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Schur functions

Let n be a fixed positive integer and x = (x1,2s,...,%,) @
sequence of indeterminates.

Let A = (A, Ao, ..., \,) be a partition of weight |\| and
length /(\) < n,sothat\; > Xy >--- >\, > 0.

Then the Schur function s, (x) is defined by:
n+A;—j
€T

1

1<i,j<n

‘:z:,&- |1§z’,j§n
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Schur functions

-

Let n be a fixed positive integer and x = (x1,2s,...,%,) @
sequence of indeterminates.

Let A = (A, Ao, ..., \,) be a partition of weight |\| and
length /(\) < n,sothat\; > Xy >--- >\, > 0.

Then the Schur function s, (x) is defined by:
n+A;—j
€T

1

1<i,j<n

‘:z:,&- |1§z’,j§n

The Schur functions form a Z-basis of A,,, the ring of
polynomial symmetric functions of x4, ..., x,.
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L R-coefficients

#® Any product of Schur functions can be expressed as a
linear sum of Schur functions.

52(%) 5,00 = 3 &, 5,(x)

v
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o

L R-coefficients

#® Any product of Schur functions can be expressed as a
linear sum of Schur functions.

52(%) 5,00 = 3 &, 5,(x)

v

# Each Littlewood-Richardson coefficient cf , is a
non-negative integer.

#® They may be evaluated by means of the
Littlewood-Richardson rule.
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LR-rule

# Fill the boxes of the Young diagram F* with 0's. Then fill
the boxes of the skew Young diagram F*/* with y; entries
vfori=1,2,...,n.

® ¢, Is the number of such diagrams with entries weakly
Increasing across rows, strictly increasing down columns,
and satisfying the lattice permutation rule.
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# Fill the boxes of the Young diagram F* with 0's. Then fill
the boxes of the skew Young diagram F*/* with y; entries
vfori=1,2,...,n.

® ¢, Is the number of such diagrams with entries weakly
Increasing across rows, strictly increasing down columns,
and satisfying the lattice permutation rule.

® Ex.n=3A=(2,1,0), p=(320),v=(4,31)

LR-rule

0

0

1

1

0

1

2

2
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LR-rule
-

Fill the boxes of the Young diagram F* with 0’'s. Then fill
the boxes of the skew Young diagram F*/* with y; entries
vfori=1,2,...,n.

cx,. 1s the number of such diagrams with entries weakly
Increasing across rows, strictly increasing down columns,
and satisfying the lattice permutation rule.

Ex.n=3A=(2,1,0), p=(3,2,0), v = (4,3,1)

0(0(1]1 0(0]1]1
012 02]2
2 1

Hence ¢, = 2. J
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Stretched LR coefficients

f’ Littlewood-Richardson coefficient 5, T
# Partition A\ = (A, Ag,...,\,) stretching parameter ¢t € N
# Stretched partition tA = (tA, A, ..., tA,)

® Stretched Littlewood-Richardson coefficient cg,w
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Stretched LR coefficients

f.o Littlewood-Richardson coefficient 5, T
# Partition A\ = (A, Ag,...,\,) stretching parameter ¢t € N
# Stretched partition tA = (tA,tAg, ..., tA,)

® Stretched Littlewood-Richardson coefficient cg,w

® EX n:3,)\:(2,1,0),,u:(3,2,0),02(4,3,1)
e t=1: cg‘z’}32:2
s l=2 &2, =3

o t=3 2% =4
_‘ ¢ o o

s suggests ¢, =t+1.

o
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LR coefficients and polynomials

-

EX: Let cfy 53 = ¢ @nd ¢jyoy) 4530y = P(1).
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Generating function for LR-polynomials

-

—o P(t) 2"

G(2)/(1 = 2)"

fEx: Let F(2)
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Further example

-

#® LR coefficient ¢, =13

#® LR polynomial

s, = 1/10080
X (t+1)(t+2)(t+3)(t+4)(t+5)
x (5t 4+ 21)(t* + 2t + 4)

# where 10080 = 5! 84
® d=8 and G(z) =1+4z+ 122* 4 32°

Linz - 2008

Ex: n=7, A= (433210), p= (432210), v = (7444321).
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Polynomial behaviour

.

# apolynomial Py (¢) in ¢ with Py (0) =1

heorem Forall A, u,v suchthat c¢§, > 0 there exists

# suchthat P} (t) = c5,, forall positive integers t.
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Polynomial behaviour

.

# apolynomial Py (¢) in ¢ with Py (0) =1

heorem Forall A, u,v suchthat c¢§, > 0 there exists

# suchthat P} (t) = c5,, forall positive integers t.
Conjectures
» coefficients in P} (¢) are all rational and non-negative.

# coefficients in G(z) are all positive integers.
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Polynomial behaviour

.

# apolynomial Py (¢) in ¢ with Py (0) =1

-

heorem Forall A, u,v suchthat c¢§, > 0 there exists

# suchthat P} (t) = c5,, forall positive integers t.
Conjectures
» coefficients in P} (¢) are all rational and non-negative.
# coefficients in G(z) are all positive integers.
Problems
® predict degree of polynomial
# explain origin of factors of form (¢t + 1)(t 4+ 2)--- (t +m)
L #® prove (if true) and account for positivity of coefficients J
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Integer hives

f ® n-hive with vertex labels a;; € Z for 0 <4, j,i + j < n. T
Ex:n=4

Qoo a0 Q40

20 a30
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Integer hives

f ® n-hive with vertex labels a;; € Z for 0 <4, j,i + j < n. T
Ex:n=4

aoo - - - Ta
00 aio 20 asp 40

#® \Vertex labels increase from left to right

#® Edge labels non-negative differences between
neighbouring vertex labels

Q= Qi1 — Qijy, = Q1 -1 — iy, V= Qig1,j — Q.
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Hive conditions

f # Distinct types of rhombi, with vertex and edge labels: T

R1: R2: R3:

#® Note: o,3,v,0 >0 and a+d=73+1.

Linz - 2008 -p. 11



Hive conditions

f # Distinct types of rhombi, with vertex and edge labels: T

R1: R2: R3:

#® Note: o,3,v,0 >0 and a+d=73+1.
® Hive conditions in terms of vertex labels:
b+c>a+d.

# Hive conditions in terms of edge labels:

L_ a>~ and [§>0. _J
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LR-hives vertex labels

fDefinition An LR-hive is an integer n-hive for which

o all rhombi of type R1, R2 and R3 satisfy the hive
conditions;

#® boundaries determined by partitions A, i, v with
((A), 6(p), £(v) < mand |A[ + [p] = v

Linz - 2008
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LR-hives vertex labels

fDefinition An LR-hive is an integer n-hive for which

o all rhombi of type R1, R2 and R3 satisfy the hive
conditions;

#® boundaries determined by partitions A, i, v with
((A), 6(p), £(v) < mand |A[ + [p] = v

#® boundary vertex labels

[A]

IA] + p1 + po

0
V1 V1 + Vs | = |A| + ||

Linz - 2008

-p. 12



LR-hives edge labels

fDefinition An LR-hive is an integer n-hive for which T

o all rhombi of type R1, R2 and R3 satisfy the hive
conditions;

#® boundaries determined by partitions A, i, v with
((A), 6(p), £(v) < mand |A[ + [p] = v

#® boundary edge labels

Linz - 2008 -p.13



Bijection between LR-diagrams and LR-hives

fExampIe: n =3, A= (320), p = (210) and v = (431). T

#® D = Littlewood-Richardson diagram;

G = Generalised Gelfand-Zetlin pattern;

9
® / = Zeros and cumulative row sums of GG;
9

H = LR-hive = reorientation of lower triangular part of ~Z.

D =

<~

o

0

0

0

1

0

0

2

1

7

+— (G =

0 4 7 8

0 4 7 8

0 4 6 7

0 3 95 o

4 3 1
4 3 1
4 2 1
3 2 0
D
— H= 5 7T
3 6 8
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LR-hives showing thatc

0

9 7
I8 16 12
24 24 21 15
28 28 206 22 15

0
9 7
I8 16 12
24 23 20 15
LQS 28 26 22 15

0
9 7
I8 16 12
24 23 21 15
28 28 26 22 15

0
9 7
I8 16 12
24 22 20 15
28 28 26 22 15

Linz - 2008

9964
753,742 =

0 N

9 7
I8 16 12
24 24 20 15
28 28 206 22 15

0
9 7
I8 16 12
24 23 19 15
28 28 206 22 15J
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Theorems

- N

® Theorem
The LR-coefficient ¢5,, Is the number of LR-hives with
boundary labels determined by A, ;¢ and v.

Linz - 2008 -p.16



Theorems

f ® Theorem T

The LR-coefficient ¢5,, Is the number of LR-hives with
boundary labels determined by A, ;¢ and v.

#» Corollary
The LR-polynomial P} (t) can be identified as the
Ehrhart quasi-polynomial «(P,t) = #{tP N Z™}, ofa
rational convex polytope P defined by the LR-hive
boundary conditions and the set of LR-hive
Inequalities: a + d < b+ ¢ for each rhombus.

Linz - 2008 -p.16



Theorems

f ® Theorem T

The LR-coefficient ¢5,, Is the number of LR-hives with
boundary labels determined by A, ;¢ and v.

#» Corollary
The LR-polynomial P} (t) can be identified as the
Ehrhart quasi-polynomial «(P,t) = #{tP N Z™}, ofa
rational convex polytope P defined by the LR-hive
boundary conditions and the set of LR-hive
Inequalities: a + d < b+ ¢ for each rhombus.

# Note: Eventhough P may be rational but not integer the
Ehrhart quasi-polynomial (P,t) is polynomial.

o |
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Construction of convex polytopes

f ® let m=(n—2)(n—1)/2 = # interior points of an n-hivej
® Let v = (a,aq,...) € R™ be vector of interior labels

#® Then polytope P is d-dimensional convex hull of these
Integer points in R™.
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EX:

Construction of convex polytopes

Let m = (n—2)(n—1)/2 = # interior points of an n-hivej
Let v = (ay1,a12,...) € R™ be vector of interior labels

Then polytope P is d-dimensional convex hull of these
Integer points in R™.
A= (753), p=(742), v = (9964), n = 4, m = 3,
Interior vertex labels v = (a1, a2, as;)
(16,21,24), (16,21, 23), (16, 20, 24),
(16, 20,23), (16, 20, 22), (16, 19, 23).

Integer pointsof P. e e o dimension d = 2.

: |
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Scaling convex polytope

f ® Expand P by scaling with ¢ T

# |dentify and count all integer points to give P(t)

L’ P(1) =6, P(2) = 16, P(3)=31,---,P(t):%(5t2+5t+2).J
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fOrigin of some linear factors in LR-polynomials.

© © o o o

| iInear factors

Let P be an LR hive polytope, and P its interior.

Fort € N: P} (t) =i(P,t) = #{tP N Z%}.

Ehrhart reciprocity: (P, —t) = (=1)4#{tP N Z4}.
Form e N: Py (—m) =i(P,—m) = (=1)#{mP N Z}.

Hence P} (—m) = 0 and Py (¢) contains a factor (¢ + m) if
and only if m’P contains no interior integer points.

Linz - 2008
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| iInear factors

fOrigin of some linear factors in LR-polynomials. T

Let P be an LR hive polytope, and P its interior.

Fort € N: P} (t) =i(P,t) = #{tP N Z%}.

Ehrhart reciprocity: (P, —t) = (=1)4#{tP N Z4}.
Form e N: Py (—m) =i(P,—m) = (=1)#{mP N Z}.

© © o o o

Hence P} (—m) = 0 and Py (¢) contains a factor (¢ + m) if
and only if m’P contains no interior integer points.

Corollary Py (¢) contains (t+1)(t+2)---(t+m) asa
factor if m’P contains no interior integer points.

LProbIem: predict maximum value of m. J
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Construction of convex polytopes

fEx: A= (210), p = (320), v = (431),n =3,d =1 T
5
5 7 .
with a =6,7
3 a 8
0 4 7 8
® PNZ= o o no interior points
® 2PNZ= o o o one interior point

# implies P(t) contains a factor (t+ 1) butno
factor (t+2). Infact P(t) = (t+1).

N _ -



Construction of convex polytopes

fEx: A= (753), u = (742), v = (9964), n = 4, d = 2 T
15
15 22 (21,24) (21,23)
12 b 26 with  (b,c¢) =< (20,24) (20,23)
7 16 ¢ 28 (20,22) (19,23)

0 9 18 24 28

o o
® PNZ? o o o one interior point

L » implies no factor (¢ +m). Infact P(t) = (5¢* + 5t + 2). J
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Degrees of LR-polynomials

- N

® For c§, > 0the LR-rule implies £()), £(u) < £(v).

® ¢, isthe number of LR n-hives with n = ((v),
boundary labels linear in the parts of A, u, v,
Interior vertex labels subject to linear inequalities (HCSs).
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Degrees of LR-polynomials

-

For c§, > 0 the LR-rule implies £(\), £(u) < £(v).

cx,. Is the number of LR n-hives with n = ((v),
boundary labels linear in the parts of A, u, v,
Interior vertex labels subject to linear inequalities (HCSs).

Fort e N, P} (t) is the number of scaled LR n-hives
with boundary labels scaled by ¢ and interior vertex
labels subject to the same scaled linear inequalities.

The range of each vertex label is at most linear in ¢.

An n-hive has (n — 1)(n — 2)/2 interior vertices.
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Degrees of LR-polynomials

- N

® For c§, > 0the LR-rule implies £()), £(u) < £(v).

® ¢, isthe number of LR n-hives with n = ((v),
boundary labels linear in the parts of A, u, v,
Interior vertex labels subject to linear inequalities (HCSs).

® Fort e N, P (t)is the number of scaled LR n-hives
with boundary labels scaled by ¢ and interior vertex
labels subject to the same scaled linear inequalities.

#® The range of each vertex label is at most linear in t¢.

# An n-hive has (n — 1)(n — 2)/2 interior vertices.

LDegree bound deg P} (t) < (n—1)(n—2)/2 withn = {(v). J
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First example

fEx: n = 5, degree bound (n — 1)(n — 2)/2 = 6. T
® \=(9,7,6,2,0), p=(13,5,3,1,0), v = (14 12,11,5,4).
® Py (t)=(t+1) sothat deg Py ()



First example

fEx: n = 5, degree bound (n — 1)(n — 2)/2 = 6. T
® \=(9,7,6,2,0), p=(13,5,3,1,0), v = (14 12,11,5,4).
® Py (t)=(t+1) sothat deg Py ()

Origin of mismatch - factorisation

® P}, (1) = Py, (t) PE, ().

TH7
® LR-hives for n = 5 are fixed by two smaller subhives of
sizesr=3andn —r = 2.

. — N a g
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LR factorisation example

fEX:n:E),T:S,n—T:Q:

® \A=1(9,7,6,2,0), u=(13,5,3,1,0), v =

-

(14,12, 11,5, 4).

o [={1,2,4}, J={2,3,4}, K = {2,3,5}.
> )\] — (9,7, 2), Hy = (5,3, 1), Vi — (12, 11,4)
9

Ar=(6,0), uy = (13,0), vg = (14,5)

L R-coefficient:

(14,12,11,5.4) (12.114) (14,5) B B
C(9,7,6.2,0),(13,5,3.1,0) — €(9.7.2).(5,3.1) €(6.0).(13,0) — 2.1 =2.
LR-polynomial:

(14,12,11,5,4)  5(12,11,4) (14,5)
I (t) =P (t) P(6,O),(13,0) (t)

(9,7,6,2,0),(13,5,3,1,0)

o

(9,7,2),(5,3,1)

Linz - 2008
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LR factorisation example

fEX:n:E),T:S,n—T:Q:

® \A=1(9,7,6,2,0), u=(13,5,3,1,0), v =

-

(14,12, 11,5, 4).

o [={1,2,4}, J={2,3,4}, K = {2,3,5}.
> )\] — (9,7, 2), Hy = (5,3, 1), Vi — (12, 11,4)
9

Ar=(6,0), uy = (13,0), vg = (14,5)

L R-coefficient:

(14,12,11,5.4) (12.114) (14,5) B B
C(9,7,6.2,0),(13,5,3.1,0) — €(9.7.2).(5,3.1) €(6.0).(13,0) — 2.1 =2.
LR-polynomial:

(14,12,11,5,4)  5(12,11,4) (14,5)
I (t) =P (t) P(6,O),(13,0) (t)

(9,7,6,2,0),(13,5,3,1,0)

o

(9,7,2),(5,3,1)

Linz - 2008
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Puzzles

-

fDefinition A puzzle is a diagram on a triangular lattice in
which edges are distinguished so that it is composed of
copies of the following pieces oriented in any way so as to fit:
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b

Puzzles

efinition A puzzle is a diagram on a triangular lattice in

which edges are distinguished so that it is composed of

copies of t

ne fo

owing pieces oriented in any way so as to fit:

i

b, AN

-
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Puzzles

-

fDeﬁnition A puzzle is a diagram on a triangular lattice in
which edges are distinguished so that it is composed of
copies of the following pieces oriented in any way so as to fit:

T, A A
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Hive plan

fDefinition A hive plan is made up of , dark rooms andj
light rooms obtained by deleting interior edges of a puzzle:

N

/
/

/ ™

Linz - 2008 —p. 28




Hive plan

fDefinition A hive plan is made up of , dark T
rooms and light rooms obtained by deleting interior edges of
a puzzle:

. A

/
/ H‘W\y
\
\
\
\
\N
N\
\
\
\
Am"mm ‘
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Hive plan

fDefinition A hive plan is made up of corridors, blue rooms andT
red rooms obtained by deleting interior edges of a puzzle:

h N

A

A
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Link between puzzles and Horn triples
f ® (I, J K)is Horn triple if it specifies the positions of the T

thick edges on the boundary of any puzzle. It is essential
If the puzzle with these boundary thick edges is unique.

Linz - 2008 -p.31



Link between puzzles and Horn triples

f ® (I, J K)is Horn triple if it specifies the positions of the T
thick edges on the boundary of any puzzle. It is essential
If the puzzle with these boundary thick edges is unique.

® Forl=(1,2,4),J=(2,3,4) and K = (2,3,5) we have:

/
A ‘~~
\
\
Am"mm | |
\N
\ N “ﬂm
\
\
\
\
\
\
> N
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Each Horn triple defines an inequality

Linz - 2008



Each Horn triple defines an inequality

-

vy + v+ s < (g + )+ s = (0 +ag+ B+ B2) +
<Mt ay+Bi+Pe+7 <A+ Ao+ G+ B+
<M+X+0+ 50 +v <M+ X+(Bs+ 0+ 1)

= A1+ Ao+ (g + pio + 3+ pg) < A+ Ao+ Ay g+ s

. Thatis |vk| < M|+ |, N

Linz - 2008 -p.32



Horn inequalities and non-zero conditions

. N

heorem The LR-coefficient ¢§, > 0 if and only if

» || =) +]y
® and |vg| < || + |ug| for each Horn triple (1, J, K).
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Horn inequalities and non-zero conditions

. N

heorem The LR-coefficient ¢§, > 0 if and only if

» || =) +]y
® and |vg| < || + |ug| for each Horn triple (1, J, K).

Corollary ¢, >0 ifandonlyif c§, >0
Proof
® |tv| = [tA] = Jtp] = t([v[ = Al = 1)

® |tvg| — |tAr| = |tps| = t(|lvi| — [ M| — 1]

o |

Linz - 2008 —p.33



Conseqguences of any Horn equality

#® All sequences of inequalities become equalities.

Vot g+ s = (ot+13)+yu= (01 +ax+ B+ B) +n

=AM ta+ 0+ 0O+7 =M+ A+ 01 + Fa + 4

=M+ X+ 05+ D+ v=M+ X+ (B4 Fi+ 1)
:)\1-|—)\2—|-(Oé4—|-,u2-|—,u3—|-,u4):)\1-|—)\2—|->\4-|—,LL2—|-/L3—|-,LL4.J
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Edge label equalities

® Equalities imply:  v5 =74, a1 =), 3= A\,
b1 =03, =01 =M

® Inaddition: 35+ v5 = v + s,
v+ artar=A+A+71, Yt ag= A+ s

L.p These thenimply: G5 =ps, v1=v%, 72 =13. J
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Factorisation of LR-hives
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Factorisation of LR-hives
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lllustration of H, and subhivesH,,H,_,

- N
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L R-coefficient factorisation

- N

#® Lemma Inthe case of any Horn equality and a

corresponding puzzle, the deletion of corridors
from any LR-hive H, gives a pair of LR-subhives H,
and H,,_,.
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L R-coefficient factorisation

- N

#® Lemma Inthe case of any Horn equality and a

corresponding puzzle, the deletion of corridors
from any LR-hive H, gives a pair of LR-subhives H,
and H,,_,.

#® Lemma In the case of any essential Horn equality, this
map from the LR-hives H,, to pairs of LR-hives H,
and H,_, Is a bijection.
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L R-coefficient factorisation

- N

#® Lemma Inthe case of any Horn equality and a

corresponding puzzle, the deletion of corridors
from any LR-hive H, gives a pair of LR-subhives H,
and H,,_,.

#® Lemma In the case of any essential Horn equality, this
map from the LR-hives H,, to pairs of LR-hives H,
and H,_, Is a bijection.

#® Theorem If an essential Horn inequality is saturated
then both ¢§, and Py (¢) factorise.
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L R-coefficient factorisation

-

Lemma In the case of any Horn equality and a
corresponding puzzle, the deletion of corridors
from any LR-hive H, gives a pair of LR-subhives H,
and H,_..

Lemma In the case of any essential Horn equality, this
map from the LR-hives H,, to pairs of LR-hives H,
and H,_, Is a bijection.

Theorem If an essential Horn inequality is saturated
then both ¢§, and Py (¢) factorise.

Definition If all essential Horn inequalities are strict then
both ¢§, and P (¢) are said to be primitive.

|
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LR factorisation example

fEX:n:E),T:S,n—T:Q:

® \A=1(9,7,6,2,0), u=(13,5,3,1,0), v =

-

(14,12, 11,5, 4).

o [={1,2,4}, J={2,3,4}, K = {2,3,5}.
> )\] — (9,7, 2), Hy = (5,3, 1), Vi — (12, 11,4)
9

Ar=(6,0), uy = (13,0), vg = (14,5)

L R-coefficient:

(14,12,11,5.4) (12.114) (14,5) B B
C(9,7,6.2,0),(13,5,3.1,0) — €(9.7.2).(5,3.1) €(6.0).(13,0) — 2.1 =2.
LR-polynomial:

(14,12,11,5,4)  5(12,11,4) (14,5)
I (t) =P (t) P(6,O),(13,0) (t)

(9,7,6,2,0),(13,5,3,1,0)

o

(9,7,2),(5,3,1)

Linz - 2008
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LR factorisation example

fEX:n:E),T:S,n—T:Q:

® \A=1(9,7,6,2,0), u=(13,5,3,1,0), v =

-

(14,12, 11,5, 4).

o [={1,2,4}, J={2,3,4}, K = {2,3,5}.
> )\] — (9,7, 2), Hy = (5,3, 1), Vi — (12, 11,4)
9

Ar=(6,0), uy = (13,0), vg = (14,5)

L R-coefficient:

(14,12,11,5.4) (12.114) (14,5) B B
C(9,7,6.2,0),(13,5,3.1,0) — €(9.7.2).(5,3.1) €(6.0).(13,0) — 2.1 =2.
LR-polynomial:

(14,12,11,5,4)  5(12,11,4) (14,5)
I (t) =P (t) P(6,O),(13,0) (t)

(9,7,6,2,0),(13,5,3,1,0)

o

(9,7,2),(5,3,1)
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Degree bound for a primitive example

- N

Ex: n = 6, degree bound (n — 1)(n — 2)/2 = 10.

® \=(4,3,3,1,0,0), p = (4,2,1,1,1,0), v = (6,5,4,2,2,1).
® P (t)=({+1)(t+2)(+3)(t+4)/24.

® deg Py (t) = 4.
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Degree bound for a primitive example

Ex: n = 6, degree bound (n — 1)(n — 2)/2 = 10.

A

-

— (473737 17070)1 M= (4727 17 17 170), V = (6,5,4,2,2, 1)

Py () =@+ 1) +2)(t+3)(+4)/24.
deg Py, (1) = 4.

A
T
T

| essential Horn inequalities are strict.

ne LR-polynomial does not factorise.

ne factorised degree bound is not saturated.
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Degree bound for a primitive example

Ex: n = 6, degree bound (n — 1)(n — 2)/2 = 10.

A

-

— (473737 17070)1 M= (4727 17 17 170), V = (6,5,4,2,2, 1)

Py () =@+ 1) +2)(t+3)(+4)/24.
deg Py, (1) = 4.

A
T
T

| essential Horn inequalities are strict.

ne LR-polynomial does not factorise.

ne factorised degree bound is not saturated.

Origin of mismatch - partitions have equal parts.

o
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Five-vertex equal edge constraints

f #® Equal edge constraints on 5-vertex subdiagrams T

® Ineachcase o> (3> «a sothat 3 = a.

&

« «




Five-vertex equal edge constraints

f #® Equal edge constraints on 5-vertex subdiagrams

® Ineachcase o> (3> «a sothat 3 = a.

« «

#® Consecutive equal edges force neighbouring equal edge.

#® Retain skeleton consisting of only equal edges.

Linz - 2008
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Skeleton of an LR-hive and degree bounds

f ® Apply 5-vertex equal edge procedure to LR n-hive. T

#® Work inwards from boundaries specified by A, u, v.

# Invoke triangular hive condition o + 3 = ~: Q i o
8l

# Result is skeletal graph G,,.»,, of hive.

® Letd(G,.\.) be number of components of G,,.,,,, not
connected to the boundary.
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Skeleton of an LR-hive and degree bounds

f ® Apply 5-vertex equal edge procedure to LR n-hive. T

#® Work inwards from boundaries specified by A, u, v.

# Invoke triangular hive condition o + 3 = ~: Q i o
8l

# Result is skeletal graph G,,.»,, of hive.

® Letd(G,.\.) be number of components of G,,.,,,, not
connected to the boundary.

Theorem deg P}, (t) < d(Grnouw)-

o |
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Skeleton of an LR-hive and degree bounds

f ® Apply 5-vertex equal edge procedure to LR n-hive. T

#® Work inwards from boundaries specified by A, u, v.

# Invoke triangular hive condition o + 3 = ~: Q i o
8l

# Result is skeletal graph G,,.»,, of hive.

® Letd(G,.\.) be number of components of G,,.,,,, not
connected to the boundary.

Theorem deg P}, (t) < d(Grnouw)-

Conjecture If Py (1) is primitive then deg P (t) = d(Gnxu ).

o |
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Skeleton graph degree bound

-

Theorem deg P}, (t) < d(Grnouw)-



Skeleton graph degree bound

-

Theorem deg P}, (t) < d(Grnouw)-
Ex: n =6, A = (433100), 1 = (421110), v = (654221).
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Theorem deg P}, (t) < d(Grnouw)-
Ex: n =6, A = (433100), 1 = (421110), v = (654221).




Skeleton graph degree bound

-

Theorem deg P}, (t) < d(Grnouw)-
Ex: n =6, A = (433100), 1 = (421110), v = (654221).




Degree of LR-polynomial

- N

Ex:n =7, \=(4332100), p = (4322100), v = (7444321).

® PY(t)=0{+1)+2)(t+3)(+4)(t+5)
x (5t + 21)(t* + 2t + 4)/10080.



Degree of LR-polynomial

- N

Ex:n =7, \=(4332100), p = (4322100), v = (7444321).

® P(t)=0+1)({E+2)(t+3)([E+4)(t+5)
x (5t + 21)(t* + 2t + 4)/10080.




Degree of LR-polynomial

- N

Ex:n =7, \=(4332100), p = (4322100), v = (7444321).

® P(t)=0+1)({E+2)(t+3)([E+4)(t+5)
x (5t + 21)(t* + 2t + 4)/10080.




Degree of primitive LR-polynomial

- N

Ex: n =6, A= (221100), x = (221100), v = (332211).

® P (t)=35(t+1)(t+2).

® Now construct skeleton - multi-stage process
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Degree of primitive LR-polynomial

- N

Ex: n =6, A= (221100), x = (221100), v = (332211).

® P (t)=35(t+1)(t+2).

® Now construct skeleton - multi-stage process




Degree of primitive LR-polynomial

- N

Ex: n =6, A= (221100), x = (221100), v = (332211).

® P (t)=35(t+1)(t+2).

® Now construct skeleton - multi-stage process




Counterexample to skeleton degree bound

- N

Ex: n =8, A = (76531000), 1 = (65553000), v = (88886422).

® PU(2) = (t+1)(t+2)(t +3)(t +4)/24

® Now construct skeleton




Counterexample to skeleton degree bound

- N

Ex: n =8, A = (76531000), 1 = (65553000), v = (88886422).

® PU(2) = (t+1)(t+2)(t +3)(t +4)/24

® Now construct skeleton




o

© o o o o

| iInear factors

rigin of linear factors in LR-polynomials.

Let P be an LR hive polytope, and P its interior.
Fort € N: P} (t) =i(P,t) = #{tP N Z%}.
Ehrhart reciprocity: (P, —t) = (—1)4#{tP N Z4}.

Form e N: P} (—m) =i(P,—m) = (=1)%4{mP N Z%}.

Hence P} (—m) = 0 and Py (¢) must contain a linear
factor (¢ + m) if mP contains no interior integer points.

Linz - 2008
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| iInear factors

o

rigin of linear factors in LR-polynomials.

Let P be an LR hive polytope, and P its interior.

Fort € N: P} (t) =i(P,t) = #{tP N Z%}.

Ehrhart reciprocity: (P, —t) = (—1)4#{tP N Z4}.
Form e N: Py (—m) =i(P,—m) = (=1)#{mP N Z}.

© o o o o

Hence P} (—m) = 0 and Py (¢) must contain a linear
factor (¢ + m) if mP contains no interior integer points.

Anticipate: P} () may contain (¢t + 1)(t +2)--- (t + M).

Problem: Determine M.

o |
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Possible continuation Int

Forx = (z1,29,...,2,) letX = (T1,%2,...,Ty)
withz; = z; ' fori = 1,2,...,n.
For A= (A, Ae, .., A let A= (A, .., Ao, A ).
xz)\j—kn—j ;mAj+n—J
sin(X) = — — S_a(X) = —
T, ‘ T, ‘7|

This gives s_,,x(x) = g =5 _5(X).

Linz - 2008
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Possible continuation Int

- _ N

® Forx=(x1,22,...,2,) letX = (T1,7s,...,%Tp)
withz; = z; ' fori = 1,2,...,n.

® Forh= (A, Ne, .. ) let h = (A, .., Ao, ).
:Cz)\j—l—n—j i—m)\j‘l‘n—j

® 5, (x)= — — S_a(X) = —

TmAn_k+1+n—k‘
® This gives s_,,;x(x) = : _n_k| =5 5(X).
Ly

Definition For ¢ , > 0 and any positive integer m, let

—mv . mv
C ~

—mA\,—mpu Cm)\7m[b‘
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LR polynomials for negative ¢

. N

onjecture: Let c§, > 0 be simple, all Horn inequalities strict,
then Py (=m) = ™

mA,mf’

where s _s(z) spa(x) =5 ™ spp(x).

mA mA\,mfi
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LR polynomials for negative ¢

- _ o

onjecture: Let c§, > 0 be simple, all Horn inequalities strict,
then Py (—m) = "% it
where s, 5(7) smal(z) =), "% i Smir ().
Standardization:
® s 5(x)=0 or +s,(x) for some partition p.
® s,,:(x)=0 or £s,(x) for some partition o.

® s,.:(x)=0 or +s,(x) for some partition 7.

o |
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LR polynomials for negative ¢

. N

onjecture: Let c§, > 0 be simple, all Horn inequalities strict,

then Py, (=m) = ng,mﬁ’
where s _s(z) spa(x) =) s i Smir ().

Standardization:
® s 5(x)=0 or +s,(x) for some partition p.
® s,,:(x)=0 or £s,(x) for some partition o.

® s,.:(x)=0 or +s,(x) for some partition 7.

=0, $u(T) =0, spmp(T) = 0.
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Simple example

-

Ex:n =7, \=(433210), u = (432210), v = (7444321).

-

® Py (t)=(t+1)(t+2)(t+3)(t+4)(t+5)
(5t 4 21)(£% + 2t + 4) /10080.



Simple example

-

t)=0t+1)(t+2)(t+3)(t+4)(t+5)
(5t 4 21)(£% + 2t + 4) /10080.

Apk

form =1,2,3 since:
® s 5(T)=sua(T)=0form=1,2.

® s,.;(x)=0form=1,23.

Ex:n =7, \=(433210), u = (432210), v = (7444321).
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Simple example

-

Ex:n =7, \=(433210), u = (432210), v = (7444321).

® Py (t)=(t+1)(t+2)(t+3)(t+4)(t+5)
(5t 4 21)(£% + 2t + 4) /10080.

form =1,2,3 since:
® s 5(T)=sua(T)=0form=1,2.
® s,.;(x)=0form=1,23.
Type two zeros for m = 4, 5 since:

9 c = 0form =4,5.

o |
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Simple example

-

Ex:n =7, \=(433210), u = (432210), v = (7444321).

® PY(t)=0+1)({E+2)(t+3)([E+4)(t+5)
- (5t + 21) (2 + 2t + 4)/10080.
form =1,2,3 since:
® s 5(T)=sua(T)=0form=1,2.
® s,.;(x)=0form=1,23.
Type two zeros for m = 4, 5 since:
® ¢, =0form=4,5.

No more zeros for m > 5 since for m = 6: ¢, = 3.

Linz - 2008 —p. 50



Simple and non-simple examples

-

Simple: n = 7, A = (433210), p = (432210), v = (7444321).

-

o Pfﬂ(t) =+ 1)(t+2)(t+3)(t+4)(t+5)

- (5t + 21)(£2 + 2t + 4)/10080.
® ™ =0,0,0,00,339 247 form =1,2,3.4,5.6,7,8.

mA\,mf

® P (—m)=0,0,0,0,0,3,39,247 for m = 1,2,3,4,5,6,7, 8.
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Simple and non-simple examples

-

Simple: n = 7, A = (433210), p = (432210), v = (7444321).

-

o Pfﬂ(t) =+ 1)(t+2)(t+3)(t+4)(t+5)

- (5t + 21)(£2 + 2t + 4)/10080.
® ™ =0,0,0,00,339 247 form =1,2,3.4,5.6,7,8.

mA\,mf

® P! (-m)=0,0,0,0,0,3,39,247 for m = 1,2,3,4,5,6,7,8.
Non-simple: n = 6, A = (221100), pu = (221100), v = (332211).

® Py(t)=(t+1)(t+2)/2.
® ™ =90,0,0,3,6,form=1,2,3,4,5.

mA\,mf

L.ﬂ Py, (-=m)=0,0,3,6,10 form = 1,2,3,4,5. J
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Non-primitive example

-

Non-primitive: n =5, A = (9,7,6,2,0), u = (13,5,3,1,0),
v =(14,12,11,5,4), Py (t) = (t + 1).

-

® ™ =0,00,...form=1,23,....

mA\,mfi

® P (-m)=0,1,2,...form=1,2,3,....
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Non-primitive example

-

Non-primitive: n =5, A = (9,7,6,2,0), u = (13,5,3,1,0),
v =(14,12,11,5,4), Py (t) = (t + 1).
® ¢ =0,0,0,...form=1,23,...
MA, MU
® P (-m)=0,1,2,...form=1,2,3,....
Primitive factors
® n=3,\=(972),pu =(531), vy = (12,11,4).

® n =2, )‘T — (6,0), U7 = (13,0), Vig — (14, 5)

o
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Non-primitive example

-

Non-primitive: n =5, A = (9,7,6,2,0), u = (13,5,3,1,0),
v =(14,12,11,5,4), Py (t) = (t + 1).
® ¢ =0,0,0,...form=1,23,...
MA, MU
® P (-m)=0,1,2,...form=1,2,3,....
Primitive factors
® n=3,\=(972),pu =(531), vy = (12,11,4).

® n =2, )‘T — (6,0), U7 = (13,0), Vig — (14, 5)

Conjecture: ¢, > 0 Is primitive, all essential Horn inequalities
strict, if and only if ™2 £ 0 for some positive integer m.

mA\,mf

o

Linz - 2008
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