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SOLUTION TO A COMBINATORIAL PUZZLE ARISING FROM
MAYER’S THEORY OF CLUSTER INTEGRALS

OLIVIER BERNARDI

Abstract. Mayer’s theory of cluster integrals allows one to write the partition function
of a gas model as a generating function of weighted graphs. Recently, Labelle, Leroux and
Ducharme have studied the graph weights arising from the one-dimensional hard-core gas
model and noticed that the sum of the weights over all connected graphs with n vertices
is (−n)n−1. This is, up to sign, the number of rooted Cayley trees on n vertices and the
authors asked for a combinatorial explanation. The main goal of this article is to provide
such an explanation.

1. Introduction

In [9], Mayer used an algebraic identity in order to express the partition function of a
gas model as a generating function of weighted graphs. By Mayer’s transformation, any
choice of an interaction potential between particles in the gas leads to a specific graph
weight. For instance, in the case of the one-dimensional hard-core gas, Labelle, Leroux and
Ducharme [6] have shown that the Mayer’s weight of a connected graph G having vertex set
V (G) = {0, . . . , n} and edge set E(G) is w(G) = (−1)|E(G)|Vol(ΠG) where Vol(ΠG) is the
volume of the n-dimensional polytope

ΠG = {(x1, . . . , xn) ∈ Rn/ x0 = 0 and |xi − xj| ≤ 1 for every edge (i, j) ∈ E(G)}.
The pressure in the model is related to Mayer’s weights by

P = kT
∑

G connected graph

w(G)
z|V (G)|

|V (G)|!
,(1)

where k is Boltzmann’s constant, T is the temperature and z is the activity.
It is known (see [3]) that the pressure of the hard-core gas is P = kTL(z), where L(z) is

the Lambert function defined by the functional equation L(z) = z exp(−L(z)). Comparing
this expression of the pressure with (1) and extracting the coefficient of zn+1 gives∑

G∈Cn

w(G) = (−1)n(n + 1)n,(2)

where the sum is over all connected graphs with n + 1 vertices. Labelle et al. observed that
the right-hand-side of (2) is, up to sign, the number of rooted Cayley trees with n+1 vertices
and asked for a combinatorial explanation [6, Question 1]. The main purpose of this paper
is to give such an explanation.

The outline of the paper is as follows. In Section 2, we briefly review Mayer’s theory
of cluster integrals following the line of [8]. We illustrate this theory on a very simple
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model of discrete gas and prove the equivalence of this model with the Potts model on
the complete graph. Comparing two expressions of the pressure in the discrete gas leads
to a surprising combinatorial identity. In Section 3, we give a combinatorial proof of this
identity. In Section 4, we recall Mayer’s setting for the hard-core continuum gas and then
give a combinatorial proof of Equation (2), thereby answering the question of Labelle et al.

We close this section with some notations. We denote by Z the set of integers and by R
the set of real numbers. We denote [n] = {1, . . . , n} and by Sn the set of permutations of
[n]. In this paper, all graphs are simple, undirected and labelled. Let G be a graph. We
denote by v(G), e(G) and c(G) respectively the number of vertices, edges and connected
components of G. A graph H is a spanning subgraph of G if the vertex sets of H and G are
the same while the edge set of H is included in the edge set of G; we denote H ⊆ G in this
case. We denote by e = (i, j) the edge with endpoints i an j and write e ∈ G if the edge
e belongs to G. For any edge e, we denote by G ⊕ e the graph obtained from G by either
adding the edge e if e /∈ G or by deleting this edge if e ∈ G.

2. Review of Mayer’s theory of cluster integrals

Consider a gas made of n (indistinguishable) particles in a vessel Ω ⊂ Rd. We suppose
that the gas is free from outside influence and that interaction between two particles i and
j at positions xi and xj is given by the potential φ(xi, xj). In the classical Boltzmann
setting, the probability measure of a configuration is proportional to exp(−H/kT ), where k
is Boltzmann’s constant, T is the temperature and H is the Hamiltonian of the system given
by

H =
∑

1≤i≤n

miv
2
i

2
+

∑
1≤i<j≤n

φ(xi, xj),

where xi, vi, mi and
miv

2
i

2
are respectively the position, velocity, mass and kinetic energy of

the ith particle.
The partition function of the gas model is

Z(Ω, T, n) =
1

hdnn!

∫∫
x1,...,xn∈Ω, v1,...,vn∈Rd

exp(−H/kT )dx1 . . . dxndv1 . . . dvn,

where h is Planck’s constant. After integrating over all possible velocity, the partition
function becomes

Z(Ω, T, n) =
1

λnn!

∫∫
Ωn

∏
i<j

exp

(
−φ(xi, xj)

kT

)
dx1 . . . dxn,

where λ depends on the temperature T .
Mayer noticed that the partition function can be decomposed into a sum over graphs.

Indeed, by setting f(xi, xj) = exp
(
−φ(xi,xj)

kT

)
− 1, one gets∏

i<j

exp

(
−φ(xi, xj)

kT

)
=

∏
i<j

1 + f(xi, xj) =
∑

G⊆Kn

∏
(i,j)∈G

f(xi, xj),
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where the sum is over all graphs on n vertices (equivalently, spanning subgraph of the
complete graph Kn) and the inner product is over all edges of G. In terms of the partition
function, this gives Mayer’s relation:

λnn!Z(Ω, T, n) =

∫∫
Ωn

∏
i<j

exp

(
−φ(xi, xj)

kT

)
dx1 . . . dxn =

∑
G⊆Kn

W (G),

where W (G) =

∫∫
Ωn

∏
(i,j)∈G

f(xi, xj)dx1 . . . dxn is the first Mayer’s weight of the graph G.

Example: the discrete gas. Suppose Ω is made of q distinct boxes B1, . . . , Bq of volume
1 and that the interaction potential φ(xi, xj) is equal to α if the particles i and j are in the
same box and 0 otherwise. By definition, the Mayer’s weight of a graph G is

W (G) =

∫∫
Ωn

∏
(i,j)∈G

f(xi, xj)dx1 . . . dxn =
∑

c:[n] 7→[q]

∫∫
x1∈Bc(1),...,xn∈Bc(n)

∏
i<j

f(xi, xj)dx1 . . . dxn.

We denote u = exp(−α/kT ) and observe that f(xi, xj) = u − 1 if i and j are in the same
box and 0 otherwise. Therefore, the product

∏
(i,j)∈G f(xi, xj) equals (u− 1)e(G) if the value

of c is constant over each connected component of the graph G and 0 otherwise. Summing
over all mappings c : [n] 7→ [q] gives

W (G) = qc(G)(u− 1)e(G),

since there are qc(G) mappings c : [n] 7→ [q] which are constant over each connected compo-
nents of G.

In our discrete gas example, a direct calculation of the partition function gives

λnn!Z(Ω, T, n) =
∑

c:[n] 7→[q]

∫∫
x1∈Bc(1)...xn∈Bc(n)

∏
i<j

exp

(
−φ(xi, xj)

kT

)
dx1 . . . dxn =

∑
c:[n] 7→[q]

uδ(c),

where δ(c) is the number of edges (i, j) ∈ Kn such that c(i) = c(j). Hence, Mayer’s relation
reads ∑

c:[n] 7→[q]

uδ(c) =
∑

G⊆Kn

qc(G)(u− 1)e(G).(3)

Equation (3) is a special case of the equivalence established by Fortuin and Kasteleyn [4]
between the partition function of the Potts model (see e.g. [1]) and the Tutte polynomial
(see e.g. [2]). Indeed, the right-hand-side corresponds to the partition function of the Potts
model on the complete graph Kn while the left-hand-side corresponds to the subgraph ex-
pansion of the Tutte polynomial of Kn up to scaling and change of variables. The rela-
tion of Fortuin and Kasteleyn is the generalisation of (3) obtained by replacing the com-
plete graph Kn by any graph H. This more general case relies on the observation that∏

(i,j)∈H φi,j =
∑

G⊆H

∏
(i,j)∈G fi,j as soon as φi,j = 1 + fi,j for all (i, j) ∈ H.
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We now return to the general theory of Mayer and consider a system with an arbitrary
number of particles. The grand canonical partition function is defined by

Zgr(z) ≡ Zgr(Ω, T, z) =
∑
n≤0

znλnZ(Ω, T, n),

where z is the activity of the system. In terms of Mayer’s weights, the grand canonical
partition function is the exponential generating functions of graphs weighted by their first
Mayer’s weight:

Zgr(z) =
∑
n≤0

zn

n!

∑
G⊆Kn

W (G) =
∑

G

W (G)
zv(G)

v(G)!
.

The macroscopic parameters of the systems, such as the density ρ, or pressure P , can be
obtained from Zgr(z) by the relations

P =
kT

|Ω|
log(Zgr(z)) and ρ =

z

|Ω|
∂

∂z
log(Zgr(z)).

Observe that the first Mayer’s weight is multiplicative over connected components, that is,
if a graph G is the disjoint union of two graphs G1 and G2 then W (G) = W (G1)W (G2). This
is the key property implying log(Zgr(z)) =

∑
G connected W (G)zv(G) (see [6] for a complete

proof), or equivalently,

P =
kT

|Ω|
∑

G connected

W (G)
zv(G)

v(G)!
.(4)

Example: the discrete gas. For the discrete gas model introduced before, Equation (4)
gives

P

kT
=

∑
G connected

(u− 1)e(G) zv(G)

v(G)!
.(5)

In the special case of an infinite repulsive interaction between particles in the same box, that
is, α = ∞ and u = 0, the pressure P can also be computed directly. Indeed, in this case,
one gets

λnn!Z(Ω, T, n) =
∑

c:[n] 7→[q]

uδ(c) = #{c : [n] 7→ [q] injective} = q(q − 1) · · · (q − n + 1),

and

Zgr(z) =
∑
n≥0

znλnZ(Ω, T, n) =
∑
n≥0

(
q

n

)
zn = (1 + z)q.

This expression for the grand canonical partition function comes to no surprise since each of
the q boxes contains either nothing (activity 1) or one particle (activity z). Now,

P

kT
=

1

q
log(Zgr(z)) = log(1 + z) =

∑
n>0

(−1)n−1

n
zn,
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and extracting the coefficient of zn in both side of (5) gives

(−1)n−1
∑

G⊆Kn connected

(−1)e(G) = (n− 1)!.(6)

Identity (6) is quite surprising at first sight but can be understood by recognising in the
left-hand-side the evaluation of the Tutte polynomial of Kn counting the root-connected
acyclic orientations (acyclic orientation in which the vertex 1 is the only source) [5]. Indeed,
in the case of the complete graph Kn, root-connected acyclic orientations are linear orderings
of [n] in which 1 is the least element, or equivalently, permutations of {2, . . . , n}. In the next
section, we give a combinatorial proof of Equation (6) which avoids introducing the whole
theory of the Tutte polynomial (though it is based on it) and prepares for the more evolved
proof of Equation (2).

3. Pressure in the hard-core discrete gas and increasing trees

In this section, we give a combinatorial proof of (6) by exhibiting an involution Φ on
connected graphs which cancels the contribution of almost all graphs in the sum∑

G⊆Kn connected

(−1)e(G).

We consider the lexicographic order on the edges of Kn defined by (i, j) < (k, l) if either
min(i, j) < min(k, l) or min(i, j) = min(k, l) and max(i, j) < max(k, l). For a graph G and
an edge e = (i, j) (not necessarily in G), we denote by G>e the spanning subgraph of G
made of the edges which are greater than e. We say that e = (i, j) is G-active if there is a
path in G>e connecting i and j and we denote by e∗G the least G-active edge (if there are
some). We then define a mapping Ψ on the set of connected graphs by setting: Ψ(G) = G
if there is no G-active edge and Ψ(G) = G⊕ e∗G otherwise.

Lemma 1. The mapping Ψ is an involution on connected graphs.

Proof. • First observe that the image of a connected graph is connected. Indeed, if the edge
e∗G exists and belongs to G, then it is in a cycle of G and deleting it does not disconnect G.
• We now prove that any edge is G-active if and only if it is Ψ(G)-active. Suppose that the
edge e = (i, j) is G-active and let P be a path of G>e connecting i and j. Since e∗G ≤ e the
path P does not contain e∗G, hence P ⊆ Ψ(G)>e and e is Ψ(G)-active. Suppose conversely
that e = (i, j) is Ψ(G)-active and let P be a path of Ψ(G)>e connecting i and j. If P
does not contain e∗G, then P ⊆ G>e and e is G-active. Otherwise, e∗G > e and there is a
path Q of G>e∗G ⊆ G>e connecting the endpoints of e∗G. Thus, there is a path contained in
(P − e∗G) ∪Q ⊆ G>e connecting i and j and again e is G-active.
• By the preceding point, there is a G-active edge if and only if there is a Ψ(G)-active edge
and in this case e∗Ψ(G) = e∗G. Thus, Ψ(Ψ(G)) = G. �

The mapping Ψ is an involution and (−1)e(G)+(−1)e(Ψ(G)) = 0 whenever G 6= Ψ(G), hence∑
G⊆Kn connected

(−1)e(G) =
∑

G⊆Kn connected,Ψ(G)=G

(−1)e(G).(7)
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We now characterise the fixed points of the involution Ψ. A tree on {1, . . . , n} is said
increasing if the labels of the vertices are increasing along any simple path starting from the
vertex 1.

Lemma 2. A connected graph G has no G-active edge if and only if it is an increasing tree.

Proof. • We suppose first that G is an increasing tree and want to prove that no edge is G-
active. Since G has no cycle, no edge in G is G-active. Consider now an edge e = (i, j) /∈ G
and the nearest common ancestor k of i and j (the root vertex of G being the vertex 1).
There is an edge e′ = (k, l) containing k on the path of G connecting i and j. Since G is an
increasing tree, k ≤ min(i, j) and l ≤ max(i, j). Thus, e′ = (k, l) < e = (i, j) and e is not
G-active.
• Suppose now that there is no G-active edge. First observe that G is a tree since if G had
a cycle then the minimal edge in this cycle would be active. We now want to prove that the
tree G is increasing. Suppose the contrary and consider a sequence of labels 1 = i1 < i2 <
. . . < ir > ir+1 on a path of G starting from the vertex i1 = 1. Then, the edge (ir−1, ir+1) is
G-active and we reach a contradiction. �

By Lemma 2, the fixed points of the involution Ψ are the increasing trees. The increasing
trees on {1, . . . , n} are known to be in bijection with the permutations of {2, . . . , n} [10].
Hence, there are (n− 1)! increasing trees on [n] and continuing Equation (7) gives

(−1)n−1
∑

G⊆Kn connected

(−1)e(G) =
∑

G⊆Kn connected

Ψ(G)=G

(−1)e(G)+n−1 = #{increasing trees on [n]} = (n− 1)!.

This completes the proof of Equation (6).

4. Pressure in the hard-core continuum gas and Cayley trees

In the 1-dimensional hard-core continuum gas, the vessel is an interval Ω = [−q/2, q/2] and
the potential of interaction between two particles i and j is φ(xi, xj) = ∞ if |xi−xj| ≤ 1 and
0 otherwise. By definition, f(xi, xj) ≡ exp(−φ(xi, xj)/kT )− 1 is equal to -1 if |xi − xj| ≤ 1
and 0 otherwise. Thus, the first Mayer weight of a graph G on n vertices, is

W (q, T, G) =

∫∫
[− q

2
, q
2
]n

∏
(i,j)∈G

f(xi, xj)dx1 . . . dxn = (−1)e(G)

∫∫
[− q

2
, q
2
]n

∏
(i,j)∈G

1|xi−xj |≤1.

In the thermodynamic limit where the volume q of the Vessel tends to infinity, it becomes
interesting to consider the second Mayer’s weight of connected graphs defined by w(G) =

limq→∞
W (q,T,G)

q
and related to the pressure by P = kT

∑
G connected w(G)zG. In [6], it is

shown that for any connected graph G on {0, . . . , n}, the second Mayer weight w(G) equals
(−1)e(G)Vol(ΠG), where Vol(ΠG) is the volume of the n-dimensional polytope

ΠG = {(x1, . . . , xn) ∈ Rn/ x0 = 0 and |xi − xj| ≤ 1 for all edges (i, j) ∈ G}.

For instance, the polytope ΠK3 is represented in Figure 1. The rest of this paper is devoted
to the proof of Equation (2) given in the introduction.
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Figure 1. The polytope ΠK3 (dashed) and its decomposition into subpolytopes.

Subpolytopes. As observed by Bodo Lass [7], it is possible to decompose the polytope
ΠG into subpolytopes of volume 1/n!. Each subpolytope is defined by fixing the integral
parts and the relative order of the fractional parts of the coordinates x1, . . . , xn. Let us first
recall some definitions: for any real number x we write x = h(x) + ε(x) where h(x) ∈ Z
is the integral part and 0 ≤ ε(x) < 1 is the fractional part. Given a vector of integers
h = (h1, . . . , hn) ∈ Zn and a permutation σ ∈ Sn, we denote by π(h, σ) the polytope
whose interior is made of the points (x1, . . . , xn) such that h(xi) = hi for all i = 1 . . . n and
0 < ε(xσ−1(1)) < · · · < ε(xσ−1(n)) < 1. In particular, the polytope π(h, σ) contains the point

(h1 + σ(1)
n+1

, . . . , hn + σ(n)
n+1

, ) in its interior.
Observe that the condition |xi − xj| < 1 is equivalent to h(xi) − h(xj) ∈ {0, sign(ε(xj) −

ε(xi))} where the value of sign(x) is -1 if x < 0, +1 if x > 0 and 0 if x = 0. Therefore, a
point (x1, . . . , xn) in the interior of the polytope π(h, σ) is in ΠG if and only if (i, j) ∈ G
implies hi − hj ∈ {0, sign(σ(j)− σ(i))} with the convention that h0 = 0 and σ(0) = 0. This
condition only depends on the pair (h, σ), therefore either the polytope π(h, σ) is included
in the polytope ΠG or the interiors of the two polytopes are disjoints. Moreover, a simple
calculation shows that the volume of the polytope π(h, σ) is 1/n! for all h ∈ Zn, σ ∈ Sn.
This proves the following lemma.

Lemma 3. For any connected graph G on {0, . . . , n}, the value n!Vol(ΠG) counts the pairs
h ∈ Zn, σ ∈ Sn such that π(h, σ) is a subpolytope of ΠG.

For example, the polytope ΠK3 represented in Figure 1 contains 6 subpolytopes π1 =
π((−1,−1), 12), π2 = π((−1,−1), 21), π3 = π((0,−1), 12), π4 = π((−1, 0), 21), π5 =
π((0, 0), 12), π6 = π((0, 0), 21) each having volume 1/2.

Rearrangement. Summing the second Mayer’s weights over connected graphs and using
Lemma 3 gives∑

G∈Cn

w(G) =
∑
G∈Cn

(−1)e(G)Vol(ΠG) =
1

n!

∑
h∈Zn,σ∈Sn,G∈Cn

π(h,σ)⊆ΠG

(−1)e(G).(8)

Let σ be a permutation of [n]. For any vector h = (h1, . . . , hn) in Zn, we denote σ(h) =
(hσ(1), . . . , hσ(n)). For any graph G labelled on {0, . . . , n}, we denote by σ(G) the graph
where the label i is replaced by σ(i) for all i = 1, . . . , n.
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Lemma 4. Let h be a vector in Zn, let σ be a permutation of [n] and let G be a graph. Then,
π(h, σ) ⊆ ΠG if and only if π(σ−1(h), Id) ⊆ Πσ(G), where Id is the identity permutation.

We omit the proof of Lemma 4 which is straightforward. From this lemma, one gets for
any permutation σ of [n],∑

h∈Zn, G∈Cn

π(h,σ)⊆ΠG

(−1)e(G) =
∑

h∈Zn, G∈Cn

π(σ−1(h),Id)⊆Πσ(G)

(−1)e(G) =
∑

h∈Zn, G∈Cn

π(h,Id)⊆ΠG

(−1)e(σ−1(G)) =
∑

h∈Zn, G∈Cn

π(h,Id)⊆ΠG

(−1)e(G).

where the second equality is obtained by changing the order of summations on the graphs
G and on the vectors h. Therefore, continuing Equation (8) gives∑

G∈Cn

w(G) =
1

n!

∑
σ∈Sn

∑
h∈Zn,G∈Cn

π(h,σ)⊆ΠG

(−1)e(G) =
∑

h∈Zn,G∈Cn

π(h,Id)⊆ΠG

(−1)e(G).(9)

Killing involution. Let h be a vector in Zn. We will now evaluate the sum∑
G∈Cn

π(h,Id)⊆ΠG

(−1)e(G)

thanks to a killing involution similar to the one defined in Section 3. To the vector h =
(h1, . . . , hn) we associate the centroid h = (h0, h1, . . . , hn), where hi = hi+

i
n+1

for i = 0, . . . , n
with the convention that h0 = 0. We also denotes by Gh the graph on {0, . . . , n} whose edges
are the pairs (i, j) such that |hi − hj| < 1. Observe that for any graph G, π(h, Id) ⊆ ΠG if

and only if (h1, . . . , hn) ∈ ΠG if and only if G ⊆ Gh.
We order the edges e = (i, j) of the graph Gh by the lexicographic order on the cor-

responding pairs (hi,hj), that is, (i, j) < (k, l) if either min(hi,hj) < min(hk,hl) or

min(hi,hj) = min(hk,hl) and max(hi,hj) < max(hk,hl). For a graph G ⊆ Gh and an
edge e = (i, j) in Gh, we denote by G>e the set of edges in G that are greater than e and
we say that e is (G,h)-active if there is a path in G>e connecting i and j. We also denote
by e∗G,h the least (G,h)-active edge if there is any. We then define a mapping Ψh on the set
of connected spanning subgraphs of Gh by: Ψh(G) = G if there is no G-active edges and
Ψh(G) = G⊕ e∗G,h otherwise.

Lemma 5. For any vector h in Zn, the mapping Ψh is an involution on the connected
subgraphs of Gh.

The proof of Lemma 5 is identical to the proof of Lemma 1. As a consequence, one gets∑
G⊆Gh connected

(−1)e(G) =
∑

G⊆Gh connected, Ψh(G)=G

(−1)e(G).

We now characterise the fixed points of Ψh. Let i0 be the index of the least coordinate
of the centroid h (that is, hi0 = mini∈{0,...,n}(hi)). A tree on {0, . . . , n} is said h-increasing
if the labels i0, i1, . . . , ik of the vertices along any simple path starting at vertex i0 are such
that hi0 < hi1 < · · · < hik .
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Lemma 6. Let h be a vector in Zn. A connected graph G ⊆ Gh is an h-increasing tree if
and only if there is no (G,h)-active edge.

Proof. • We suppose first that G is an h-increasing tree. Since G has no cycle, no edge in
G is active. Consider now an edge e = (i, j) /∈ G and the nearest common ancestor k of i
and j (the root vertex of G being the vertex i0). Let also e′ = (k, l) be an edge containing
k on the path in G between i and j. Since G is an h-increasing tree, hk ≤ min(hi,hj) and

hl ≤ max(hi,hj). Thus, e′ = (k, l) < e = (i, j) and e is not (G,h)-active.
• Suppose now that there is no (G,h)-active edge. First observe that G is a tree since if
G had a cycle then the minimal edge in this cycle would be active. We now want to prove
that the tree G is h-increasing. Suppose the contrary and consider a sequence of labels
i0, i1, . . . , ir, ir+1 such that hi0 < · · · < hir−1 < hir , hir+1 on a path of G starting from the

vertex i0. Then, the edge (ir−1, ir+1) belongs to Gh (since |hir−1 − hir+1 | < max(|hir−1 −
hir |, |hir − hir+1 |) < 1) and is (G,h)-active. We reach a contradiction. �

From Lemma 6, one gets for any vector h ∈ Zn,∑
G⊆Gh connected

(−1)e(G) = (−1)n #{h-increasing trees}.

Therefore, continuing Equation (9) gives∑
G∈Cn

w(G) =
∑
h∈Zn

∑
G⊆Gh connected

(−1)e(G) = (−1)n
∑
h∈Zn

#{h-increasing trees}.(10)

Cayley trees. We now relate h-increasing trees and Cayley trees.

Lemma 7. Any rooted Cayley tree on {0, . . . , n} with root i0 is h-increasing for exactly one
vector h in Zn such that hi0 = min

i∈{0,...,n}
(hi).

Proof. Let T be a Cayley tree rooted on i0. The tree T is h-increasing with

hi0 = min
i∈{0,...,n}

(hi)

if and only if any vertex j 6= i0 satisfies hi < hj < hi + 1, where i is the father of j. The

condition hi < hj < hi + 1 holds if and only if either i < j and hj = hi or j < i and

hj = hi + 1. Therefore, tree T is h-increasing with hi0 = min(hi) if and only if for every
index i = 0, . . . , n, the difference hi − hi0 is the number of descents in the sequence of labels
i0, i1, . . . , is = i along the path of T from i0 to i (a descent is an index r < s such that
ir+1 < ir). Knowing that h0 = 0 completes the proof. �

It is well known that the number of rooted Cayley trees on {0, . . . , n} is (n + 1)n. Thus,
Lemma 7 gives ∑

G∈Cn

w(G) = (−1)n
∑
h∈Zn

#h-increasing trees = (−1)n(n + 1)n.(11)

This completes the proof of Equation (2) and answers a question of Labelle et al. [6].
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