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A GENERALIZED MAJOR INDEX STATISTIC

SAMI H. ASSAF

Abstract. Inspired by the k-inversion statistic for LLT polynomials, we define a k-inversion
number and k-descent set for words. Using these, we define a new statistic on words, called
the k-major index, that interpolates between the major index and inversion number. We
give a bijective proof that the k-major index is equi-distributed with the major index, gen-
eralizing a classical result of Foata and rediscovering a result of Kadell. Inspired by recent
work of Haglund and Stevens, we give a partial extension of these definitions and construc-
tions to standard Young tableaux. Finally, we give an application to Macdonald polynomials
made possible through connections with LLT polynomials.

1. Introduction

Given a multiset M of n positive integers, a word on M is a sequence of positive integers
w = w1w2 · · ·wn that reorders M . A statistic on words is an association of an element of N to
each word. A fundamental statistic that has been rediscovered in many guises is the inversion
number of a word, defined as the number of pairs of indices (i < j) such that wi > wj. A
descent of a word is an index i such that wi > wi+1. In 1913, Major P. MacMahon [Mac13]
introduced an important statistic, now called the major index in his honor, defined as the
sum over the descents of a word. Using generating functions, MacMahon [Mac16] proved
the remarkable fact that the major index has the same distribution as the inversion number.
Precisely, he showed that for WM the set of words on a fixed multiset M ,

(1)
∑

w∈WM

qmaj(w) =
∑

w∈WM

qinv(w),

where maj(w) denotes the major index of w and inv(w) denotes the inversion number of
w. Any statistic that is equi-distributed with the major index, i.e. a statistic satisfying the
above equation, is called Mahonian. In 1968, Foata [Foa68] constructed a bijection on words
with the property that the major index of a word equals the inversion number of its image,
thereby providing a bijective proof of equation (1).

In this paper, we introduce a statistic called the k-major index that interpolates between
the major index and inversion number. More precisely, the 1-major index is MacMahon’s
major index, and the n-major index of a word of length n is the inversion number. By
constructing bijections on words with a recursive structure similar to Foata’s bijection, we
give a bijective proof that the k-major index is Mahonian for all k. Looking back through
the literature, this same statistic was discover by Kadell [Kad85] who also gave a bijective
proof that the distribution is Mahonian. Whereas Kadell’s bijections in fact refine Foata’s
original bijection, the family of bijections defined herein is not the same as Kadell’s and,

2000 Mathematics Subject Classification. Primary 05A15;Secondary 05A05 05A19 05E05 05E10 .
Key words and phrases. Major index, descents, inversions, Foata bijection, tableaux statistics, Macdonald

polynomials.
Work supported in part by NSF Postdoctoral Fellowship DMS-0703567.



2 S. ASSAF

when taking the major index to the inversion number, gives a bijection different from that of
Foata. The k-major index statistic is defined in Section 2, and the bijections and proof that
the distribution is Mahonian are given in Section 3. Other nice interpolating statistics were
introduced by Rawlings [Raw81] and Clarke and Foata [CF95], though these differ from the
statistic presented here.

It is also natural to define a major index statistic on standard Young tableaux, which are
central objects in the study of symmetric functions. Recently, Haglund and Stevens [HS07]
defined an inversion number on tableaux. Their construction generalizes Foata’s bijection
to tableaux and shows that the inversion number and major index are equi-distributed over
standard Young tableaux of a fixed shape. Motivated by this, we use the bijections presented
here to extend the notion of the k-major index to standard Young tableaux, for k ≤ 3. We
hope this method might be used to build a complete family of statistics interpolating between
major index and inversion number on tableaux. This exploration takes place in Section 4.

Our discovery of the k-major index and the family of bijections presented here came about
through the study of Macdonald polynomials [Ass07a]. In Section 5, we elaborate on this
connection and present a conjecture for yet another family of bijections sharing many of the
same properties that would have the further consequence of providing a remarkably simple
combinatorial proof of Macdonald positivity.

2. Definitions and notation

At times it will be convenient to consider a slightly more general definition for a word
w, where wi is allowed to be either a positive integer or an ∅. In this case, ∅’s should be
regarded as incomparable to other letters, so that they are simply a way of spacing out the
nonempty letters of w. This idea will be especially important in connection with Macdonald
polynomials discussed in Section 5.

Definition 2.1. For w a word, k a positive integer, define the k-descent set of w, denoted
Desk(w), by

Desk(w) = {(i, i+ k) | wi > wi+k},

and define the k-inversion set of w, denoted Invk(w), by

Invk(w) = {(i, j) | k > j − i > 0 and wi > wj}.

For example, for w = 986173245 and k = 3 we have

Des3(9 8 6 1 7 3 2 4 5) = {(1, 4), (2, 5), (3, 6), (5, 8)},

Inv3(9 8 6 1 7 3 2 4 5) = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4), (5, 6), (5, 7), (6, 7)}.

In fact, it is enough to define k-descents since k-inversions may be recovered from the
observation

(2) Invk(w) =
⋃

j<k

Desj(w).

Note that when k = 1, Desk gives the usual descent set for a word. Similarly, when
N ≥ n, InvN gives the usual set of inversion pairs for a word of length n. We interpolate
between the corresponding statistics, maj and inv, with the following statistic depending on
the parameter k.
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Definition 2.2. Given a word w and a positive integer k, define the k-major index of w by

majk(w) = |Invk(w)| +
∑

(i,i+k)∈Desk(w)

i.

For the same example, we have maj3(9 8 6 1 7 3 2 4 5) = 8 + 1 + 2 + 3 + 5 = 19. For a
word w of length n ≤ N , the previous observations show that

maj1(w) = maj(w),

majN(w) = inv(w).

The statistic majk was first defined by Kadell [Kad85], who gives a bijective proof that this
statistic is Mahonian. Kadell’s bijections take inv to majk, with the extreme case from inv to
maj corresponding precisely to the inverse of Foata’s bijection [Foa68]. In Section 3, we give
a different family of bijections, taking majk−1 to majk, which, when composed appropriately,
give a different bijection from maj to inv.

In the case when w is a permutation (possibly with ∅s), we will also be interested in the
descent set of the inverse permutation, denoted iDes, defined by

(3) iDes(w) = Des(w−1) = {i | i appears to the left of i+ 1 in w}.

For example, iDes(9 8 6 1 7 3 2 4 5) = {2, 5, 7, 8}.
Recall that a partition λ is a weakly decreasing sequence of positive integers: λ =

(λ1, λ2, . . . , λm), λ1 ≥ λ2 ≥ · · · ≥ λm > 0. A partition λ may be identified with its Young
diagram: the set of points (i, j) in the Z+ × Z+ lattice quadrant such that 1 ≤ i ≤ λj . We
draw the diagram so that each point (i, j) is represented by the unit cell southwest of the
point. A standard Young tableau of shape λ is a labelling of the cells of the Young diagram
of λ with the numbers 1 through n, where n =

∑
i λi, such that the entries increase along

rows and up columns. For example, see Figure 1.

8
2 5 6
1 3 4 7

Figure 1. A standard Young tableau of shape (4, 3, 1).

For a standard Young tableau T , recall the descent set of T , denoted Des(T ), defined by

(4) Des(T ) = {(i, i+ 1) | i lies strictly south of i+ 1 in T}.

Completely analogous to the case with words, define the major index of T , denoted maj(T ),
by

(5) maj(T ) =
∑

(i,i+k)∈Des(T )

i.

For the example in Figure 1, Des = {(1, 2), (4, 5), (7, 8)} and so maj = 1 + 4 + 7 = 12. The
descent set for tableaux corresponds to the descent set of permutations in the sense that for
a fixed set D,

#{w ∈ Sn | Des(w) = D} =
∑

λ

fλ · #{T ∈ SYT(λ) | Des(T ) = D},
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where SYT(λ) denotes the set of standard Young tableaux of shape λ and fλ = |SYT(λ)|.
This identity can be proved using the Robinson–Schensted–Knuth correspondence that bi-
jectively associates each permutation w with a pair of standard tableaux (P,Q) of the same
shape such that iDes(w) = Des(Q). We postpone the definition of Desk and majk for tableaux
until Section 4.

3. A family of bijections on words

For k ≥ 2, we will construct bijections φ(k) on words of length n such that

(6) majk−1(w) = majk(φ
(k)(w)).

As noted earlier, these bijections are not equivalent to those defined by Kadell, and the
appropriate composition does not give Foata’s bijection. That said, the construction below

follows the idea of [Foa68] in that φ(k) will be defined recursively using an involution γ
(k)
j to

permute the letters of a given word.
Let x, a, b be (not necessarily distinct) integers. Say that x splits the pair a, b if a ≤ x < b

or b ≤ x < a. Let w be a word of length n. For k ≥ 2 and j ≤ n, define a set of indices Γ
(k)
j

of w by

(7) j − k ∈ Γ
(k)
j (w) if wj splits the pair wj−k, wj−k+1,

and if i ∈ Γ
(k)
j (w), then

(8) i− k ∈ Γ
(k)
j (w) if exactly one of wi or wi+1 splits the pair wi−k, wi−k+1.

For our running example, we have Γ
(3)
8 (9 8 6 1 7 3 2 4 5) = {5, 2}.

Let permutations act on words by permuting the indices, i.e. τ · w = wτ(1)wτ(2) · · ·wτ(n).

Define a map γ
(k)
j by

(9) γ
(k)
j (w) =




∏

i∈Γ
(k)
j (w)

(i, i+ 1)


 · w.

That is to say, γ
(k)
j (w) is the result of interchanging wi and wi+1 for all i ∈ Γ

(k)
j (w). Back to

our running example, we have γ
(3)
8 (9 8 6 1 7 3 2 4 5) = 9 6 8 1 3 7 2 4 5.

For w a word of length n, define φ(k) by

(10) φ(k)(w) = γ(k)
n ◦ γ(k)

n−1 ◦ · · · ◦ γ
(k)
1 (w).

Since γ
(k)
j is the identity for j ≤ k, these terms may be omitted from equations 10 and 11.

For example, for w = 6 9 3 8 1 7 2 4 5, φ(3)(w) is computed as follows.

w = 6 9 3 8 1 7 2 4 5

γ
(3)
4 (w) = 9 6 3 8 1 7 2 4 5

γ
(3)
5 γ

(3)
4 (w) = 9 6 3 8 1 7 2 4 5

γ
(3)
6 γ

(3)
5 γ

(3)
4 (w) = 9 6 8 3 1 7 2 4 5

γ
(3)
7 γ

(3)
6 γ

(3)
5 γ

(3)
4 (w) = 9 6 8 1 3 7 2 4 5

γ
(3)
8 γ

(3)
7 γ

(3)
6 γ

(3)
5 γ

(3)
4 (w) = 9 8 6 1 7 3 2 4 5

φ(3)(w) = γ
(3)
9 γ

(3)
8 γ

(3)
7 γ

(3)
6 γ

(3)
5 γ

(3)
4 (w) = 9 8 6 1 7 3 2 4 5
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Notice that for this example maj2(w) = 19 = maj3(φ
(3)(w)). Before proving equation (6) in

general, we take note of a few important properties that φ(k) shares with Foata’s bijection
(for Foata, properties (i) and (ii) are shown in [Foa68], and property (iii) is shown in [FS78]).

Proposition 3.1. For each k ≥ 2, we have

(i) the map φ(k) is a bijection on words on M with fixed ∅ positions;
(ii) for w a word of length n, wn−k+1 > wn if and only if φ(k)(w)n−k > φ(k)(w)n = wn;
(iii) for w a permutation, iDes(w) = iDes(φ(k)(w)).

Proof. Since Γ
(k)
j (γ

(k)
j (w)) = Γ

(k)
j (w), γ

(k)
j is an involution on words of length n for all j ≤ n

and k ≥ 2. Therefore φ(k) is a bijection on words of length n for all k ≥ 2 with inverse given
by

(11) ψ(k)(w) = γ
(k)
1 ◦ · · · ◦ γ

(k)
n−1 ◦ γ

(k)
n (w).

It is clear from the definition of γ
(k)
j that φ(k) in fact fixes the last k− 1 letters of a word, so

indeed the last letter is fixed for every k. Let u = γ
(k)
n−1 · · · γ

(k)
1 (w), uj = wj for j ≥ n−k+1.

If un−k and un−k+1 compare the same with un, then u = φ(k)(w) and (ii) clearly holds;

otherwise, these two letters are interchanged by γ
(k)
n , again showing that (ii) is satisfied.

Also note that φ(k) may be defined recursively by

(12) φ(k)(wx) = γ
(k)
n+1

(
φ(k)(w)

)
x,

which completely parallels Foata’s original construction. Finally, since consecutive letters

cannot be split (in the sense of Γ
(k)
j ) they may never be interchanged by γ

(k)
j . Thus the

inverse descent set is preserved. �

To prove equation (6), we follow the strategy of [Foa68]. The key, therefore, lies in the
following lemma.

Lemma 3.2. For k ≥ 2, w a word of length n and j ≤ n,

majk

(
γ

(k)
j (w1 · · ·wj−1)

)
= majk(w1 · · ·wj−1) +






1 if wj−k > wj ≥ wj−k+1,

−1 if wj−k+1 > wj ≥ wj−k,

0 otherwise.

Proof. If neither of the first two cases holds, then j − k 6∈ Γ
(k)
j (w), so γ

(k)
j (w) = w, and the

result follows. Assume, then, that j − k ∈ Γ
(k)
j (w), and set u = wj−kwj−k+1 · · ·wj−1. Then

(13) majk

(
γ

(k)
j (u)

)
= majk(u) +

{
1 if wj−k > wj ≥ wj−k+1,

−1 if wj−k+1 > wj ≥ wj−k.

For i ∈ Γ
(k)
j (w), let u = wiwi+1 · · ·wj−1, and, by induction, assume that equation (13) holds

for u. Let u′ = wi−kwi−k+1 · · ·wj−1. We will show that u′ also satisfies equation (13) by
considering the contribution to majk of wi−k, wi−k+1, . . . , wi−1. For i − k + 1 < h < i, k-

inversions and k-descents involving wh are the same for u′ and γ
(k)
j (u′), so we need only

consider contributions from the potential k-inversions (i−k, i−k+1) and (i−k+1, i), and
the potential k-descents (i− k, i) and (i− k + 1, i+ 1).
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First suppose i− k ∈ Γ
(k)
j (w). In all possible scenarios for wi−k, wi−k+1, wi, wi+1, we have

(i− k, i− k + 1) ∈ Invk(w) ⇔ (i− k, i− k + 1) 6∈ Invk

(
γ

(k)
j (w)

)
,

(i− k, i) ∈ Desk(w) ⇔ (i− k + 1, i+ 1) ∈ Desk

(
γ

(k)
j (w)

)
,

(i− k + 1, i+ 1) ∈ Desk(w) ⇔ (i− k, i) ∈ Desk

(
γ

(k)
j (w)

)
.

If both or neither of (i − k, i) and (i − k + 1, i + 1) are k-descents of w, then the same

holds for u′ and γ
(k)
j (u′). In this case exactly one of (i− k, i− k + 1) and (i − k + 1, i) is a

k-inversion for w, and

(i− k + 1, i) ∈ Invk(u
′) ⇔ (i− k + 1, i) 6∈ Invk

(
γ

(k)
j (u′)

)
.

The lemma now follows. On the other hand, if exactly one of (i−k, i) and (i−k+1, i+1) is a
k-descent of w, then the difference in the contribution to majk from the potential k-descents
is offset by the difference from the potential k-inversion (i− k, i− k + 1). Furthermore,

(i− k + 1, i) ∈ Invk(u
′) ⇔ (i− k + 1, i) ∈ Invk

(
γ

(k)
j (u′)

)
,

thereby establishing the result.

To complete the proof, note that when i − k 6∈ Γ
(k)
j (w), either wi and wi+1 compare the

same with wi−k and also with wi−k+1 and so the k-inversions and k-descents beginning with
i − k or i − k + 1 are unchanged, or the k-descent at (i − k + 1, i + 1) is exchanged for a
k-descent at (i− k, i) along with a k-inversion at (i, i+ 1). In both cases the contribution to
the k-major index is preserved. �

Proposition 3.3. For k ≥ 2 and w a word, majk−1(w) = majk
(
φ(k)(w)

)
.

Proof. The result is clear for a words of length ≤ k. We proceed by induction, assuming the
result for words of length n− 1. Let w be a word of length n− 1 and x a letter. To simplify
notation, let

u = γ(k)
n

(
φ(k)(w)

)
.

By expanding the definition of majk, we have

majk
(
φ(k)(wx)

)

= majk(ux)

= majk(u) + #{i > n− k | ui > x} +

{
0 if x ≥ un−k

n−k if un−k > x

= majk(u) + #{i > n− k + 1 | ui > x} +






n−k + 1 if un−k > x, un−k+1 > x

0 + 0 if x ≥ un−k, x ≥ un−k+1

n−k + 0 if un−k > x, x ≥ un−k+1

0 + 1 if x ≥ un−k, un−k+1 > x
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Applying Lemma 3.2 and simplifying gives

majk
(
φ(k)(wx)

)

= majk

(
γ

(k)
n (u)

)
+ #{i > n− k + 1 | ui > x} +





n−k+1 + 0 if un−k, un−k+1 > x

0 + 0 if x ≥ un−k, un−k+1

n−k + 1 if un−k > x ≥ un−k+1

1 − 1 if un−k+1 > x ≥ un−k

= majk−1

(
φ(k)(w)

)
+ #{i > n− k + 1 | ui > x} +

{
0 if x ≥ un−k

n−k+1 if un−k > x

Recall from Proposition 3.1 that for i ≥ n− k + 2, ui = wi, and so

{i > n− k + 1 | ui > x} = {i > n− k + 1 | wi > x}.

Furthermore, since φ(k)(w)n−k+1 = wn−k+1, we also have

un−k ≤ x ⇔ wn−k+1 ≤ x.

Continuing from the above equation using these two facts and the inductive hypothesis,
we have

majk
(
φ(k)(wx)

)
= majk−1(w) + #{i > n− k + 1 | wi > x} +

{
0 if x ≥ wn−k+1

n−k+1 if wn−k+1 > x

which is exactly majk−1(wx), as desired. �

For 1 ≤ h < i, we can compose these bijections to form the bijection

(14) φ[i,h] = φ(i) ◦ · · · ◦ φ(h+1)

satisfying majh(w) = maji
(
φ[i,h](w)

)
. In particular, φ[k,1] provides a bijective proof of the

following.

Theorem 3.4. Let WM be the set of words on a multiset M with a fixed ∅ positions. Then
for k ≥ 1,

∑

w∈WM

qmaj(w) =
∑

w∈WM

qmajk(w).

That is to say, the k-major index has Mahonian distribution.

4. Extending the k-major index to tableaux

In [HS07], Haglund and Stevens define an inversion number for standard tableaux that is
equi-distributed with the major index. Therefore it is natural to try to extend the k-major
index statistic to tableaux in a similar manner. However, to do this, we must first define
Desk for standard Young tableaux.

Consider the possible relative positions of i and i + k in a standard Young tableau T .
Since i < i + k, i must lie strictly west or strictly south of i + k. If i lies strictly west and
weakly north of i+ k, then the pair (i, i+ k) should not count as a k-descent. Conjugately,
if i lies strictly south and weakly east of i + k, then the pair (i, i + k) should count as a
k-descent. The difficulty arises in how to resolve the situation where i lies strictly southwest
of i+k. The approach given in [HS07] is quite involved as it is based on inversion paths which
must be computed iteratively. In most cases, interchanging even two consecutive entries in
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a tableau completely alters the inversion paths in an opaque way. Therefore we begin at the
other extreme, though below we succeed only up to k = 3.

For k = 2, the ambiguous case when i lies strictly southwest of i + 2 cannot arise in a
standard tableaux. However, for k = 3 we must decide whether (i−3, i) is a 3-descent when
i− 3, i− 2, i− 1, i appear in a 2× 2 box in T . For reasons that will become clear, we resolve
the situations as indicated in Figure 2.

i−1 i

i−3 i−2

i−2 i

i−3 i−1

(i− 3, i) ∈ Des3 (i− 3, i) 6∈ Des3

Figure 2. Ambiguous cases for whether (i− 3, i) should constitute a 3-descent.

To simplify notation, we introduce the following terminology. For i < n, say that i attacks
n if i lies strictly south and weakly east of n or if i lies strictly southwest of n and i + 1
attacks n.

Definition 4.1. For T a standard tableau, k ≤ 3, define the k-descent set of T , denoted
Desk(T ), by

Desk(T ) = {(i, i+ k) | i attacks i+ k},

define the set of k-inversions of T , denoted Invk(T ), by

Invk(T ) =
⋃

j<k

Desj(T ),

and finally define the k-major index of T , denoted majk(T ), by

majk(T ) = |Invk(T )| +
∑

(i,i+k)∈Desk(T )

i.

Note that for defining k-inversions we made use of the alternate description of k-inversions
for words given in equation (2). For the example given in Figure 1, we have Des2 =
{(3, 5), (4, 6), (6, 8)}, Inv2 = {(1, 2), (4, 5), (7, 8)} and so maj2 = 3 + 3 + 4 + 6 = 16.

Parallel to Section 3, we aim to generalize Theorem 3.4 to tableaux by constructing bijec-
tions Φ(k), k = 2, 3, on standard Young tableaux of fixed shape such that

(15) majk−1(T ) = majk(Φ
(k)(T )).

The first task, then, is to define the set Γ
(k)
j . Here care must be taken when determining

when the “splitting” condition is satisfied. As a minimum requirement, since the intention
is to interchange i and i+1, we must ensure that we do this only if i and i+1 do not appear
in the same row or column. This motivates the decision in Figure 2 as well as the following
definitions.

Say that n splits a, b if exactly one of a, b attacks n. For k = 2, 3, define Γ
(k)
j by

j − k ∈ Γ
(k)
j (T ) if j splits the pair j − k, j − k + 1,
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and if i ∈ Γ
(k)
j (T ), then

i− k ∈ Γ
(k)
j (T ) if exactly one of i, i+ 1 splits the pair i− k, i− k + 1.

By the definition of attacking, both or neither i, i + 1 attack n whenever i is strictly
southwest of n. Therefore in order for n to split i, i + 1, one must lie strictly south and
weakly east of n, and the other must lie weakly north of n. It follows, then, that if i and
i+ 1 lie in the same row or column of T , then n does not split i, i+ 1 for any n.

Let permutations act on standard fillings of a Young diagram by permuting the entries.
While this is not, in general, a well-defined action on tableaux, the following application in

fact is. For k = 2, 3, define γ
(k)
j by

(16) γ
(k)
j (T ) =




∏

i∈Γ
(k)
j

(T )

(i, i+ 1)


 · T.

That is, γ
(k)
j interchanges i and i + 1 for all i ∈ Γ

(k)
j (T ). As before, γ

(k)
j is the identity for

j ≤ k.

If i is strictly southwest of n, then n cannot split the pair i, i+1. It follows that Γ
(k)
j (T ) =

Γ
(k)
j (γ

(k)
j (T )); in particular, γ

(k)
j is an involution. For k = 2, 3, define a bijection Φ(k) on

tableaux of a fixed shape by

(17) Φ(k)(T ) = γ(k)
n ◦ γ

(k)
n−1 ◦ · · · ◦ γ

(k)
1 (T ).

For the example in Figure 3, observe that maj1(T ) = 16 = maj2(Φ
(2)(T )).

T = 8
2 4 6
1 3 5 7

8
3 4 6
1 2 5 7

8
2 5 6
1 3 4 7

= Φ(2)(T )γ
(2)
4 γ

(2)
6

Figure 3. An example of Φ(2); here γ
(2)
j = id for j 6= 4, 6.

Similar to before, the inverse of Φ(k) is given by composing the maps γ
(k)
j in the reverse

order. This establishes the analogue of the property (i) of Proposition 3.1, and the analogue
of property (ii) is that the largest letter of T is fixed by Φ(k). As property (iii) has no
real analogue in this setting, we move on to the more important statement observed in the
example, namely the analogue of Proposition 3.3 below.

Proposition 4.2. For T a standard Young tableau and k = 2, 3, we have

majk−1(T ) = majk
(
Φ(k)(T )

)
.

Proof. We use the proofs of Lemma 3.2 and Proposition 3.3. For this to make sense, we make
the substitution that for i < n, wi > wn should be interpreted as “i attacks n” and similarly
wi ≤ wn should be interpreted as “i does not attack n”. In order for the arguments to remain

valid under this translation, interchanging entries using γ
(k)
j may not change k-inversions or

k-descents between unmoved entries. The only potential violation of this is the potential
3-descent between i− 3 and i in the situations depicted in Figure 2. However, in either case
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i− 2 6∈ Γ
(3)
j since neither i+ 1 nor i + 2 can split the pair i − 2, i− 1. Therefore, with this

translation, the proofs carry through verbatim. �

Theorem 4.3. For λ a (skew) partition diagram, we have

(18)
∑

T∈SYT(λ)

qmaj(T ) =
∑

T∈SYT(λ)

qmaj2(T ) =
∑

T∈SYT(λ)

qmaj3(T ).

Unfortunately, Theorem 4.3 is the best we can do towards extending Theorem 3.4 using
this direct analogue of φ(k). This technique breaks down at k = 4 for the shape (2, 2, 2).
In this case, the 6 must lie in the northeast corner and will necessarily interchange the 2
and 3 if they both lie in the first two rows. Then if 1, 2, 3, 4 occupy the first two rows, this
changes whether (1, 4) is a 3-descent (4-inversion). In order to overcome this shortfall, either
we must adopt a more dynamic notion of k-inversions as in the Haglund–Stevens approach
or a more complicated bijection.

5. Connections with Macdonald polynomials

The k-major index statistic was rediscovered in the author’s study of Macdonald polyno-
mials. In this section we connect the results of Section 3 back to Macdonald polynomials.

In [HHL+05b], Bylund and Haiman introduced the k-inversion number of a k-tuple of
tableaux to be the number of inversions between certain entries, and it is shown that this
statistic may be used to give an alternative definition for Lascoux-Leclerc-Thibon polynomi-
als. In particular, when each shape of the k-tuple is a ribbon, i.e. contains no 2×2 block, the
k-inversion number of the k-tuple is exactly |Invk(w)| where w is a certain reading word of
the k-tuple. In further study of these objects [Ass07a], it became natural to associate to each
k-tuple not only the k-inversion number, but also a k-descent set. Again, when the shapes of
the k-tuple in question are all ribbons, this is exactly given by Desk(w) for the same reading
word w. Here it is essential that w be allowed to contain ∅’s in order to correctly space the
entries of the k-tuple.

The case when the k-tuple consists entirely of ribbons is an important special case in light
of [Hag04, HHL05a] where it is shown that the Macdonald polynomials are in fact positive
sums of LLT polynomials where the shapes are ribbons. In this context, the index k is
given by the number of columns of the indexing partition of the Macdonald polynomial.
The Macdonald Positivity Theorem, conjectured by Macdonald in 1988 [Mac88], was first
proved by Haiman using algebraic geometry [Hai01], and more recently by Grojnowski and
Haiman using Kazhdan-Lusztig theory [GH07] and the author using a purely combinatorial
argument [Ass07a]. This latter proof, while purely combinatorial, relies on new combinatorial
machinery, namely dual equivalence graphs, involving rather technical proofs of the main
theorems. Below we suggest how Macdonald positivity may be recovered in a completely
elementary way using bijections similar to φ(k).

The main idea behind [Ass07a] is to group together terms of a Macdonald polynomial
contributing to a single Schur function and having the same associated statistics. This is
done in three steps; for complete details, see [Ass07b]. First, quasisymmetric functions are
used to reduce to standard words, i.e. permutations, and it is here that the inverse descent
set of a permutation is relevant. Next, for a given k, the permutations are divided into
equivalence classes (in the language of [Ass07a], connected components of a graph) using the
following involutions.
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For i ≥ 2, define involutions di and d̃i on permutations where i does not lie between i− 1
and i+ 1 by

di(· · · i · · · i± 1 · · · i∓ 1 · · · ) = · · · i∓ 1 · · · i± 1 · · · i · · · ,(19)

d̃i(· · · i · · · i± 1 · · · i∓ 1 · · · ) = · · · i± 1 · · · i∓ 1 · · · i · · · ,(20)

where all other entries remain fixed. Combining these, define D
(k)
i by

(21) D
(k)
i (w) =

{
di(w) if dist(i− 1, i, i+ 1) > k

d̃i(w) if dist(i− 1, i, i+ 1) ≤ k
,

where dist(i− 1, i, i+ 1) is the maximum distance between the positions of i − 1, i, i+ 1 in
w. The ∅’s, or spacers, in w are essential for this step as they adjust the relative distance of
the letters of w.

Definition 5.1. Call two permutations w and u k-equivalent, denoted w ∼k u, if there exists

a sequence i1, i2, . . . , im ≥ 2 such that w = D
(k)
i1
D

(k)
i2

· · ·D
(k)
im

(u).

1-classes: {1 2 3} ; {2 1 3 , 3 1 2} ; {2 3 1 , 1 3 2} ; {3 2 1}

2-classes: {1 2 3} ; {2 1 3 , 1 3 2} ; {2 3 1 , 3 1 2} ; {3 2 1}

Figure 4. Equivalence classes of permutations of length 3.

Remark 5.2. Note that the 1-equivalence classes are exactly the dual equivalence classes for
partitions; see [Hai92]. In particular, the sum of the quasisymmetric functions associated to
the permutations in a 1-equivalence class is a Schur function.

One of the main observations in [Ass07a] is that

Desk(w) = Desk

(
D

(k)
i (w)

)
and |Invk(w)| =

∣∣∣Invk

(
D

(k)
i (w)

)∣∣∣ .

In particular, Desk and |Invk| are constant on k-equivalence classes. Therefore, the third
and final step toward establishing the Macdonald Positivity Theorem is to prove that the
sum over the quasisymmetric functions associated to a given k-equivalence class is Schur
positive. By Remark 5.2, a natural approach is to relate k-classes to 1-classes. Indeed, the
proof presented in [Ass07a] does this by showing that a connected component of the graph for
k-columns (a k-equivalence class) may be broken into a union of connected dual equivalence
graphs (1-equivalence classes). It is for this step that the proof becomes quite technical and
involved, and so the idea is to bypass the machinery of dual equivalence graphs altogether.
The following result achieves this for the 2-column/2-equivalence class case.

Theorem 5.3. For w a permutation such that i does not lie between i−1 and i+1, we have

(22) φ(2)
(
D

(1)
i (w)

)
= D

(2)
i

(
φ(2)(w)

)
.
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Proof. First note that D
(1)
i = di. Furthermore, D

(2)
i (w) = di(w) unless i − 1, i, i + 1 are

adjacent in w. Without loss of generality, we may assume that wr = i + 1, ws = i − 1 and
wt = i for some indices r < s < t. Set w̃ = d1(w), so that w̃r = i, w̃s = i− 1 and w̃t = i+ 1.

We aim to show that D
(2)
i (φ(2)(w)) = φ(2)(w̃).

For notational convenience, we write γj for γ
(2)
j and Γj for Γ

(2)
j . Since the definition of

Γj depends only on the relative orders of letters, it follows that Γj(w) = Γj(w̃) for j < t.
Along the same lines, Γt(w) 6= Γt(w̃) if and only if r, s = t − 2, t − 1. If this is not the
case, then γt · · · γ1(w) = di (γt · · ·γ1(w̃)) and indeed dist(i − 1, i, i + 1) > 2 in γt · · · γ1(w).
In the affirmative case, Γt(w) = {t − 2} since both or neither i − 1, i + 1 splits any pair of

preceding letters and Γt(w̃) = ∅. Therefore γt · · ·γ1(w) = d̃i (γt · · · γ1(w̃)) as desired since
dist(i− 1, i, i+ 1) = 2 in γt · · · γ1(w).

Now consider the effect of γj for j > t. For the same reasons as before, Γj(w) 6= Γj(w̃) if
and only if i− 1, i, i+ 1 are adjacent either before or after γj is applied. For w̃, the relative
positions of i − 1, i, i + 1 will never change. Moreover, the position of i + 1 in w̃ tracks
the position of i in w, and the positions of i, i − 1 in w̃ are the positions of i − 1, i + 1 in
w (though not necessarily respectively). For w, each time i moves between adjacent and
nonadjacent to i− 1, i+ 1, the difference between Γj for w and w̃ is exactly that the former
contains the index of the leftmost of i− 1, i+ 1 and the latter does not. Comparing di with
d̃i, this is exactly the difference between the two involutions, i.e. i− 1 and i+ 1 interchange
positions. Therefore in the end, d̃i(φ

(2)(w)) = φ(2)(w̃) if i− 1, i, i+ 1 are adjacent in φ(2)(w),
and di(φ

(2)(w)) = φ(2)(w̃) otherwise. �

Recall that the sum over of an equivalence class is determined by the quasisymmetric
functions associated to the permutations of the class. Since the quasisymmetric function
associated to a permutation is determined by the inverse descent set of the permutation,
Proposition 3.1 (iii) and Remark 5.2 establish the following corollary to Theorem 5.3.

Corollary 5.4. Macdonald polynomials indexed by partitions with 2 columns are Schur pos-
itive.

For k ≥ 3, it is not possible for φ(k)
(
D

(k−1)
i (w)

)
= D

(k)
i

(
φ(k)(w)

)
in general. The reason

for this is that the sizes of the k-equivalence classes increase with k. For permutations of
length n, the n-equivalence classes have a nice description given in [Ass07a] allowing us to
prove the following.

Theorem 5.5. For w a permutation such that i does not lie between i−1 and i+1, we have

(23) φ[1,n](w) ∼n φ
[1,n]

(
D

(1)
i (w)

)
.

Proof. For this case, majn = inv in the usual sense and there are no n-descents to consider.

As already noted, inv is constant on n-equivalence classes and, since D
(n)
i ≡ d̃i, w1 > wn

for some w in an n-class if and only if w1 > wn for every w in an n-class. Furthermore,
it is not difficult to show that these two properties completely characterize n-classes. Since

D
(1)
i ≡ di, wn−1 > wn for some w in a 1-class if and only if wn−1 > wn for every w in a

1-class. By Proposition 3.3, maj(w) = inv(φ[1,n](w)), and by Proposition 3.1 (ii), wn−1 > wn

if and only if φ[1,n](w)1 > φ[1,n](w)n. Therefore if w ∼1 u, then inv(φ[1,n](w)) = inv(φ[1,n](u)),
and φ[1,n](w)1 > φ[1,n](w)n if and only if φ[1,n](u)1 > φ[1,n](u)n. The result now follows. �
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Corollary 5.6. Macdonald polynomials indexed by a single row are Schur positive.

Given this, one might still hope to express each k-equivalence class as a union of the images
of certain k − 1-equivalence classes under an appropriate map. However, for k ≥ 3, neither
φ(k) nor the corresponding composition of Kadell’s bijections accomplishes this. There is,
however, considerable evidence suggesting that such a family of bijections does exist, and so
we conclude with the following conjecture.

Conjecture 5.7. There exists a family of bijections θ(k) on permutations satisfying Propo-
sitions 3.1 and 3.3 such that if w ∼k−1 u then θ(k)(w) ∼k θ

(k)(u).

The main corollary to Conjecture 5.7 would be a simple, elementary combinatorial proof
of Macdonald positivity. Furthermore, if these bijections are found and can be extended to
tableaux as in Section 4, then this would also give a combinatorial formula for the Schur
coefficients of Macdonald polynomials in terms of standard Young tableaux. By Theorem 5.3
and the constructions in Section 4, we recover the formula for the Schur coefficients of
Macdonald polynomials indexed by 2 columns given in [HHL05a]. Finding such a formula
in general remains an important open problem in the theory of Macdonald polynomials.
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