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DUALITY OF ANTIDIAGONALS AND PIPE DREAMS

NING JIA AND EZRA MILLER

The cohomology ring H∗(F ln) of the manifold of complete flags in a complex vector
space Cn has a basis consisting of the Schubert classes [Xw], the cohomology classes
of the Schubert varieties Xw indexed by permutations w ∈ Sn. The ring H∗(F ln)
is naturally a quotient of a polynomial ring in n variables; nonetheless, there are
natural n-variate polynomials, the Schubert polynomials, representing the Schubert
classes [LS82a]. The most widely used formulas [BJS93, FS94] for the Schubert poly-
nomial Sw are stated in terms of combinatorial objects called reduced pipe dreams,
which can be thought of as subsets of an n × n grid associated to w.

Reduced pipe dreams are special cases of curve diagrams invented by Fomin and
Kirillov [FK96]. They were developed in a combinatorial setting by Bergeron and
Billey [BB93], who called them rc-graphs, and ascribed geometric origins in [Kog00,
KM05]. One of the main results in the latter is that the set RPw of reduced pipe
dreams is in a precise sense dual to a family Aw of simpler subsets of the n × n grid
called antidiagonals (antichains in the product of two size n chains): every antidiago-
nal in Aw shares at least one element with every reduced pipe dream, and each antidi-
agonal and reduced pipe dream is minimal with this property [KM05, Theorem B].
The antidiagonals were identified there with the generators of a monomial ideal whose
zero set corresponds to a certain flat degeneration of the Schubert variety Xw. Geo-
metrically, the duality meant that the components in the special fiber are in bijection
with the reduced pipe dreams in RPw, which yield directly the monomial terms
in Sw. It was pointed out in [KM05, Remark 1.5.5] that the proof of this duality was
roundabout, relying on the recursive characterization of RPw by “chute” and “lad-
der” moves [BB93], along with intricate algebraic structures on the corresponding
monomial ideals; our purpose here is to give a direct combinatorial explanation.

Fix a permutation w ∈ Sn, and identify it with its permutation matrix, which
has an entry 1 in row i and column j whenever w(i) = j, and zeros elsewhere. We
write wp×q for the upper left p × q rectangular submatrix of w and

rpq = rpq(w) = #{(i, j) ≤ (p, q) | w(i) = j}

for the rank of the matrix wp×q. Let

l(w) = #
{

(i, j) | w(i) > j and w−1(j) > i
}

= #
{

i < i′ | w(i) > w(i′)
}

be the number of inversions of w, which is called the length of w.

Definition 1. A k × ℓ pipe dream is a tiling of the k × ℓ rectangle by crosses

and elbows ��. A pipe dream is reduced if each pair of pipes crosses at most once.
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For examples as well as further background and references, see [MS05, Chapter 16].
Pipe dreams should be interpreted as “wiring diagrams” consisting of pipes entering
from the west and south edges of a rectangle and exiting though the north and east
edges, with the tiles and �� indicating intersections and bends of the pipes.

The set RPw of reduced pipe dreams for a permutation w consists of those n × n
pipe dreams with l(w) crosses such that the pipes entering row i from the west exit
from column w(i). In such a pipe dream D, all of the tiles below the main southwest-
to-northeast (anti)diagonal are necessarily elbow tiles. We identify D with its set of
crossing tiles, so that D ⊆ [n] × [n] is a subset of the n × n grid.

Definition 2. An antidiagonal is a subset A ⊆ [n] × [n] such that no element is
(weakly) southeast of another: (i, j) ∈ A and (i, j) ≤ (p, q) ⇒ (p, q) /∈ A. Let Aw be
the set of minimal elements (under inclusion) in the union over all 1 ≤ p, q ≤ n of
the set of antidiagonals in [p] × [q] of size 1 + rpq(w).

For example, when w = 2143 ∈ S4,

A2143 =
{

{

(1, 1)
}

,
{

(1, 3), (2, 2), (3, 1)
}

}

and RP2143 =
{

{

(1, 1), (1, 3)
}

,
{

(1, 1), (2, 2)
}

,
{

(1, 1), (3, 1)
}

}

.

As another example, when w = 1432 ∈ S4,

A1432 =
{

{

(1, 2), (2, 1)
}

,
{

(1, 2), (3, 1)
}

,
{

(1, 3), (2, 1)
}

,
{

(1, 3), (2, 2)
}

,
{

(2, 2), (3, 1)
}

}

and

RP1432 =
{

{

(1, 2), (1, 3), (2, 2)
}

,
{

(1, 2), (2, 1), (3, 1)
}

,

{

(2, 1), (2, 2), (3, 1)
}

,
{

(1, 2), (2, 1), (2, 2)
}

}

.

Given any collection C of subsets of [n] × [n], a transversal to C is a subset of
[n] × [n] that meets every element of C at least once. The transversal dual of C is
the set C∨ of all minimal transversals to C. (Our definition of transversal differs from
that in matroid theory, where a transversal meets every subset only once. Here, our
transversals do not give rise to matroids: the transversal duals need not have equal
cardinality, so they cannot be the bases of a matroid.) When no element of C contains
another, it is elementary that taking the transversal dual of C∨ yields C.

Our goal is a direct proof of the following, which is part of [KM05, Theorem B];
see also [MS05, Chapter 16] for an exposition, where it is isolated as Theorem 16.18.

Theorem 3. For any permutation w, the transversal dual of the set RPw of reduced

pipe dreams for w is the set Aw of antidiagonals for w; equivalently, RPw = A∨

w.

In other words, every antidiagonal shares at least one element with every reduced
pipe dream, and it is minimal with this property.

Proof. We will show two facts.

Claim 1. D ∈ RPw ⇒ D ⊇ E for some E ∈ A∨

w.
Claim 2. E ∈ A∨

w ⇒ E ∈ RPv for some permutation v ≥ w in Bruhat order.
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Assuming these, the result is proved as follows. First we show that A∨

w ⊆ RPw. To
this end, suppose E ∈ A∨

w. Then E ∈ RPv for some v ≥ w by Claim 2, so E ⊇ D for
some D ∈ RPw by elementary properties of Bruhat order (use [MS05, Lemma 16.36],
for example: reduced pipe dreams for v are certain reduced words for v, and each
of these contains a reduced subword for w). Claim 1 implies that D ⊇ E ′ for some
E ′ ∈ A∨

w. We get E = E ′ by minimality of E, so E = D and v = w.
To show that RPw ⊆ A∨

w, assume that D ∈ RPw. Claim 1 implies that D ⊇ E
for some E ∈ A∨

w. But E ∈ RPw by the previous paragraph, so D = E because all
reduced pipe dreams for w have the same number of crossing tiles.

The remainder of this paper proves Claims 1 and 2. �

The key to proving Claims 1 and 2 is the combinatorial geometry of pipe dreams.
For this purpose, we identify [n] × [n] with an n × n square tiled by closed unit
subsquares, called boxes. This allows us to view pipes, crossing tiles, elbow tiles,
and pieces of these as curves in the plane. We shall additionally need the following.

Definition 4. A northeast grid path is a connected arc whose intersection with
each box is one of its four edges or else the rising diagonal � of the box.

Example 5. Fix an antidiagonal A in the k × ℓ rectangle [k] × [ℓ]. There exists a
northeast grid path G, starting at the southwest corner of [k]× [ℓ] and ending at the
northeast corner, whose sole � diagonals pass through the boxes in A. There might
be more than one; a typical path G with k = 7, ℓ = 15, and |A| = 3 looks as follows:

 

Example 6. Let P be a pipe in a pipe dream, or a connected part of a pipe. Define
up(P ) to be the northeast grid path consisting of the north edge of each box traversed
horizontally by P , the west edge of each box traversed vertically by P , and the rising
diagonal in each box through which P enters from the south and exits to the east.
Dually, define dn(P ) to consist of the south edge of each box traversed horizontally
by P , the east edge of each box traversed vertically by P , and the rising diagonal in
each box through which P enters from the west and exits to the north.

P with up(P ) P with dn(P )

Whenever a northeast grid path is viewed as superimposed on a pipe dream, we
always assume (either by construction or by fiat) that no pipe crosses it vertically
through a diagonal � segment. This is especially important in the next two lemmas.
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The arguments toward Claims 1 and 2 are based on two elementary principles for
a region R bounded by northeast grid paths. Such a region has a lower (“southeast”)
border SE = SE (R) and an upper (“northwest”) border NW = NW (R).

Lemma 7 (Incompressible flow). Fix a pipe dream. If k pipes enter R vertically

through SE and none cross SE again, then NW has at least k horizontal segments.

Proof. Every pipe crossing SE vertically exits R vertically through NW . �

Thus the “flow” consisting of the pipes entering from the south is “incompressible”.

Lemma 8 (Wave propagation). If none of the pipes entering R vertically through SE

cross SE again, then #{� segments in SE} ≥ #{� segments in NW}.

Proof. The sum of the numbers of horizontal and diagonal segments on NW equals the
corresponding sum for SE since these arcs enclose a region. Now use Lemma 7. �

The “waves” here are formed by the northwest halves of elbow tiles, each viewed
as being above a corresponding rising � diagonal; see also the proof of Lemma 11.
In the proof of Proposition 12, the “flipped” version is applied: if none of the pipes
entering the region R vertically (downward) through NW cross NW again, then
#{� segments in NW} ≥ #{� segments in SE}.

Proposition 9. If D ∈RPw has no on an antidiagonal A ⊆ [p]×[q] then |A| ≤ rpq.

Proof. The q pipes in D that exit to the north from columns 1, . . . , q are of two types:
rpq of them enter [p] × [q] horizontally into rows 1, . . . , p, and the other q − rpq of
them enter into [p]× [q] vertically from the south. Now simply apply the principle of
incompressible flow to the region bounded by a northeast grid path as in Example 5
and the path consisting of the south and east edges of [p] × [q]. �

Corollary 10. Every pipe dream D ∈ RPw is transversal to Aw, so Claim 1 holds.

Proof. If an antidiagonal A ⊆ [p] × [q] lies in Aw, then by definition A has size at
least 1 + rpq(w). Now use Proposition 9. �

Lemma 11. If D ∈ RPv for some permutation v, then for every p, q ∈ {1, . . . , n},
there is an antidiagonal of size rpq(v) in [p] × [q] on which D has only elbows.

Proof. Let Ipq be the set of all rpq of the pipes in D that enter weakly above row p and
exit weakly to the left of column q. For each k ≤ q, let bk be the southernmost box (if it
exists) in column k that intersects any P ∈ Ipq; otherwise, let bk be the northernmost
box in column k. Of the q pipes exiting to the north from columns 1, . . . , q, precisely
q − rpq of them cross some bk vertically from the south. The remaining rpq of the
boxes bk must be elbow tiles, and these form the desired antidiagonal. �

p, q

The pipes in Ipq and the boxes b1, . . . , bq in the proof of Lemma 11
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Proposition 12. Every transversal E ∈ A∨

w, thought of as a pipe dream, is reduced.

 

 2

 1

P

b
Q

Illustration of the proof of Proposition 12

Proof. Fix a (not necessarily minimal) transversal E of Aw containing two pipes P
and Q that cross twice, say at ⊞1 and ⊞2, with ⊞2 northeast of ⊞1. Assume that the
pipes P and Q as well as the crosses ⊞1 and ⊞2 are chosen so that the taxicab distance
(i.e., the sum of the numbers of rows and columns) between them is minimal. Then
one of the pipes, say P , is northwest of the other on the boundary of this area. The
minimality condition implies that no pipe in E crosses P or Q twice, so the principle
of wave propagation holds for any region R such that SE (R) is part of up(Q), and
the flipped version holds if NW (R) is part of dn(P ).

Our goal is to show that if ⊞2 is replaced by an elbow tile in E, then E will still
have a crossing tile on every antidiagonal A ∈ Aw, whence the transversal E is not
minimal. The method: for any A ∈ Aw containing ⊞2, we produce a new antidiagonal
A′ ∈ Aw such that ⊞2 /∈ A′, and furthermore every box in A′ is either an elbow tile
in E or a crossing tile of A. Since A′ contains a crossing tile of E other than ⊞2 (by
construction and transversality of E), we conclude that A does, as well.

Assume that some box of A lies on ⊞2. For notation, let �P be the box containing
the only elbow tile of P in the same row as ⊞2, and �Q the box containing the only
elbow tile of Q in the same column as ⊞2. Construct A′ from A using one of the
following rules, depending on how A is situated with respect to P and Q. (Some
cases are covered more than once; for example, if the next box of A strictly southwest
of ⊞2 lies between P and Q but south of the row containing �Q.)

• If the southwest box in A is on ⊞2, or if A continues southwest with its next
box in a column strictly west of �P , then move A’s box on ⊞2 west to �P .

• If A continues southwest of ⊞2 with its next box in a row strictly south of �Q,
then move A’s box on ⊞2 south to lie on �Q.

For the remaining cases, we can assume that A has a box strictly southwest of ⊞2 but
between P and Q (lying on one of P or Q is allowed). Let b be the southwest-most
such box of A, and let Ā consist of the boxes of A between ⊞2 and b.

• Assume that A continues to the west of P southwest of b. Let G be a northeast
grid path passing through all the boxes in Ā as in Example 5, starting with
the bottom edge of the box on P that is in the same row as b, and ending
with the east edge of ⊞2. Applying the flipped version of wave propagation
to the region enclosed by G and dn(P ), we conclude that we can define A′ by
replacing Ā ∪ {⊞2} with an equinumerous set of elbow tiles on P .

• If A continues to the south of Q after b, let G be a northeast grid path
passing through all the boxes in Ā as in Example 5, starting with the west
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edge of the box on Q in the same column as b, and ending with the east edge
of ⊞2. Applying wave propagation to the region enclosed by G and up(Q), we
conclude that we can define A′ by replacing Ā ∪ {⊞2} with an equinumerous
set of elbow tiles on Q. �

Corollary 13. Claim 2 holds: E ∈ A∨

w ⇒ E ∈ RPv for some v ≥ w in Bruhat order.

Proof. Bruhat order is characterized by v ≥ w ⇔ rpq(v) ≤ rpq(w) for all p, q. As
E ∈ A∨

w ⇒ E ∈ RPv for some v by Proposition 12, we get v ≥ w by Lemma 11. �
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