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HYPEROCTAHEDRAL SPECIES

N. BERGERON AND P. CHOQUETTE

J’ai descendu avec Pierre plusieurs rapides. Parfois c’étais sur l’eau, parfois c’étais en concepts.
Merci, Nantel

Abstract. We introduce hyperoctahedral species (H-species) or species of type
B, which are analogous to the classical tensor species, but on which we consider the
action of the groups of signed permutations. We give a bistrong monoidal functor, a
functor which preserves Hopf monoids, between the monoidal categories of species
and H-species. We also define bilax monoidal functors (functors which preserve
the structure of bimonoids) between the category of H-species and the category of
graded vector spaces. Using these functors, the combinatorial Hopf algebra DQSym
is shown to arise from the cofree comonoid on the exponential species.

1. Introduction

The theory of species of Joyal [9] has open a lot of interesting problems in combi-
natorics. In particular, Bergeron [6] used species to find a combinatorial explanation
of plethystic substitution and Mendez and Nava [16] studied colored species. Others
were interested in generalizing species for modules of other groups. Hetyei et al.
[13] were motivated by various enumerative questions on the n-dimensional cube and
defined cubical species, modules for the hyperoctahedral groups. In [12], Henderson
generalized Joyal’s species, called Br-modules, to study characters of the representa-
tions of W (r, n), the wreath product of the cyclic group of order r and the symmetric
group Sn, on cohomology of De Concini–Procesi compactifications. Others have been
interested in finding relationships between species and well-known algebras such as
the descent algebra [17] or combinatorial Hopf algebras [2].

In [2], Aguiar and Mahajan have introduced bilax monoidal functors (functors
preserving bimonoids) from the category of species (Sp) to the category of graded
vector spaces (gVec). In particular, they showed that many different graded Hopf
algebras can arise from one Hopf monoid in species. In this paper, we make an
analogous study with hyperoctahedral species as done by Aguiar and Mahajan [2] in
the case of species. Hyperoctahedral species, or H-species, which are given in terms
of H-sets, are modules of the hyperoctahedral groups. Therefore, the role played by
the symmetric groups in species is played by the groups of signed permutations in this
setting. We denote by SpH the category of H-species. Endowed with a symmetric
tensor product, it turns into a monoidal category and therefore Hopf monoids can be
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defined. We construct H-species from usual species by way of a bistrong monoidal
functor S sending the regular representation of !Sn to the regular representation of

Bn. We also introduce bilax monoidal functors KH and K̃H to generate graded vector

spaces from H-species. Composing these functors (KHS, K̃HS), we get new graded
Hopf algebras from usual species. We also give a natural transformation which links
our work and the work of Aguiar and Mahajan [2]. We finally discuss an interesting
example: the graded Hopf algebra DQSym of diagonally symmetric functions, see [3],
arises from the cofree comonoid on the exponential species.

Many constructions we use are very similar to the ones of Aguiar and Mahajan
[2]. In particular, the tensor product on H-species and the functors from H-species
to graded vector spaces parallel the same notions for species. The advantage of
a similar setting and similar constructions is that as many as four (based on the
functors defined in this paper) graded Hopf algebras arise from a a single species.
Therefore, natural transformations between our functors and Aguiar and Mahajan’s
functors, for example
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given here by α̃S , give morphisms of graded Hopf algebras in the same family. For
example, Aguiar and Mahajan proved that the Hopf algebra of set compositions and
the Hopf algebra QSym of quasi-symmetric functions arise from a particular Hopf
monoid. Using the functors defined in this paper, we prove that DQSym is in the
same family (see Theorem 35) as is the Hopf algebra of HS-set compositions (see

Example 29). Furthermore, the natural transformation α̃S yields the morphism of
Hopf algebras DQSym→ QSym sending a bicomposition to the composition obtained
by adding each component of each bipart (see Example 36). This paper is only the
starting point of the study of H-species. Further exploration is done in [8], but a lot
of interesting problems remain to be done.

Acknowledgements. We would like to thank Marcelo Aguiar for his many sug-
gestions and interesting problems regardingH-species. We also thank the anonymous
referee for his numerous and judicious suggestions.

2. Preliminaries

We begin by a brief introduction on monoidal categories and morphisms of such
categories, given by lax, colax and bilax monoidal functors. For these notions, see
[2, 4, 5, 14]. We then give two examples: the monoidal categories of graded vector
spaces and of species. We recall the construction of the cofree comonoid on a species,
as done by Aguiar and Mahajan [2]. For more details on species, see [2, 7, 9, 13].
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2.1. Monoidal categories. For a definition of monoidal category, see MacLane [15].
For the definitions of monoids, comonoids, bimonoids and Hopf monoids in monoidal
categories, see Aguiar and Mahajan [2].

Definition 1 (Bénadou [4] and Aguiar and Mahajan [2]). Let (C, •, e) and (D, �, e′)
be two monoidal categories.

(1) A lax monoidal functor (F, φ, φ0) between (C, •, e) and (D, �, e′) is a functor
F : C → D with a morphism φa,b : Fa � Fb→ F (a • b) in D, natural in a and
b for each pair a, b of objects in C, and a morphism φ0 : e′ → Fe in D such
that φ is associative and left and right unital in the usual sense.

(2) A colax monoidal functor (F, ψ, ψ0) is a functor F : C → D with a morphism
φa,b : F (a • b)→ Fa �Fb in D, natural in a and b for each pair of objects a, b
in C, and a morphism ψ0 : Fe→ e′ in D such that ψ is coassociative and left
and right counital in the usual sense.

(3) A bilax monoidal functor (F, φ, φ0, ψ, ψ0) between two braided monoidal cat-
egories (C, •, e, β) and (D, �, e′, β) is a lax monoidal functor (F, φ, φ0) and a
colax monoidal functor (F, ψ, ψ0) satisfying the braiding condition and uni-
tality conditions.

(4) A bilax monoidal functor with φ, φ0, ψ and ψ0 invertible is a bistrong monoidal
functor.

The composites of lax, colax, bilax and bistrong monoidal functors are lax, colax,
bilax and bistrong monoidal functors respectively. A morphism of bilax monoidal
functors between (F, φ, ψ) and (G, γ, δ) is a natural transformation α : F → G which
commutes with φ, ψ, γ and δ. See [2] for more details.

Proposition 2 (Bénabou [5] and Aguiar and Mahajan [2]). (1) If F is a lax (co-
lax, bilax) monoidal functor from (C, •) to (D, �) and h is a monoid (co-
monoid, bimonoid) in C then Fh is a monoid (comonoid, bimonoid) in D.
Furthermore, a morphism of lax (colax, bilax) monoidal functors Θ: F → G
yields a morphism of monoids (comonoids, bimonoids) Θh : Fh→ Gh if h is
a monoid (comonoid, bimonoid) in C.

(2) If F is a bistrong monoidal functor from (C, •) to (D, �) and h is a Hopf
monoid in C with antipode S then Fh is a Hopf monoid in D with antipode
FS. Moreover, a morphism Θ: F → G of bistrong monoidal functors yields
a morphism Θh : Fh→ Gh of Hopf monoids if h is a Hopf monoid in C.

For example, the category gVec of graded vector spaces is monoidal. Objects and
morphisms of this category are as follow. A vector space V over K is said to be
graded if it is a sequence V = (Vn)n≥0 of vector spaces over K. In that case, we
often write V =

⊕
n≥0 Vn, where Vn is the homogeneous component of degree n in

V . A morphism of graded vector spaces f : V → W is a sequence of linear maps
(fn : Vn → Wn)n≥0. We often write f =

⊕
n≥0 fn. This category is monoidal with
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tensor product defined on the component of degree n by

(V ·W )n =
n⊕
i=0

Vi ⊗Wn−i.

2.2. Species. We first recall the definitions of decomposition, set composition and
set partition of finite sets and some operations on set compositions. Let I be a
finite set. A decomposition of I is an ordered sequence G = (G1, . . . , Gk) of disjoint
subsets of I such that G1 ∪ G2 ∪ · · · ∪ Gk = I. We write I = G1 t · · · t Gk. A
set composition of I is a decomposition G = (G1, G2, . . . , Gk) of I in which each Gi,
1 ≤ i ≤ k, is nonempty. We write G |= I or G = G1|G2| . . . |Gk. A set partition
F = {F1, F2, . . . , Fl} of I is an unordered collection of disjoint nonempty subsets of
I such that F1 ∪ · · · ∪ Fl = I. We write F ` I. The subsets Gi (Fi) are the parts
of the composition (partition). For example, 34|1|25 is a set composition of [5] and
{15, 234} is a set partition of [5]. We omit brackets around each part for clarity.
There is one (empty) set composition (set partition) of the empty set, denoted by ∅.

Let F = F1| . . . |Fk and G = G1| . . . |Gl be two set compositions on disjoint sets S
and T , respectively. Note that S t T denotes the disjoint union of S and T . The
restriction of F to a set S ′ ⊆ S is the set composition

F |S′ = F1 ∩ S ′| . . . |Fk ∩ S ′,
where we delete any empty parts.

The concatenation of F and G is the set composition of S t T defined by

F |G = F1| . . . |Fk|G1| . . . |Gl.

A shuffle of F and G is a set composition of StT whose parts are parts of F and G
and whose restriction to S is F and whose restriction to T is G. Let FttG denote the
set of all shuffles of F and G. For example, 12|3tt45 = {12|3|45, 12|45|3, 45|12|3}.

A quasishuffle of F and G is a set composition of StT whose restriction to S is F
and whose restriction to T is G. In other words a quasishuffle is a shuffle such that
two adjacent parts Fi|Gj can be replaced by Fi t Gj. Let F G denote the set of
all quasishuffles of F and G. For example,

12|3 45 = {12|3|45, 12|45|3, 45|12|3, 12|345, 1245|3}.

Definition 3. A species p with values in VecK, the category of vector spaces over a
field K of characteristic zero, is a functor

p : B→ VecK,

where B is the category of finite sets with bijections. A morphism of species is a
natural transformation α : p→ q. Let Sp denote the category of species.

A species is a family of vector spaces p[I], one for each finite set I, together with
linear maps p[f ] : p[I] → p[J ], one for each bijection f : I → J . A morphism of



HYPEROCTAHEDRAL SPECIES 5

species α : p→ q is a family of linear maps αI : p[I]→ q[I], one for each finite set I,
such that for each bijection f : I → J , the following diagram commutes

(2.1)

p[I]
αI−−−→ q[I]

p[f ]

y yq[f ]

p[J ] −−−→
αJ

q[J ].

We denote by p[n] the vector space p[{1, 2, . . . , n}], n ≥ 0.

Each permutation σ ∈ Sn induces a map

p[σ] : p[n]→ p[n],

which turns p[n] into an Sn-module. A species p can then equivalently be defined by
a sequence of Sn-modules.

The category of species is monoidal with tensor product defined by

(p · q)[I] =
⊕
StT=I

p[S]⊗ q[T ],

and with unit

o[I] =

{
K if I = ∅,
0 otherwise.

Descriptions of monoids, comonoids, bimonoids and Hopf monoids are found in [2].
They are the same as the ones for H-species in Section 4, by omitting the involution.

Example 4. Two Hopf monoids in (Sp, ·) will be considered in this paper. We give
their definitions along with their products and coproducts.

(1) Exponential species.

e[I] := K, for each finite set I.

Let I denote the only basis element of e[I]. The components µS,T and ∆S,T

of the product and the coproduct are given by

(2.2)
e[S]⊗ e[T ]→ e[I] e[I]→ e[S]⊗ e[T ]

S ⊗ T 7→ S t T, I 7→ S ⊗ T.

It is a commutative and a cocommutative Hopf monoid. Its antipode is given
for any finite I by

(2.3) S(I) = (−1)|I|I.

(2) Linear order species.

`∗[I] := K-span of all linear orders on I.
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The components µS,T and ∆S,T of the product and coproduct are

(2.4)

`∗[S]⊗ `∗[T ]→ `∗[I] `∗[I]→ `∗[S]⊗ `∗[T ]

l1 ⊗ l2 7→
∑

l∈l1ttl2

l, l 7→

{
l|S ⊗ l|T if S is an initial segment of l,

0 otherwise.

The direct sum of the product is over all shuffles l of l1 and l2.
Note that we use here the dual of the linear order species. For more details,

see [2].

A positive species is a species p such that p[∅] = 0. Denote by Sp+ the subcategory
of positive species. Let

(−)+ : Sp→ Sp+,

be the functor defined by

p+[I] =

{
p[I] if I 6= ∅,
0 otherwise.

Remark 5 (Aguiar and Mahajan [2]). Any positive species has a monoid structure.
Since the functor (−)+ preserves monoids, if p is a monoid then p+ is a (nonunital)
monoid. Any other positive species q can be endowed with the trivial product (the
zero map).

The substitution of a species p and a positive species q is defined by

(2.5) (p ◦ q)[I] :=
⊕
X`I

p[X]⊗
(⊗
S∈X

q[S]
)
.

For any positive species p,

(2.6) `∗ ◦ p =
⊕
n≥0

p·n,

where p·0 = o. Furthermore, for any finite set I,

(`∗ ◦ p)[I] =
⊕
F |=I

p(F ),

where for a composition F = F1| . . . |Fl, p(F ) = p[F1]⊗ · · · ⊗ p[Fl].

Proposition 6 (Aguiar and Mahajan [2]). The species `∗ ◦ q is the cofree comonoid
on a positive species q.

The component ∆S,T of the coproduct of `∗ ◦ q is the direct sum of the following
maps. For each set composition F1| . . . |Fk |= I for which S is the union of the first i
parts, take the identity map

(2.7) q(F1| . . . |Fk)→ q(F1| . . . |Fi)⊗ q(Fi+1| . . . |Fk).
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The comonoid `∗ ◦ q also carries a canonical Hopf monoid structure. The product is
quasishuffle. Fix a decomposition I = S t T , compositions F |= S, G |= T and a
quasishuffle H of F and G. There is a unique map

q(F )⊗ q(G)→ q(H)

obtained by reordering the factors according to the shuffle and then taking the tensor
product of the following maps:

(2.8) q[Hk]←

{
q[Hk] if Hk is a block of F or of G,

q[Fi]⊗ q[Gj] if Hk = Fi tGj.

If Hk is a block of F or of G, use the identity map and if Hk = Fi t Gj, use the
appropriate component of the product of q. Since every positive species is a monoid,
see Remark 5, this map is well-defined. In the case that q is the trivial monoid, the
product is the shuffle.

Example 7. Consider the Hopf monoid e. Let e+ be the positive Hopf monoid
defined by

(2.9) e+[I] =

{
e[I] if I 6= ∅,
0 otherwise.

Then (`∗◦e+)[I] =
⊕

F |=I e+(F ), and denote by F1|F2| . . . |Fk the only basis element in

e+(F ) = e+[F1]⊗· · ·⊗e+[Fk]. Therefore, `∗◦e+ has a basis given by set compositions.

The product and the coproduct are given by quasishuffle and deconcatenation of
set compositions. For example,

µ(1|2, 3) = 1|2|3 + 1|3|2 + 3|1|2 + 1|23 + 13|2,
∆(4|13|2) = 4|13|2⊗ ∅+ 4|13⊗ 2 + 4⊗ 13|2 + ∅ ⊗ 4|13|2.

3. H-Species

We introduce the category of H-sets along with set compositions of H-sets. We
then define hyperoctahedral species, H-species, which are sequences of modules for
the hyperoctahedral groups.

Definition 8. An H-set (A, σ) is a finite set A together with an involution σ on
A, where σ is without fixed points. A bijection of H-sets between (A, σ) and (B, τ),
called an H-bijection, is a bijection f : A → B of finite sets such that this diagram
commutes

(3.1)

A
f−−−→ B

σ

y yτ
A −−−→

f
B.

We write f : (A, σ)→ (B, τ) for such an H-bijection.
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Let BH be the category of H-sets. There is a natural involution σ0 : N∪N→ N∪N,
where N = {1̄, 2̄, . . . }, defined for i ∈ N and ī ∈ N by σ0(i) = ī and σ0(̄i) = i. Each
time we consider a set S = {s1, . . . , sk} ⊂ N and its negative S = {s1, . . . , sk}, we
endow it with the natural involution σ0. In particular, we use σ0 for the sets

[n̄, n] = {n̄, . . . , 1̄, 1, . . . , n},

n ≥ 0, and for the sets

[±(a, b)] = {b̄, b− 1, . . . , ā, a, a+ 1, . . . b},

for a, b ∈ N and a ≤ b. We omit the involution when using σ0. For example,
S t S := (S ∪ S, σ0) and [n̄, n] := ([n̄, n], σ0).

Consider the quotient set of A by σ:

(3.2) A/σ = {[a] : a ∈ A}.

A section is a map

s : A/σ → A

which is a right inverse for the projection A→ A/σ. In particular, s([a]) ∈ {a, σ(a)}.
For the sets [n̄, n], we identify [n̄, n]/σ0 with [n], for each n ≥ 0, and we denote a
section s by the list of its images (s(1), s(2), . . . , s(n)) or equivalently by omitting
commas and brackets: s(1)s(2) . . . s(n).

We define next two order-preserving H-bijections on H-sets of integers of the form
S̄ t S for S ⊂ N. The natural order on the sets [n̄, n] is

n̄ < · · · < 1̄ < 1 < · · · < n,

and any subset S of [n] inherits this order.

The canonical map, can, and the standardization map, st, are defined to be the
only order-preserving maps between sets of same cardinality. Explicitly, if S, T ⊂ N
with |S| = |T | = n then

(3.3) stS : S̄ t S → [n̄, n] and can: S̄ t S → T̄ t T.

We denote by cans the map cans : [n̄, n]→ [±(s+ 1, s+ n)].

We define next two analogous notions of set partitions on H-sets. The first one is
a set partition for which each part of the partition is an H-set and the second is a set
partition on particular subsets of an H-set. For the following definitions, let (A, σ)
be an H-set.

Definition 9. An H-subset (S, σS) of (A, σ) is a set S, such that

S ⊂ A and σS(S) = S,

where σS : S → S is the restriction of σ to the set S and is defined by σS(s) = σ(s),
for all s ∈ S. If S is an H-subset of [n̄, n], we use σ0 for the restriction.
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Definition 10. (1) An H-decomposition F of (A, σ) is an ordered sequence F =

(F1, . . . , Fl) of disjoint H-subsets of (A, σ) such that
⋃l
i=1 Fi = A. We write

F1 t · · · t Fl = A.
(2) An H-set composition F of (A, σ) is an H-decomposition F = (F1, . . . , Fl) of

(A, σ) in which each Fi is nonempty. We write F = F1|F2| . . . |Fl or F |= A.
The H-subsets Fi are the parts of the H-set composition.

(3) An H-set partition P of (A, σ) is an unordered collection of disjoint nonempty
H-subsets of (A, σ) such that

⋃
S∈P S = A. We write P ` A. The H-subsets

S are the parts of the H-set partition.

There is one (empty)H-set composition (H-set partition) of the empty set, denoted
by ∅.

Remark 11. The H-decompositions of H-sets of the form [n̄, n] are in bijection with
decompositions of the finite sets [n], n ≥ 0.

Definition 12. (1) An HS-set composition F of (A, σ) is a set composition of
s(A/σ), for any section s. We write F |=S (A, σ).

(2) An HS-set partition P of (A, σ) is a set partition of s(A/σ) for any section s.
We write P `S (A, σ).

Definition 13. A hyperoctahedral species, or species of type B (H-species), with
values in VecK, the category of vector spaces over a field K of characteristic zero
with linear maps, is a functor

p : BH → VecK.

A morphism of H-species is a natural transformation α : p→ q. Let SpH denote the
category of H-species.

AnH-species consists of a family of vector spaces p[A, σ], one for eachH-set (A, σ),
and a family of linear maps

p[f ] : p[A, σ]→ p[B, τ ],

one for each H-bijection f : (A, σ) → (B, τ). The space p[A, σ] is the space of p-
structures on (A, σ). For the sets [n̄, n], n ≥ 0, we write p[n̄, n] instead of p[([n̄, n], σ0)].

A morphism of H-species consists of a family of linear maps

αA,σ : p[A, σ]→ q[A, σ],

one for each H-set (A, σ), such that for each H-bijection f : (A, σ) → (B, τ), this
diagram

(3.4)

p[A, σ]
αA,σ−−−→ q[A, σ]

p[f ]

y yq[f ]

p[B, τ ] −−−→
αB,τ

q[B, τ ]
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commutes. We may abbreviate α[n̄,n] by αn or αS̄tS : p[S̄ t S] → q[S̄ t S] by αS.
Also, the identity 1n may either denote the identity linear map 1n : p[n̄, n]→ p[n̄, n]
or the identity H-bijection 1n : [n̄, n]→ [n̄, n].

Remark 14. The group of automorphisms of the H-set [n̄, n] is the hyperoctahedral
group or the group of signed permutations, Bn. More generally, the group of H-
bijections taking (A, σ) to itself is denoted by BA,σ, and it is isomorphic to Bn, if
|A| = 2n.

Proposition 15. An H-species p can be defined as a sequence

V0, V1, V2, . . .

of modules of the hyperoctahedral groups, and morphisms of H-species are degree
preserving maps of Bn-modules.

Proof. Since p is a functor, each π ∈ Bn induces a map

p[π] : p[n̄, n]→ p[n̄, n]

of vector spaces, which turns p[n̄, n] into a Bn-module. A morphism of H-species
α : p → q gives rise to degree-preserving maps αn : p[n̄, n] → q[n̄, n], n ≥ 0, of Bn-
modules.

Conversely, let V0, V1, V2, . . . be a sequence of modules of the hyperoctahedral
groups, with action π.Vn, π ∈ Bn. Define an H-species p as p[A, σ] = Vn, for any
H-set (A, σ) of cardinality 2n. For any H-bijection f : (A, σ)→ (B, τ), consider the
composite g = stB ◦f ◦ st−1

A , where stA and stB are any bijections (A, σ)→ [n̄, n] and
(B, τ)→ [n̄, n] respectively. Then g ∈ Bn and let p[f ] := g.Vn. �

Remark 16. The category of cubical species, defined by Hetyei et al. in [13], is
equivalent to the category of H-species. See [8] for more details.

Example 17. (1) Exponential H-species.

eH[A, σ] := K, for each H-set (A, σ).

Let A denote the only basis element of eH[A, σ]. This is the trivial represen-
tation.

(2) H-species of linear orders.

`H[A, σ] = K-span of linear orders on s(A/σ), for all sections s : A/σ → A

=
⊕

s : A/σ→A

`[s(A/σ)],

where ` is the usual species of linear order. It is the regular representation.
For example,

`H[2̄, 2] = `[{1, 2}]⊕ `[{1̄, 2}]⊕ `[{1, 2̄}]⊕ `[{1̄, 2̄}].
(3) H-species of sections.

s[A, σ] = K[s(A/σ) | s : A/σ → A].
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(4) H-species of sets of sections. F [A, σ] is the K-span of the following sets
of sections: for each H-subset (T, σT ) of (A, σ), let S = {s1, . . . , sk} be the
set of sections on A/σ with si(T/σT ) fixed, 1 ≤ i ≤ k, where k = 2|(A\T )/σ|.
Each H-subset (T, σT ) give rise to 2|T/σT | basis elements. For example,

(3.5)
F [2̄, 2] = K[{12}, {1̄2}, {12̄}, {1̄2̄}, {12, 12̄},

{1̄2, 1̄2̄}, {1̄2, 12}, {1̄2̄, 12̄}, {12, 1̄2, 12̄, 1̄2̄}].

4. Tensor product and Hopf monoids

We set the definitions for monoids, comonoids, bimonoids and Hopf monoids in
the monoidal category of H-species.

Proposition 18. (SpH, ·, o, β) is a symmetric monoidal category, with tensor product

(4.1) (p · q)[A, σ] =
⊕

StT=A

p[S, σS]⊗ q[T, σT ],

where the direct sum is over H-decompositions, see Definition 10. The unit for this
product is

o[A, σ] =

{
K if A = ∅,
0 otherwise.

The braiding βp,q : p · q→ q · p has components given by

(4.2)
p[S, σS]⊗ q[T, σT ]→ q[T, σT ]⊗ p[S, σS]

x⊗ y 7→ y ⊗ x.

The axioms, found in [15], are straightforward to check.

A monoid (p, µ, η) in SpH is an H-species p with product µ and unit η,

µ : p · p→ p, η : o→ p,

associative and unital in the usual sense. There is one linear map µA,σ for each H-set
(A, σ) and let

µS,T : p[S, σS]⊗ p[T, σT ]→ p[A, σ]

be the components of the product, one for each H-decomposition S t T = A. There
is one linear map for the unit

η∅ : K→ p[∅].
A comonoid (p,∆, ε) in SpH is an H-species p with a coproduct ∆ and counit ε,

∆: p→ p · p, ε : p→ o,

coassociative and counital in the usual sense. There is one map ∆A,σ for each H-set
(A, σ) and let

∆S,T : p[A, σ]→ p[S, σS]⊗ p[T, σT ]
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be the components of the coproduct, one for each H-decomposition S tT = A. Only
one map is non-trivial for the counit, namely when A = ∅:

ε∅ : p[∅]→ K.

A bimonoid (h, µ, η,∆, ε) is a monoid (h, µ, η) and a comonoid (h,∆, ε) such that
∆ and ε are morphisms of monoids. A Hopf monoid (h, µ, η,∆, ε, s) is a bimonoid
(h, µ, η,∆, ε) with an H-species morphism s : h→ h, the antipode, such that for each
nonzero H-set (A, σ), the composites

(4.3) h[A, σ]
⊕∆S,T //

⊕
h[S, σS]⊗ h[T, σT ]

1S⊗sT //
⊕

h[S, σS]⊗ h[T, σT ]
⊕µS,T // h[A, σ],

h[A, σ]
⊕∆S,T //

⊕
h[S, σS]⊗ h[T, σT ]

sS⊗1T //
⊕

h[S, σS]⊗ h[T, σT ]
⊕µS,T // h[A, σ]

are zero, where the direct sums are over H-decompositions S tT = A, and such that
the following equation for the empty set is satisfied:

(4.4) µ∅,∅ ◦ (1⊗ s∅) ◦∆∅,∅ = η∅ ◦ ε∅ = µ∅,∅ ◦ (s∅ ⊗ 1) ◦∆∅,∅.

As is the case for graded bialgebras, if a bimonoid h is connected, i.e., h[∅] = K,
then h is a Hopf monoid. See [2] for details.

Example 19. (1) The H-species eH is a Hopf monoid. Recall that A denotes
the only basis element in eH[A, σ]. The components of the product and the
coproduct are given by

eH[S, σS]⊗ eH[T, σT ]→ eH[S t T ] eH[A, σ]→ eH[S, σS]⊗ eH[T, σT ]

S ⊗ T 7→ S t T, A 7→ S ⊗ T.

Solving (4.3) recursively, the antipode is found to be

(4.5) S(A) = (−1)|A/σ|A.

(2) The H-species `H is a Hopf monoid. The components of the product are

(4.6)
`H[S, σS]⊗ `H[T, σT ]→ `H[A, σ]

l1 ⊗ l2 7→ l1l2,

where for l1 = l11 . . . l
i
1 a linear order on s(S/σS) and l2 = l12 . . . l

j
2 a linear order

on s′(T/σT ) for some sections s and s′,

l1l2 = l11 . . . l
i
1l

1
2 . . . l

j
2

is the concatenation. Then l1l2 is a linear order on s′′(A/σ) where

s′′([a]) =

{
s([a]) if [a] ∈ S/σS,

s′([a]) if [a] ∈ T/σT .

The components of the coproduct are given by deshuffling:

(4.7)
`H[A, σ]→ `H[S, σS]⊗ `H[T, σT ]

l 7→ lS ⊗ lT ,
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where for l = l1 . . . lk a linear order on s(A/σ), for some section s, lS is the
sublist of l consisting of elements of S. Then lS and lT are linear orders on
s′(S/σS) and s′′(T/σT ) respectively, where s′ = s|S/σS and s′′ = s|T/σT .

Since this species is connected, it is a Hopf monoid. By solving recursively
(4.3), one can compute the antipode S : `H → `H for any linear order l on
s(A/σ) to be

S(l) = (−1)|l|l̃,

where |l| is the length of l and if l = l1 . . . lk then l̃ = lk . . . l2l1.
(3) The H-species F of faces of sections (see Example 17(4)) is a Hopf monoid.

Let F = {s1, . . . , sk} and G = {s′1, . . . , s′l} be two sets of sections on S and
T , where S t T = A. Each si and s′j, for 1 ≤ i ≤ k and 1 ≤ j ≤ l, is a set.
The components of the product are given by

(4.8) µS,T ({s1, . . . , sk}, {s′1, . . . , s′l}) = {si t s′j : 1 ≤ i ≤ k, 1 ≤ j ≤ l}.

Let H = {s1, . . . , sm} be a set of sections of (A, σ). The components of the
coproduct are given by

(4.9) ∆S,T (H) = H|S ⊗H|T ,

where H|S = {s1 ∩ S, . . . , sk ∩ S}. We delete any empty sets. For example,

µ({13, 1̄3}, {2̄}) = {12̄3, 1̄2̄3},

∆({12, 12̄}) = {12, 12̄} ⊗ ∅+ {1} ⊗ {2, 2̄}+ {2, 2̄} ⊗ {1}+ ∅ ⊗ {12, 12̄}.

5. Functors

In this section, we define a functor S : Sp→ SpH and two functors

KH, K̃H : SpH → gVec.

We also make explicit the natural transformation α̃S of (1.1).

Definition 20. The functor

S : Sp→ SpH

is defined, for a species p, an H-set (A, σ) and an H-bijection f : (A, σ)→ (B, τ) by

(5.1)

Sp[A, σ] =
⊕

s : A/σ→A

p[s(A/σ)],

Sp[f ] =
⊕

s : A/σ→A

p[f |s(A/σ)].

Proposition 21. S is a bistrong monoidal functor.

Verifying the axioms is straightforward in this case. See [8] for details.
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Example 22. The H-species S(`∗◦e+) has a basis given by the set of HS-set compo-
sitions, see Definition 10. Since `∗ ◦ e+ is a Hopf monoid by the discussion following
Proposition 6 and S is bistrong, S(`∗◦e+) is a Hopf monoid. The coproduct of anHS-
set composition is the deconcatenation and the product of two HS-set compositions
is the quasishuffle, as defined by the maps (2.7) and (2.8).

Let G be a group and V be a G-module. Then VG := V/{x− gx : g ∈ G, x ∈ V }
is the space of G-coinvariants of V .

Proposition 23 (Aguiar and Mahajan [2]). The functors K,K : Sp→ gVec defined
by

(5.2) Kp =
⊕
n≥0

p[n] and Kp =
⊕
n≥0

p[n]Sn

are such that K is bilax monoidal and K is bistrong monoidal.

The analogous functors SpH → gVec for H-species are as follows.

Definition 24. Let
KH, K̃H : SpH → gVec

be defined, for p ∈ SpH, by

(5.3)

KHp =
⊕
n≥0

p[n̄, n],

K̃Hp =
⊕
n≥0

p[n̄, n]Sn .

Proposition 25. KH is a bilax monoidal functor with natural transformations φ and
ψ:

(5.4) KHp ·KHq
φp,q //

KH(p · q),
ψp,q

oo

defined respectively by the direct sums over s+ t = n and S t T = A of these maps:

(5.5)
1s ⊗ q[cans] : p[s̄, s]⊗ q[t̄, t]→ p[s̄, s]⊗ q[±(s+ 1, s+ t)],

p[stS]⊗ q[stT ] : p[S̄ t S]⊗ q[T̄ t T ]→ p[|S|, |S|]⊗ q[|T |, |T |].

Proof. We give an idea of the proof for φ and the same can be done for ψ using
the dual axioms. For a detailed proof, see [8]. First, we verify that φ is a natural
transformation. Let α : p→ p′ and β : q→ q′ be two morphisms of H-species. Then,
by fixing s and t, we have

(5.6)

p[s̄, s]⊗ q[t̄, t]
1s⊗q[cans]−−−−−−→ p[s̄, s]⊗ q[±(s+ 1, s+ t)]

αs⊗βt

y yαs⊗β[±(s+1,s+t)]

p′[s̄, s]⊗ q′[t̄, t]
1s⊗q′[cans]−−−−−−→ p′[s̄, s]⊗ q′[±(s+ 1, s+ t)].
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The diagram commutes since α and β are natural transformations and cans is an H-
bijection. We check next that φ is associative and that φ and ψ satisfy the braiding
condition. All the unitality conditions follow, since the maps involved are isomor-
phisms.

Associativity. The map φ leads to an unambiguous map

KHp ·KHq ·KHr // KH(p · q · r)

defined, by fixing s, t and u, by

p[s̄, s]⊗ q[t̄, t]⊗ r[ū, u]

1s⊗q[cans]⊗r[cans+t]

��
p[s̄, s]⊗ q[±(s+ 1, s+ t)]⊗ r[±(s+ t+ 1, s+ t+ u)].

Braiding. The following equality must be satisfied, for all H-species p, q, r, s,

(5.7) (φp,r · φq,s) ◦ (1 · β · 1) ◦ (ψp,q · ψr,s) = ψp·r,q·s ◦KH(1 · β · 1) ◦ φp·q,r·s,

which are two maps

(5.8) KH(p · q) ·KH(r · s)→ KH(p · r) ·KH(q · s).
Fix degrees n and m along with decompositions S t T = [n] and AtB = [m] on the
left-hand side of (5.8). Then the left-hand side of (5.7) can be written as

(5.9) (φp,r ·φq,s)◦(1·β ·1)◦(ψp,q ·ψr,s) = p[stS]⊗β(q[stT ]⊗r[can|S|◦stA])◦s[can|T |◦stB].

Let

(5.10) S = {s1, . . . , sp} and A = {a1, . . . , ar}
be ordered. Then

stS : S t S → [|S|, |S|]
is such that stS(si) = i and stS(si) = ī. Also,

A t A
stA // [|A|, |A|]

can|S| // [±(|S|+ 1, |S|+ |A|)],

is such that (can|S| ◦ stA)(ai) = can|S|(i) = i+ |S| and (can|S| ◦ stA)(ai) = can|S|(̄i) =

i+ |S|. A similar description can be made for the sets T and B. The right-hand side
of (5.7) can be written as

(5.11) p[st|S|+|A|]⊗ β(q[st|T |+|B|]⊗ r[st|S|+|A| ◦ cann])⊗ s[st|T |+|B| ◦ cann].

Consider the same sets S and A of (5.10) and the following composites

S t S
st|S|+|A| // [(|S|+ |A|), (|S|+ |A|)],

A t A
cann // A+n t A+n

st|S|+|A| // [(|S|+ |A|), (|S|+ |A|)],
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where A+n = {a+n : a ∈ A}. The domain of the bijection st|S|+|A| is (StS)t(A+nt
A+n) and it preserves the relative order. Since S ⊂ [n] and a+n > n for all a ∈ A, we
have st|S|+|A|(si) = i, st|S|+|A|(si) = ī, (st|S|+|A| ◦ cann)(ai) = st|S|+|A|(ai + n) = i+ |S|
and (st|S|+|A| ◦ cann)(ai) = st|S|+|A|(ai + n) = i+ |S|. A similar description can be
made for the sets T and B. Hence, the two maps of (5.7) are indeed identical and
the braiding condition is satisfied.

�

Proposition 26. K̃H is a bistrong monoidal functor.

Proof. Define φ̃p,q and ψ̃p,q with the following commutative diagrams:

(5.12) KHp ·KHq
φp,q //

����

KH(p · q)

����

KHp ·KHq

����

KH(p · q)
ψp,qoo

����

KHp ·KHq eφp,q

//___ KH(p · q), KHp ·KHq KH(p · q).eψp,q

oo_ _ _

We prove that ψ is well-defined, and the same can be done for φ. For more details,
see [8].

Consider the component of degree n of KH(p · q), along with a decomposition
S t T = [n] with |S| = s and |T | = t. Let τ ∈ Sn and suppose that τ(S) = U and
that τ(T ) = V . Then τ send S̄ to Ū and T̄ to V̄ .

Let τS = τ |S̄tS : S̄ t S → Ū t U and τT = τ |T̄tT : T̄ t T → V̄ t V . These two H-
bijections induce two other H-bijections on [s̄, s] and on [t̄, t]. Let τs : [s̄, s]→ [s̄, s] be
defined by τs = stU ◦τS ◦st−1

S and let τt : [t̄, t]→ [t̄, t] be defined by τt = stV ◦τT ◦st−1
T .

Since ψ is a natural transformation, the following diagram commutes

p[S̄ t S]⊗ q[T̄ t T ]
p[stS ]⊗q[stT ]

//

p[πS ]⊗q[πT ]

��

p[s̄, s]⊗ q[t̄, t]

p[πs]⊗q[πt]

��
p[Ū t U ]⊗ q[V̄ t V ]

p[stU ]⊗q[stV ]
// p[s̄, s]⊗ q[t̄, t]

which means that ψ factors through the space of Bn-coinvariants of (p · q)[n̄, n].

Furthermore, since φ̃ and ψ̃ are invertible, K̃H is a bistrong monoidal functor. �

Since KH is a bilax monoidal functor, KHh is a graded bialgebra for any bimonoid

h in SpH, by Proposition 2. Furthermore, since K̃H is bistrong, K̃Hh′ is a graded
Hopf algebra for any Hopf monoid h′ in SpH, by Proposition 2.

Example 27. Consider KHF , where F is the Hopf monoid of sets of sections of
Example 19(3). Let F = {s1, . . . , sk} be a set of sections on [n]. So each sj is a
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section [n]→ [n̄, n]. Define

F+ := {i : sj(i) = i, 1 ≤ j ≤ k}, F− := {i : sj(i) = ī, 1 ≤ j ≤ k}

and F ∗ = [n]\(F+ ∪ F−).

Now, encode F by a word wF in letters a, b, c, where the i-th letter of wF is

wF (i) =


a if i ∈ F+,

b if i ∈ F−,

c otherwise.

For example, the word associated to F = {(1, 2, 3̄, 4), (1, 2̄, 3̄, 4), (1, 2, 3̄, 4̄), (1, 2̄, 3̄, 4̄)}
is wF = acbc and the one forG = {(1, 2̄)} is wG = ab. The product ofKHF is given by
concatenation and the coproduct by deshuffle of words. Therefore, KHF ∼= K〈a, b, c〉
as bialgebras.

Consider the composites KHS and K̃HS of the functors S : Sp → SpH and

KH, K̃H : SpH → gVec. The composite KHS is a bilax monoidal functor and the

composite K̃HS is a bistrong monoidal functor.

Example 28. The H-species Se has a basis given by sections. Since S is bistrong

and e is a Hopf monoid, Se is a Hopf monoid. Therefore K̃HSe is a graded Hopf
algebra described as follow.

Each element of the basis of K̃HSe is an equivalence class of sections under the
action of Sn. Two sections are in the same class if the number of negative integers
(and hence the number of positive integers) is the same. Such a class [s] can be
represented as a polynomial p(x, y) = xs

+
ys
−

, where s+ and s− are respectively the
number of positive and negative integers in s. Furthermore, the product, coming from
the product of e, is concatenation of polynomials, and the coproduct is deshuffle. As

a Hopf algebra, K̃HSe is isomorphic to K[x, y].

Example 29. Recall from Example 22 that S(`∗◦e+) is theH-species ofHS-set com-
positions. Therefore, KHS(`∗◦e+) is the graded Hopf algebra of HS-set compositions
with quasishuffle product and deconcatenation coproduct.

The relation between the functor KHS and the functor K, i.e., the natural trans-
formation αS in this diagram

(5.13) SpH

αS

��

KH

##GG
GG

GG
GG

G

Sp

S
==zzzzzzzz

K
// gVec,

is given in the next proposition.
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Proposition 30. The map αS : KHS → K, defined, for any p ∈ Sp, by

(5.14) αSp =
⊕
n≥0

s : [n]→[n̄,n]

p[s−1],

where s−1 : s([n]) → [n] is the unique bijection s−1(i) = |i|, i ∈ s([n]), where for
j ∈ [n], |j| = |j̄| = j, is a morphism of bilax monoidal functors.

Proof. We prove that αS is a natural transformation. The map αS assigns a linear
map αSp for each object p ∈ Sp. Furthermore, for each arrow β : p → q in Sp, by
fixing n, we get the following diagram

(5.15)

⊕
p[s([n])]

L
p[s−1]−−−−−→ p[n]L

βs([n])

y yβn⊕
q[s([n])] −−−−−→L

q[s−1]
q[n],

where the direct sums are over sections s : [n]→ [n̄, n]. Since β is a natural transfor-
mation and s−1 : s([n])→ [n] is a bijection, it commutes.

For the proof that αS is a morphism of bilax monoidal functors, see [8]. �

The natural transformation αS factors through the space of Sn-coinvariants of
Sp[n̄, n]: ⊕

p[s([n])]
αSp //

����

p[n]

����(⊕
p[s([n])]

)
Sn αSp

//___ p[n]Sn .

Therefore, α̃S : K̃HS → K is the map induced by αS on the space of Sn-coinvariants.

Since αS is a morphism of bilax monoidal functor and α̃S is a morphism of bistrong
monoidal functor, for any bimonoid h in Sp, αSh is a morphism of graded bialgebras

and for any Hopf monoid h′ in Sp, α̃S
h′

is a morphism of graded Hopf algebras, by
Proposition 2.

Example 31. Consider the linear order species `∗. On the one hand KHS`∗ is
isomorphic to the graded bialgebra of signed permutations KB, and on the other
hand K`∗ is isomorphic to the graded bialgebra of Malvenuto and Reutenauer KS
(see [2]). See [1] for details on these Hopf algebras.

In this case, αS`∗ : KB → KS is the graded bialgebra morphism forgetting the signs
of a signed permutation. It is defined by αS(π) = |π|, where, if π = π1π2 . . . πn is a
signed permutation, then |π| = |π1||π2| . . . |πn|.
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6. Hopf algebra of set compositions

As a final word, we study the species `∗ ◦ e+ under the composite of functors

Sp
S−→ SpH

gKH−→ gVec,

and we give the Hopf algebra isomorphism K̃HS(`∗ ◦ e+) ' DQSym. Let DQΛ =

K̃HS(`∗ ◦ e+). Explicitly,

(6.1) DQΛ :=
⊕
n≥0

( ⊕
s:[n]→[n̄,n]

⊕
F |=s([n])

e+(F )
)
Sn
.

Recall from Example 22 that S(`∗ ◦ e+) has a basis given by HS-set compositions.

Definition 32. A bicomposition a =
(
α1
β1
· · · αkβk

)
of n 6= 0 is an ordered list of 1× 2

vectors
(
αi
βi

)
6=
(

0
0

)
, called biparts, such that

∑k
i=1(αi + βi) = n. If n = 0, there is

one (empty) bicomposition, denoted by 0 or (). The length of a bicomposition is the
number of biparts, denoted by `(a). Let a |= n denote a bicomposition of n.

For example, the bicompositions of n = 2 are(
2
0

)
,
(

1
0

1
0

)
,
(

1
1

)
,
(

1
0

0
1

)
,
(

0
1

1
0

)
,
(

0
1

0
1

)
,
(

0
2

)
.

Let a =
(
α1
β1
· · · αkβk

)
and b =

(
α′1
β′1
· · · α

′
l

β′l

)
be two bicompositions. The concate-

nation a.b, the addition a + b and the quasishuffle a b are given respectively
by

a.b =
(
α1

β1
· · ·αk

βk

α′1
β′1
· · ·α

′
l

β′l

)
,

a + b =
(
α1

β1
· · ·αk + α′1

βk + β′1
· · ·α

′
l

β′l

)
,

a b =


a if b = 0,

b if a = 0,⋃
a1.a2=a

⋃
c∈a2 b2

{a1.b1.c, (a1 + b1).c} otherwise,

where b = b1.b2 is the unique factorization of b such that `(b1) = 1. In other words
c ∈ a b if c can be obtained by shuffling the columns of a and b and two adjacent

columns coming from different bicompositions can be added using
(
αi
βi

)
+
(
α′j
β′j

)
=(

αi+α
′
j

βi+β
′
j

)
. For example,(

2
0

) (
1
0

0
1

)
=
{(

2
0

1
0

0
1

)
,
(

1
0

2
0

0
1

)
,
(

1
0

0
1

2
0

)
,
(

3
0

0
1

)
,
(

1
0

2
1

)}
.
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Definition 33. DQSym is the Hopf algebra of diagonally quasisymmetric functions
linearly spanned by

{Ma : a bicomposition},

where Ma are the bimonomial functions. The product and the coproduct are given
respectively by quasishuffle and deconcatenation of bicompositions.

See [3] for more detailed information about this Hopf algebra.

Proposition 34. There is a bijection between basis elements of DQΛ and bicompo-
sitions.

Proof. Basis elements of DQΛ are classes of HS-set compositions. For an HS-set
composition F , the number of positive integers in the i-th part will be denoted by
|Fi|+ and the number of negative integers in the i-th part will denoted by |Fi|−. Let
F and G be two HS-set compositions. Suppose that for all i, |Fi|+ = |Gi|+ and
|Fi|− = |Gi|−. In particular |Fi| = |Gi| and `(F ) = `(G). Build a permutation π by
setting π(F+

i ) = G+
i and π(F−i ) = G−i for each i, 1 ≤ i ≤ `(F ). Therefore π(F ) = G

and F and G are in the same class. Form a bicomposition a =
(
α1
β1
· · · αkβk

)
from an

HS-set composition F of n integers, by setting αi and βi to be respectively |Fi|+ and
|Fi|−. It is a bicomposition as each vector is non-zero and the sum of its integers is
n.

Conversely, form an HS-set composition F from a bicomposition a =
(
α1
β1
· · · αkβk

)
by building each part of F , where the i-th part is given by the positive integers:

α1 + β1 + · · ·+ αi−1 + βi−1 + 1, . . . , α1 + β1 + · · ·+ αi−1 + βi−1 + αi,

and the negative integers:

α1 + β1 + · · ·+ αi + 1, . . . , α1 + β1 + · · ·+ αi + βi.

This HS-set composition is a representative of a class of DQΛ with αi negative inte-
gers and βi positive integers in the i-th part, 1 ≤ i ≤ k. Hence for each bicomposition,
there is a unique class of DQΛ associated to it. �

By Example 22, the product of S(`∗ ◦ e+) is the quasishuffle and the coproduct

is deconcatenation of HS-set compositions. Since K̃H is bistrong by Proposition 26,
the product and coproduct of DQΛ is given by quasishuffle and by deconcatenation
of bicompositions. For example, using the product and coproduct of S(`∗ ◦ e+), the

natural transformations (5.5) of the bistrong monoidal functor K̃H and the bijection
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and representatives described in Proposition 34, we have

µ([1̄2̄], [can(1̄|2)]) = µ([1̄2̄], [3̄|4]) = [1̄2̄|3̄|4] + [3̄|1̄2̄|4] + [3̄|4|1̄2̄] + [1̄2̄3̄|4] + [3̄|1̄2̄4]

= [1̄2̄|3̄|4] + [1̄|2̄3̄|4] + [1̄|2|3̄4̄] + [1̄2̄3̄|4] + [1̄|2̄3̄4]

=
(

0
2

0
1

1
0

)
+
(

0
1

0
2

1
0

)
+
(

0
1

1
0

0
2

)
+
(

0
3

1
0

)
+
(

0
1

1
2

)
=
(

0
2

) (
0
1
1
0

)
,

∆([1̄|2̄3]) = [1̄|2̄3]⊗ [∅] + [1̄]⊗ [st(2̄3)] + [∅]⊗ [1̄|2̄3]

= [1̄|2̄3]⊗ [∅] + [1̄]⊗ [1̄2] + [∅]⊗ [1̄|2̄3]

=

(
0 1

1 1

)
⊗ () +

(
0

1

)
⊗
(

1

1

)
+ ()⊗

(
0 1

1 1

)
= ∆(

(
1 1

0 1

)
).

Theorem 35.

(6.2) DQΛ ' DQSym as Hopf algebras.

Proof. The isomorphism sending a bicomposition a =
(
α1
β1

α2
β2
· · · αkβk

)
to the bi-

monomial basis Ma is one of bialgebras as it preserves product and coproduct. Since

S(`∗◦e+) is a Hopf monoid and by Proposition 26, K̃H is a bistrong monoidal functor,
the isomorphism is one of Hopf algebras. �

Example 36. Since K̃HS(`∗ ◦ e+) ∼= DQSym and K(`∗ ◦ e+) ∼= QSym, the Hopf
algebra of quasisymmetric functions (see [2] for the isomorphism and [11] for QSym),

the map α̃S `∗◦e+ is the morphism of graded Hopf algebras:

DQSym→ QSym

M(α1

β1

α2

β2
···
αk
βk

) 7→M(α1+β1,α2+β2,...,αk+βk).
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