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Overview

Classical non-crossing and non-nesting partitions

Motivation

Non-crossing partitions

Non-nesting partitions

A bijection between NN(W) and NC(W) in types A and B
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Non-crossing and non-nesting set partitions

Let B+ [n] be a set partition of the set [n] :={1,...,n}.
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Non-crossing and non-nesting set partitions

Let B+ [n] be a set partition of the set [n]:={1,...,n}.

Example
B=1{{1,4},{2,5,7,9},{3,6},{8}} - [9]:

77NNV
1 2 3 4 5 6 7 8 9
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Non-crossing and non-nesting set partitions

Let B+ [n] be a set partition of the set [n] :={1,...,n}.

Example
B={{1,4},{2,5,7,9},{3,6},{8}} + [9]:
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Non-crossing and non-nesting set partitions

Let B+ [n] be a set partition of the set [n]:={1,...,n}.

Example
B=1{{1,4},{2,5,7,9},{3,6},{8}} - [9]:

77NNV
1 2 3 4 5 6 7 8 9
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Non-crossing set partitions
A set partition B+ [n] is called

» non-crossing, if for a< b < ¢ < d such that a, ¢ are contained
in a block B of B, while b, d are contained in a block B’ of B,

then B =B/,
1 a< b - c <d n
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Non-crossing set partitions
A set partition B+ [n] is called

» non-crossing, if for a< b < ¢ < d such that a, ¢ are contained
in a block B of B, while b, d are contained in a block B’ of B,

then B =B/,
1 a< b < & <o n
Example

B={{1,9},{2,5,6,7},{3,4},{8}} + [9] is non-crossing:

Ao

7 8 9
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Non-nesting set partitions

A set partition B+ [n] is called

» non-nesting, if for a < b < ¢ < d such that a, d are contained
in a block B of B, while b, ¢ are contained in a block B’ of B,

then B = B'.
/KN

1 - a<bhb <« <d ---n
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Non-nesting set partitions

A set partition B+ [n] is called

» non-nesting, if for a < b < ¢ < d such that a, d are contained
in a block B of B, while b, ¢ are contained in a block B’ of B,

then B =B’.
/N
1 - a<bhb <« <d ---n

Example
B={{1,4},{2,5,7,9},{3,6},{8}} ~[9] is non-nesting:

77NV T
1 2 3 4 5 6 7 8 9
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Non-crossing and non-nesting partitions

We will later see that non-crossing and non-nesting set partitions
can be seen as the type A instances of more general constructions:

» non-crossing partitions NC(W), attached to any real
reflection group W (Reiner), and furthermore to any
well-generated complex reflection group W (Bessis),

» non-nesting partitions NN (W) attached to any
crystallographic real reflection group (Postnikov).
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General motivation

Both constructions seem to be related enumeratively in a very deep
way, in particular
» both are counted by the Catalan numbers,
» both have a positive part which is counted by the positive
Catalan numbers,
» both have a refinement which is counted by the Narayana
numbers,
but so far only for type A, explicit bijections are known.
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General motivation

Both constructions seem to be related enumeratively in a very deep
way, in particular
» both are counted by the Catalan numbers,
» both have a positive part which is counted by the positive
Catalan numbers,
» both have a refinement which is counted by the Narayana
numbers,

but so far only for type A, explicit bijections are known.

Question / Open Problem

What is nature of the relationship between NC(W) and NN(W)?
Find a bijection between NC(W') and NN(W) that preserve
“natural” statistics.
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My motivation

In the context of rational Cherednik algebras, there naturally arises
a bigraded W-module M such that
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My motivation

In the context of rational Cherednik algebras, there naturally arises
a bigraded W-module M such that

» its dimension is equal to the number of non-nesting and the
number of non-crossing partitions,

dim M = £NN(W) = #NC(W),
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My motivation

In the context of rational Cherednik algebras, there naturally arises
a bigraded W-module M such that

» its dimension is equal to the number of non-nesting and the
number of non-crossing partitions,

dim M = £NN(W) = #NC(W),

» its bigraded Hilbert series H(M,; g, t) is a natural
g, t-analogue of the Catalan numbers,
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My motivation

In the context of rational Cherednik algebras, there naturally arises
a bigraded W-module M such that

» its dimension is equal to the number of non-nesting and the
number of non-crossing partitions,

dim M = £NN(W) = #NC(W),

» its bigraded Hilbert series H(M,; g, t) is a natural
g, t-analogue of the Catalan numbers,

» the specialization t = 1 is conjectured to be counted by a
certain statistic area on NN(W),

H(Mig1)= 5 g
IeNN(W)
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My personal motivation

Open Problem

Find a second statistic tstat on NN (W) that describes those
q, t-Catalan numbers combinatorially,

H(M; q, t) _ Z qarea(l)ttstat(l).
IeNN(W)
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My personal motivation

Open Problem
Find a second statistic tstat on NN (W) that describes those
q, t-Catalan numbers combinatorially,
H(M; q, t) _ Z qarea(l)ttstat(l).
IeNN(W)
Remark

» In type A, such a statistic is known (Haglund & Haiman).
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My personal motivation

Open Problem
Find a second statistic tstat on NN (W) that describes those
q, t-Catalan numbers combinatorially,
H(M; q, t) _ Z qarea(l)ttstat(l).
IeNN(W)
Remark

» In type A, such a statistic is known (Haglund & Haiman).
» A first step would be to find a statistic gstat, such that

"H(M;q,g7t) = > gt
IeNN(W)
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My personal motivation

Open Problem
Find a second statistic tstat on NN (W) that describes those
g, t-Catalan numbers combinatorially,
H(M; q, t) _ Z qarea(l)ttstat(l).
TeNN(W)
Remark

» In type A, such a statistic is known (Haglund & Haiman).
» A first step would be to find a statistic gstat, such that

"H(M;q.q7t) = > ==,
IeNN(W)

Hope
A bijection between NC(W') and NN(W) for which some of those

statistics can be “nicely” described in terms of NC(W) could
shade some light on this open problem.
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Non-crossing set partitions and the symmetric group

When we order the elements in each block of a non-crossing set
partition B3 increasingly, we can identify B with the permutation o
having cycles equal to the blocks of B.

Example
[n]4B = {{1,9},{2,5,6,7},{3,4},{8}}
!
Spv0 = (1,9)(2,5,6,7)(3,4)

[9,5,4,3,6,7,2,8,1].
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Non-crossing set partitions and the symmetric group

When we order the elements in each block of a non-crossing set
partition B3 increasingly, we can identify B with the permutation o
having cycles equal to the blocks of B.

Example
[n]4B = {{1,9},{2,5,6,7},{3,4},{8}}
!
Spv0 = (1,9)(2,5,6,7)(3,4)

[9,5,4,3,6,7,2,8,1].

» The image of this embedding is the set of all permutations
which have
» only increasing cycles,
» no “crossing” cycles in the sense described above.
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The absolute order on the symmetric group

Definition

For a permutation o, let the absolute length |+ (o) be the
minimal integer k such that ¢ can be written as the product of k
transpositions,

l7(0) == min{k : o = t;---ty, for transpositions t;}.
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The absolute order on the symmetric group
Definition
For a permutation o, let the absolute length |+ (o) be the

minimal integer k such that ¢ can be written as the product of k
transpositions,

l7(0) == min{k : o = t;---ty, for transpositions t;}.
The absolute order on S, is then defined by

o<t e lr(r) =lr(0) +I17(c7 7).
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The absolute order on the symmetric group
Definition
For a permutation o, let the absolute length |+ (o) be the

minimal integer k such that ¢ can be written as the product of k
transpositions,

l7(0) == min{k : o = t;---ty, for transpositions t;}.
The absolute order on S, is then defined by
o<t e lr(r) =lr(0) +I17(c7 7).
Theorem (Reiner)
o €8, is non-crossing if and only if

o<1 (1,2,....,n)==c<=o¢€[lc]
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The non-crossing partition lattice of type As
Example
For W =84, NC(W) c Sp:

(1324) (1243) (1324) (1234) (1432
e A - T

—
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The absolute order for any real reflection group

Definition

Let W be a real reflection group (= Coxeter group) and let w e W.
Let its absolute length | (w) be the minimal integer k such that
w can be written as the product of k reflections,

l7(w) :=min{k:0 = ty---tx, for reflections t;}.
The absolute order on W is defined by

w<rw e (W) = (W) + 17 (wW).
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The absolute order for any real reflection group

In the absolute order, the intervall [1, c] does not depend on the
specific choice of the Coxeter element c,

[1,c]=[1,c],

for Coxeter elements c, c¢’.
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The absolute order for any real reflection group

In the absolute order, the intervall [1, c] does not depend on the
specific choice of the Coxeter element c,

[1,c]=[1,c],
for Coxeter elements c, c¢’.
Definition

Fix a real reflection group W and a Coxeter element c. The
non-crossing partition lattice associated to W is defined as

NC(W) :=[1,c].

» For any Coxeter element c, the intervall [1,c] is a /attice with
many nice properties.

Christian Stump — A bijection between non-crossing and non-nesting partitions of types A and B
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Enumeration of NC(W)

Theorem (Reiner, Bessis-Reiner)

Let W be a real reflection group. Then non-crossing partitions are
counted by the W-Catalan numbers,

/ .
ANC(W) = Cat(W) =[] d'd+ h,
i=1 i

where

» | is the number of simple reflections in W,

» h is the Coxeter number,

» di,...,d; are the degrees of the fundamental invariants.
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Cat(W) for all irreducible real reflection groups

An—l Bn Dn

) -G

/2(m) H3 H4 F4 E@ E7 Eg
m+2 | 32 | 280 | 105 | 833 | 4160 | 25080
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The root poset

Definition

Let W be a crystallographic reflection group with associated root
system ® ¢ R/ and let A ¢ ®* ¢ ® be a simple system and a
positive system respectively.

Define a partial order on ®* by the covering relation

a<f:<=f-ace.

Equipped with this partial order, ®* is the root poset associated
to W.
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The root poset

Example
The root posets of type A4 and of type Bs:

€1 + €2
€1 —€5 €1 + €3,
€1—€4 E2— €5 €1 €2 + €3
€1—E3 €2—€4 €3— €5 €1—€3 €2
€1—€2 €2 —€3 €3—€4 €4—€5 €1—€2 €2 —€3 €3
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Non-nesting set partitions and the root poset

Non-nesting set partitions of [n] are in bijection with anti-chains in
the root poset of type A,_1.
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Non-nesting set partitions and the root poset

Non-nesting set partitions of [n] are in bijection with anti-chains in
the root poset of type A,_1.

Example

o={{1,4},{2,5,7,9},{3,6},{8)}

e e e e
T2 3 4 5 6 7 8 9
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Non-nesting set partitions and the root poset

Non-nesting set partitions of [n] are in bijection with anti-chains in
the root poset of type A,_1.

Example

o={{1.4,12,5,7,9},{3,6},{8)}

e e e e
T2 3 4 5 6 7 8 9
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Non-nesting set partitions and the root poset

Non-nesting set partitions of [n] are in bijection with anti-chains in
the root poset of type A,_1.

Example

o={{1,4},{2,5,7,9},{3,6},{8}}

e e e e
i 2 3 4 5 6 7T 8 9
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Non-nesting set partitions and the root poset

Non-nesting set partitions of [n] are in bijection with anti-chains in
the root poset of type A,_1.

Example

o={{1,4},{2,5,7,9},{3.6},{8)}

e e e
./\
17 27 37 Y4 57 6 77 8 g
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Non-nesting set partitions and the root poset

Non-nesting set partitions of [n] are in bijection with anti-chains in
the root poset of type A,_1.

Example

o={{1,4},{2,5,7,9},{3,6}, {81}

e e e
./l\
17 27 37 t4 57 6 77 8 g
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Non-nesting set partitions and the root poset

Non-nesting set partitions of [n] are in bijection with anti-chains in
the root poset of type A,_1.

Example

o={{1,4},{2,5,7,9},{3,6},{8)}

e e e e
T2 3 4 5 6 7 8 9
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Non-nesting partitions

Definition
Fix a crystallographic reflection group W with associated root
poset ®*. An antichain in ®* is called non-nesting partition,

NN(W) := {non-nesting partitions A c ®*}.
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Non-nesting partitions

Definition
Fix a crystallographic reflection group W with associated root
poset ®*. An antichain in ®* is called non-nesting partition,

NN(W) := {non-nesting partitions A c ®*}.

Example
The 5 antichains in the root poset of type Ao:
e [ ] e . L]
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Enumeration of NN(W)

Theorem (Athanasiadis)
Let W be a crystallographic reflection group. Then

#NN(W) = Cat(W) = #NC(W).
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The area statistic on NN (W)

To an antichain A € ®*, define the area statistic as
area(A) := #la, where

la:={aed" :a <3 for some 3 € A}.

Example (continued)

area(A) =17
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Back to the module from the beginning

Conjecture

H(M, q, 1) _ Z qarea(A).
AeNN(W)
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Back to the module from the beginning

Conjecture

H(M. q, 1) _ Z qarea(A).
AcNN(W)

In type A the conjecture is known to be true and furthermore
MacMahon's Major index maj on the associated Dyck path
provides

"H(M;q,q7") mai(A)

q
AeNN(W)

1 2n| ! [di + h]g
[”+1]q[”]q_g [dilq

where N is the number of positive roots (Garsia & Haiman).

Christian Stump — A bijection between non-crossing and non-nesting partitions of types A and B
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The bijection in type A

Define ¢ to be the map from NN(S,) to NC(S,) =[1,(1,...,n)]
by the rule shown in the following picture:

1 2/\3/\4/\5 6 7/8\9
I

(1,7,9)(2,3,4,5) € NC(S,)
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The bijection in type A
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by the rule shown in the following picture:

2/\3/\4/\5 6 7/:\g
I

(1,7,9)(2,3,4,5) e NC(S,)
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The bijection in type A

Define ¢ to be the map from NN(S,) to NC(S,) =[1,(1,...,n)]
by the rule shown in the following picture:

2/\3/\4/\5 6 7/:\9
I

(1,7,9)(2,3,4.5) € NC(S,)
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The bijection in type A

Define ¢ to be the map from NN(S,) to NC(S,) =[1,(1,...,n)]
by the rule shown in the following picture:

1 2/\3/\4/\5 6 7/8\9
I

(1,7,9)(2,3,4,5) € NC(S,)
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Properties of the bijection

Theorem
The map ¢ is a bijection between NN(S,) and NC(S,) which
sends

» area to the (ordinary) length function |s in the Coxeter group
of type A,

» maj to 2N — maj—imaj, where maj is the Major index of a
permutation and imaj the Major index of the inverse
permutation.
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Properties of the bijection

Theorem
The map ¢ is a bijection between NN(S,) and NC(S,) which
sends

» area to the (ordinary) length function |s in the Coxeter group
of type A,

» maj to 2N — maj—imaj, where maj is the Major index of a
permutation and imaj the Major index of the inverse

permutation.
Corollary
H(M;q,1) = g™,
oceNC(W)
"H(M;q,q7t) = Y gra)rimal),
oceNC(W)
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Properties of the bijection

Example (continued)

7
(1,7,9)(2,3,4,5) = [7,3,4,5,2,6,9,8, 1] € NC(S,,)
(7,3),(7,4),(7,5),(7,2),(7,6),(7,1),
ls = inv = # =17

(37 2)7 (37 1)7 (47 2)7 (47 1)7 (57 2)7 (57 1)7
(2,1),(6,1),(9,8),(9,1),(8,1)
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The bijection in type B

We can also define an bijection between NN(W) and

NC(W) =[1, c] where c is a certain Coxeter element with the
following properties:

» it sends the statistic area almost to the (ordinary) length
function lg in the Coxeter group of type B,

» it sends the statistic maj a/most to 2N — maj —imaj, where
maj is almost the f-Major index of a signed permutation

(Adin, Roichman) and imaj is the f-Major index of the inverse
signed permutation.

Christian Stump — A bijection between non-crossing and non-nesting partitions of types A and B
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The bijection in type B

Corollary

qNH(/\/I; q, q—l) _ Z qmaj(rev(a))+imaj(rev(cr))
oeNC(W)
2n ! [d;+h]
) H ginc
q? i=1 11q

Conjecture

H(M;q,1) = Z qls(rev(cr))'
FeNC(W)
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A hope in type B and a remark on type D

Hope

In type B, this bijection equips NN(W') with more structure and
we hope that this could help to find a statistic tstat on NN(W) to
describe the whole Hilbert series of the W-module M in this type.

Remark
As the involution rev makes the situation much more difficult we

were so far not able to find an analogous bijection in type D.

29 of 29
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