integer
mk < j ≤ mk+1. Again, it is clear that we must have

σk+1 = ρ(xr xr−1) · · · (x2 x1)(x1 x)(x y)νσk,

for some integers xr > · · · > x1 > x > y and a permutation ρ ∈ Sn such that
ρ(xr) = xr. Thus, σk+1(j) = xr ∈ Jk+1, since j ∈ [mk+1]. Denote by v the lattice
path containing the vertex (xr, k+ 1), and note that since ρ(xr) = xr, v cannot have
a vertex in column k. Thus, (xr, k + 1) is a left critical vertex of (u , v). �

Compare this result with Example 5.2, where the subindex 2 of T12(1) = I + S2
3,2

satisfies 1 = m1 < 2 = m2, and (3, 2) is a left critical vertex of
((

2233
7542

)
,
(

1112223
7654321

))
.

We are now ready to start the proof of our Main Theorem.

Proof of Theorem 4.4. It was shown in Proposition 4.3 that A0, B1, . . . , Bt satisfy
conditions I and II of Definition 4.1. So it remains to show that B1 · · ·Bt is equiva-
lent to the diagonal matrix D[m1] · · ·D[mt], that is, B1, . . . , Bt is a matrix construction
of the key with weight (m1, . . . ,mt). Using Corollary 5.3, Lemma 5.7, and the com-
mutation rules in Lemma 4.1, we may write each matrix

Bk =

qk−1∏
l=1

(Tiljl(1)Tjlil(−1))D[mk],
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k = 2, . . . , t, as

Bk =

(
qk−1∏
l=1

Tiljl(1)

)
CkDk

(
qk−1∏
l=1

Tjlil(−1)

)
D[mk],

where each Ck+1 [respectively Dk+1] is a product of upper [respectively lower] trian-
gular elementary matrices Tij(1), with i, j ∈{i1, . . . , iqk}, i 6= j. Moreover, note that
Tij(1) is a factor of Ck+1Dk+1 only if there are lattice paths ul with vertices (al, k)
such that σ−1

k (al) = l, for l = i, j, and where (ai, k) is a right critical vertex of type I
or II of (u i,u j). We will refer to Tiljl(1) and Tjlil(−1), l = 1, . . . , qk−1, as original
matrices of Bk, and we call the triangular matrices in CkDk secondary matrices.

Denote by u l the lattice path for which σ−1
0 (u0

l ) = l, with u0
l the column index of

its initial vertex, for l ∈ [`1 + · · ·+ `t]. Next, for k = 2, . . . , t, using Lemma 5.8 write

(5.6) Bk =

(
qk−1∏
l=1

Tiljl(1)

)
CkDkD[mk]

(
qk−1∏
l=1

Tjlil(φl)

)
,

where φl = −1 if Tjlil(−1) = S(x, y, νσk), if (x, k) and (y, k + 1) are linked vertices
of u il and there is a vertex (a, k+ 1) ∈ u jl , which is a left critical vertex of (u jl ,u il);
otherwise φl = −p.

The next step consists in using the commutation rules in Lemma 4.1 and Corol-
lary 5.6 to eliminate, by left equivalence, the left most upper triangular matrix Tij(x)
in D[m1]B2 · · ·Bt. Notice that this operation may generate new matrices Tuv(y). Re-
peat this operation, eliminating all upper triangular matrices.

By Lemma 4.1, there exists always a unimodular elementary matrix E such that

Tji(τ)Tab(τ
′) = Tab(%

′)Tji(%)E, with %, τ and %′, τ ′ pairs of associated elements,

whenever τ , τ ′ are not both unities, or (a, b) 6= (i, j) if i 6= j. Thus, the matrix
operations described in the previous paragraph are feasible if they do not involve
the passage of a matrix Tij(τ), with i < j, to the left of a matrix Tji(τ

′), with
τ = −τ ′ = ±1.

We begin by noticing that D[ml]Tij(1) = Tij(p)D[ml], whenever ml < j. Thus,
the situation described above only happens if the diagonal matrices, say D[mk+1], . . . ,
D[mk+ε], between Tji(τ

′) and Tij(τ) satisfy j ≤ mk+1, . . . ,mk+ε. If Tji(τ
′) = I −

S(x, y, νσk−1)T is a original matrix of Bk, (5.6) implies the existence of a left critical
vertex (a, k + 1) ∈ u j of (u j,u i). If Tji(τ

′) is a secondary matrix of Bk+1, by
Lemma 5.7, there is a right critical vertex of type I of u j, in column k, of (u j,u i).
By (5.6) and Lemma 4.1, any other case implies the existence of a sequence of matrices

(5.7) Ti0i1(τ0), Ti1i2(τ1), . . . , Tisis+1(τs),

with il ≤ mk+1, . . . ,mk+ε, for l = 0, 1, . . . , s + 1, s ≥ 1, which generates the matrix
Tji(τ

′) by the process of elimination described above. By Corollary 5.6, and Lem-
mas 5.7 and 5.8, the matrices in (5.7) are the result of left or right critical vertices of
type I. In particular, we find that u i0 is below u i1 in columns k + 1, . . . , k + ε, u i is
above u i1 in columns k+ ζ, . . . , k+ ε and u j is below ui0 in columns k+ ξ, . . . , k+ ε,
for some ε ≥ ζ, ξ ≥ 1. In any case, the existence of Tji(τ

′) means that u j is below
u i in columns k + ε′, . . . , k + ε, for some ε ≥ ε′ ≥ 1.
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The same reasoning shows that the existence of Tij(τ) means that u i is below u j

in column k + ε, contradicting Proposition 5.4. Therefore, whenever Tji(τ), i < j, is
on the left of D[mk+1] and satisfies j ≤ mk+1, any elementary matrix Tij(x) is trans-
formed, during the process of its elimination by left equivalence, into Tij(xp) when
reaching the diagonal matrix D[mk+1]. We may thus eliminate all upper triangular
matrices, and obtain

(5.8) B1 · · ·Bt ∼E D[m1]T2D[m2] · · ·TtD[mt],

where each Tk is a product of lower elementary triangular matrices, k = 2, . . . , t.
Finally, using Lemma 4.1, together with Corollary 5.6, we may eliminate by right
equivalence all these lower elementary triangular matrices, beginning with the right
most triangular matrix in (5.8), and ending in the left most triangular matrix in T2.
Therefore, (5.8) is equivalent to D[m1] · · ·D[mt]. �

6. Matrix tableau-pairs with key condition over a four-letter
alphabet

6.1. An injection of the Knuth class of a key over the four-letter alphabet
into a key over the six-letter alphabet. According to Theorem 2.1, in the case of
a four-letter alphabet, the problem of a matrix construction of a tableau-pair (T,K),
where T rectifies to the key-tableau K, is reduced to the key-tableau K(σ, (`4, . . . , `1))
with σ ∈ S, `2 > 0, and `4 > 0, since its Knuth class is the union of the sets
tt (v̂n5

5 , v
`4−n5
4 , v`33 , v

`2−n5
2 , v`11 ) for 0 ≤ n5 ≤ min{`2, `4}. Recall, from Section 2, that

v̂5 = 431421 and S = {1423, 1432, 4123, 4132}.
Consider w ∈tt(v̂n5

5 , v
n4
4 , . . . , v

n1
1 ), for some 0 ≤ n5 ≤ min{`2, `4}, ni = `i, i = 1, 3,

and ni = `i − n5, i = 2, 4. Let {Xn5
5 , . . . , X1

5 , . . . , X
n1
1 , . . . , X1

1} be a set partition of[∑4
i=1 ini + 6n5

]
, with w|X i

j = vj, i ∈ [nj], j ∈ {1, 2, 3, 4}, and w|X i
5 = v̂5, i ∈ [n5].

Let Ij,i be a row of length j, for i ∈ [nj], j = 1, . . . , 4, and I5,i = aibicidieif i, with
ai ≤ bi ≤ ci < di ≤ ei ≤ f i, for i ∈ [n5]. We consider the biword

(6.1) Π+ =

(
I5,n5 · · · I5,1

v̂5 · · · v̂5

∣∣∣∣ I4,n4 · · · I4,1 · · · I1,n1 · · · I1,1

v4 · · · v4 · · · v1 · · · v1

)
with bottom row v̂n5

5 vn4
4 · · · vn1

1 . The lattice path representation Π+ as in (6.1) consists

of n5 + · · ·+n1 nonintersecting lattice paths: the nj lattice paths

(
Ij,i

vj

)
of length j

have nonnegative slope, for i ∈ [nj], j ∈ {1, 2, 3, 4}, and the n5 lattice paths

(
I5,i

v̂5

)
,

i ∈ [n5], of length 6, are such that the line linking the vertices

(
ci

1

)
and

(
di

4

)
has negative slope.

Given a biword Π+ (6.1) it is a simple task to adjust, if necessary, the links between

the vertices of this biword in order to form a new biword Π̂+ satisfying the conditions
of the following lemma. (To avoid cumbersome notation we shall drop the super
indices in this statement.)
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Lemma 6.1. There is a biword Π̂+ equivalent to Π+ as in (6.1) satisfying the fol-
lowing conditions:
(a) Any two lattice paths have no critical vertices.

(b) If

(
abcdef
431421

)
is a lattice path of Π̂+ then:

(i) in row c there is at most one more vertex, placed in column 4, which must be
negatively-linked to a vertex in column 3;

(ii) if d 6= e, in row d there is at most one more vertex, placed in column 1, which
must be positively-linked;

(iii) if d 6= e, in row e, to the right of (e, 2), there are no vertices.

Proof. We prove only condition (b)(iii). All other conditions are proven in a similar
way. Recall that we must have a ≤ b ≤ c < d ≤ e ≤ f . If (e, 3) is also a vertex of
Π+, then it must belong to one of the words 431421, 4321 or 431. In these cases, Π+

must have a sub-biword either of the form

Γ =

(
abcdef gehjkl
431421 431421

)
, or ∆ =

(
abcdef gehi
431421 4321

)
, or Λ =

(
abcdef geh
431421 431

)
,

with g ≤ e ≤ h ≤ i < j ≤ k ≤ l. We may re-link the vertices of the lattice paths of
Γ, ∆, or Λ such that they are replaced in Π+ by

(
abcjkl geef dh
431421 4321 41

)
,

(
abcdhi geef
431421 4321

)
, or

(
geef abc dh
4321 431 41

)
,

respectively. In either case, the vertex (e, 2) belongs now to the new lattice path(
geef

4321

)
, and it is linked to (e, 3). We have only changed the links in the two lattice

paths. Therefore, we may assume, without loss of generality, that, if (e, 2) is a vertex

of a lattice path

(
I5,i

v̂5

)
, there is no vertex in position (e, 3).

Assume now that (e, 4) is a vertex, but (e, 3) is not. An analysis similar to the

one done above shows that if (e, 4) is a vertex of

(
I5,i

v̂5

)
or

(
Ij,i

vj

)
, for some

j = 1, . . . , 4, then we may re-link the vertices of the corresponding lattice paths in
such a way that the vertex (e, 2) is linked to (e, 4). Therefore, we may assume that
(e, 4) is not a vertex of Π+. �

Example 6.1. The biword Π+ =

(
113566 2234 3
431421 4321 4

)
, whose lattice path repre-

sentation is given below, fails to satisfy condition (b)(i) of the lemma above, since

the vertex (3, 1) belongs to the lattice path of

(
113566
431421

)
, and there is a vertex in
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row 3, column 2

(6.2)

1 2 3 4

1

2

3

4

5

6

• •
• •

• • •
•

•
• •

1

.

Rearranging the links between the vertices, we obtain the biword

Π̂+ =

(
114566 2233 3
431421 4321 4

)
,

which satisfy all the required conditions of Lemma 6.1

(6.3)

1 2 3 4

1

2

3

4

5

6

• •
• •

• • •
•

•
• •

1

.

In what follows, we assume that our biword Π+ satisfies the conditions of
Lemma 6.1.

Corollary 6.2. (a) If (a, i) is the initial vertex of a lattice path of length k, then
s(a, i) 6= a only if σ ∈ {4123, 4132}, i = 4, k = 1, and the nearest vertex in row a

is either in column 1, which is the rightmost vertex of the lattice path

(
I5,i

v̂5

)
or of(

Ij,i

vj

)
, for some j = 1, . . . , 4, or in column 2, which is a vertex of

(
I4,i

v4

)
.

(b) If (b, j), (a, i) are consecutive vertices of a lattice path of length k, then s(a, i) 6= a
only if j = 1, i = 4, and the nearest vertex in row a is in column 2, and it is a vertex

of

(
I4,i

v4

)
.

Proof. This follows from Lemma 6.1 (a). �

For each σ = σ(1)σ(2)σ(3)σ(4) in S4, consider the permutation

σ(1)σ(2)σ(3)σ(4)34 ∈ S6,

where

σ(k) =

{
σ(k), if σ(k) = 1, 2,

σ(k) + 2, if σ(k) = 3, 4.

This correspondence is a bijection between S4 and the set {σ = α34 ∈ S6 :
α ∈ S{1256}} ⊆ S6. In particular, S = {1423, 1432, 4123, 4132} is transformed into
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{162534, 165234, 612534, 615234} ⊆ S6. Let ρ : {v̂5, vj : j ∈ [4]} → {vj : j ∈ [6]},
such that ρ(v̂5) = v6 and ρ(vj) = vj, j = 1, 2, 3, 4, where v6, . . . , v1 are the columns
of the key encoded by the permutation σ and the vector (16).

For each n5 = 0, . . . ,min{`2, `4}, the map ρ can be extended, by shuffling, to a
bijection between the sets tt (v̂n5

5 , v
n4
4 , . . . , v

n1
1 ) and tt (v6

n5 , v4
n4 , . . . , v1

n1). This
last set is a subset of the plactic class of the key encoded by the permutation σ and
the vector (n5, 0, n4, n3, n2, n1). Thus every word in the plactic class of K(σα(m)),
σ ∈ S4, has a copy in the shuffle of the columns of some key over the alphabet [6].
Let w ∈tt(v̂n5

5 , v
n4
4 , . . . , v

n1
1 ). Fix an equivalent biword Π+ as in (6.1) satisfying the

conditions of Lemma 6.1, and let

(6.4) Π
+

=

(
I5,n5 · · · I5,1 I4,n4 · · · I4,1 · · · I1,n1 · · · I1,1

v6 · · · v6 v4 · · · v4 · · · v1 · · · v1

)
be the biword that we obtain when we transform each lattice path

(
Ij,i

vj

)
and(

aibicidieif i

4 3 1 4 2 1

)
of Π+ into

(
Ij,i

vj

)
and

(
aibicidieif i

6 5 4 3 2 1

)
, respectively, where ai ≤ bi ≤

ci < di ≤ ei ≤ f i. Let Σ be the biword obtained by sorting the biletters of Π
+

by
weakly increasing rearrangement with respect to the anti-lexicographic order with
priority in the first row. The second row of Σ, denoted ρ(w), is a shuffle of columns

vj, j = 6, 4, 3, 2, 1. Under this injection the lattice path

(
aibicidieif i

4 3 1 4 2 1

)
, which has

some negative slope steps, is stretched northeastward to

(
aibicidieif i

6 5 4 3 2 1

)
, where now

every step has nonnegative slope.

Example 6.2. Let σ = 4123 and consider the biword Π̂+ =

(
114566 2233 3
431421 4321 4

)
in Example 6.1. We have σ = 612534. Applying the map ρ, we obtain the biword

Π̂
+

=

(
114566 2233 3
654321 6521 6

)
, whose lattice path representation is given below

(6.5)

1 2 3 4 5 6

1

2

3

4

5

6

• •
• •

• • •
•

•
• •

1

.

The bottom word of the biword Σ̂, defined above, and equivalent to Π̂
+

, is ρ(w) =
65656214321, a shuffle of the columns 654321, 6521 and 6, which are exactly the
words read along the lattice paths, now all having nonnegative slope.

In the next proposition, we state some properties of the biword Π
+

.
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Proposition 6.3. Let Π
+

be the biword defined above, and let

(
abcdef
654321

)
be one

of its lattice paths. Then

(a) Π
+

has no critical vertices.
(b) There are no vertices in row c to the left of (c, 4), nor are there in row d to the

right of (d, 3), nor in row e to the right of (e, 2).

Proof. This is a consequence of the definition of Π
+

and Lemma 6.1. �

We are now in position to prove the following result.

Theorem 6.4. Let T be a Young tableau over a four-letter alphabet with rectification
P , and let K be the key with the same weight as T . Then, (T,K) is a matrix tableau-
pair if and only if P = K.

Proof. The “only if” part was proved in [6]. Conversely, assume K = K(σα(m)),
for some σ ∈ {1423, 1432, 4123, 4132} and `4, `2 > 0. Recall that in any other case
the plactic class of K(σα(m)) is the set of all shuffles of its columns and, thus, by
Theorem 4.4, (T,K(σα(m))) is a matrix-tableau pair.

Without loss of generality let w be the word of T in the set tt (v̂n5
5 , v

n4
4 , . . . , v

n1),
for some 0 < n5 ≤ min{`2, `4}, where ni = `i, i = 1, 3, and ni = `i − n5, i = 2, 4.
Notice that either m1 = 2n5 + n4 + n3 + n2 + n1 and m4 = 2n5 + n4 + n3 + n2, if
σ ∈ {1423, 1432}, or m4 = 2n5 + n4 + n3 + n2 + n1 and m1 = 2n5 + n4 + n3 + n2

otherwise. Let Π+ be the biword (6.1) of T satisfying Lemma 6.1. Consider the

injection ρ and the corresponding biword Π
+

as in (6.4), whose bottom word is the
key K(σ, (n5, 0, n4, n3, n2, n1). Let T be the Young tableau with the same skew-

shape as T and biword Π
+

. For each i = 1, . . . , n5, let

(
aibicidieif i

6 5 4 3 2 1

)
be a lattice

path of Π
+

. Then, if J4, J3, J2, J1 are the indexing sets of T , and if J6, · · · , J1 are
the indexing sets of T , we have J1 = J1 \ {ci : i ∈ [n5]}, J2 = J2, J5 = J3,
J3 = {di : i ∈ [n5]}, J4 = {ci : i ∈ [n5]}, and J6 = J4 \ {di : i ∈ [n5]}. Note also
that, by Proposition 6.3, there are no vertices in row ci to the left of (ci, 4), nor are
there in row di, to the right of (di, 3). Then, we may apply the Main Algorithm

to Π
+

, choosing a permutation σ1 ∈ Sn satisfying the conditions of Step 1, and
satisfying in addition that σ1(n1 + · · · + n5 + i) = ci, for i = 1, . . . , n5. Denote
by A0, B1, . . . , B6 the sequence of matrices obtained by this procedure. Then A0 =
diagp(a

′), B1 = Pσ1D[m1−n5], B2 = S2D[m2], Bk = SkD[n5], for k = 3, 4, B5 = S5D[m3],
and B6 = S6D[m4−n5]. By Theorem 4.4, this sequence is a matrix realization for the

pair (T ,K(σ, (n5, 0, n4, n3, n2, n1)). In particular, this means that

σ1([m1 − n5]) = J1 \ {ci : i ∈ [n5]}, σ2([m2]) = J2,(6.6)

σ3([n5]) = {di : i ∈ [n5]}, σ4([n5]) = {ci : i ∈ [n5]},(6.7)

σ5([m3]) = J3, and σ6([m4 − n5]) = J4 \ {di : i ∈ [n5]}.(6.8)

Consider the sequence of matrices A′0, B
′
1, B

′
2, B

′
3, B

′
4, defined by A′0 = diagp(a

′),
B′1 := Pσ1DΓ1 , B

′
2 := B2, B′3 := S3S4S5D[m3], and B′4 := S6DΓ4 , where Γ1 =
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[m1],Γ4 = [m4 − n5] ∪ {m4 + n1 + 1, . . . ,m4 + n1 + n5} if σ ∈ {1423, 1432}, and
Γ1 = [m1 − n5] ∪ {m1 + n1 + 1, . . . ,m1 + n1 + n5},Γ4 = [m4] otherwise.

By (6.6) and the definition of σ1, it is clear that

A′0B
′
1 = diagp(a

′)Pσ1DΓ1 = diagp(a
′ + χJ1)Pσ1 ,

and
A′0B

′
1B
′
2 ∼L diagp(a

′ + χJ1)Pσ2D[m2] = diagp(a
′ + χJ1 + χJ2)Pσ2 .

Next, by (6.7) and (6.8), we find that

A′0B
′
1B
′
2B
′
3 ∼L diagp(a+ χJ1 + χJ2)Pσ5D[m3] = diagp(a

′ + χJ1 + χJ2 + χJ3)Pσ5 .

Finally, consider the product

A′0B
′
1B
′
2B
′
3B
′
4 ∼ diagp(a

′ + χJ1 + χJ2 + χJ3)Pσ6DΓ4 ,

and notice that, for each i = 1, . . . , n5, we may write σ6 = αi2(cidi)αi1, with (cidi)
the transposition of ci with di, for some αi2, α

i
1 ∈ Sn satisfying αi1(ci) = ci and

αi2(di) = di, since by Lemma 6.3 there are no vertices of Π
+

nor are there in row ci

to the left of (ci, 4), nor in row di to the right of (di, 3). Therefore,

σ6({m4 + n1 + 1, . . . ,m4 + n1 + n5}) = {di : i ∈ [n5]},
and, by (6.8), we must have

A′0B
′
1B
′
2B
′
3B
′
4 ∼L diagp(a

′ + χJ1 + χJ2 + χJ3 + χJ4).

Thus, A′0, B
′
1, B

′
2, B

′
3, B

′
4 satisfy conditions I and II of Definition 4.1. It remains to

show that B′1 · · ·B′4 is equivalent to the diagonal matrix D[m1] · · ·D[m4]. We start by
using Lemma 4.1 to write, for k = 2, 3, 4,

B′k =

qk−1∏
l=1

Tiljl(1)CkDk

qk−1∏
l=1

Tjlil(−1)DΓk
,

where Γl = [ml] for l = 2, 3, CkDk is the identity matrix for k = 2, 4, and C3 [respec-
tively D3] is a product of upper [respectively lower] elementary matrices Tjj′(τ), for
some integers j, j′ ∈ [m2], and τ = ±1. Next, use again Lemma 4.1 to write B′1 · · ·B′4
as

(6.9)

q1∏
l=1

Tiljl(p
νl)D[Γ1]

q1∏
l=1

Tjlil(−1)

q2∏
l=1

Tiljl(p)D[m2]C3D3

q2∏
l=1

Tjlil(−1)

·
q3∏
l=1

Tiljl(p)D[m3]

q3∏
l=1

Tjlil(−1)D[Γ4],

for some νl ≥ 0. Notice that we may eliminate any upper triangular matrix Tij(p
ν),

ν > 0, by left equivalence, using Lemma 4.1. This operation may create new elemen-
tary matrices Tuv(p

ν′), but, as we have mentioned, using Lemma 4.1, we may assume
without loss of generality that this is not the case. Thus, we may write

(6.10) (6.9) ∼L D[Γ1]

q1∏
l=1

Tjlil(−1)D[m2]C3D3

q2∏
l=1

Tjlil(−1)D[m3]

q3∏
l=1

Tjlil(−1)D[Γ4].
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Use again Lemma 4.1 to eliminate all upper triangular matrices in C3 by left equiv-
alence. New elementary matrices may be created. Among these, eliminate all those
by left equivalence which are upper triangular. Finally, starting from right and
moving to the left, eliminate all lower triangular matrices left in the product by
right equivalence. It is now clear that B1 · · ·B4 is equivalent to the diagonal matrix
D[Γ1]D[m2]D[m3]D[Γ4]. Since mk ≤ n5 +n4 +n3 +n2, k = 2, 3, and Γ1 ⊆ Γ4 or Γ4 ⊆ Γ1,
we find that this last diagonal matrix is equivalent to D[m1] · · ·D[m4]. �

7. Concluding remarks and open questions

The Main Algorithm in Section 4 generates a matrix realization for the pair (T,K)
whenever the word of T is a shuffle of the columns of the key-tableau K. In particular,
when the Knuth class of K is the set of shuffles of its columns, we may construct a
matrix realization for the pair (T,K) whenever T rectifies to K. Over a four-letter
alphabet, there are key-tableaux whose plactic class is bigger than the set of the
shuffles of its columns. However, in those cases, we just add the single word 431421
to the set of the columns of the key-tableau K in order to describe its Knuth class
as the union of the shuffles of subsets of words comprising the columns of K and the
word 431421.

Working out some examples gives us an indication that this procedure might be
generalized to a t-letter alphabet, t ≥ 5, once shuffling generators for the Knuth
class are known. Unfortunately one rapidly sees that the number of words needed to
describe the Knuth class of a key-tableau, for t ≥ 5, as a set of shuffles containing
the shuffles of its columns, increases very fast. For example, over the alphabet [5],
we need to add the words 5415321 and 5431521 to the columns of the key-tableau
K = 54321 51 to describe its Knuth class. If we instead consider the key-tableau
K = 54321 54321 51, we now need to add 17 new words to the columns of K in order
to describe its Knuth class. Nevertheless, a simple adaptation of the procedure used
over a four-letter alphabet works also fine.

Although it seems to be a difficult problem, it would be interesting to describe
the Knuth class of a key-tableau K as the union of shuffles of subsets of words
where the set of columns of K is included. With this description, one believes that
the general problem of finding a matrix construction for the pair (T,K), when T is
Knuth equivalent to K, can be solved using a technique similar to that which we
used over a four-letter alphabet. We point out that recently the enumeration of the
distinct shuffles of two permutations of any given lengths has been provided in [8].
In particular, this result gives the number of distinct shuffles of the columns v1 and
v2 in the Knuth class of the key K = v2v1 with only two columns. This number is
exactly the number of elements of the Knuth class when the support of v1 is either an
interval or is obtained from an interval by removing a single letter (see Theorem 4.1
in [6]).
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