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Coxeter groups

Finite Coxeter groups ←→ Finite reflection groups (i.e., groups

generated by orthogonal reflections in hyperplanes)
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Coxeter groups

The dodecahedron as a reflection group
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Coxeter groups

The pair (W, S) is a Coxeter group (Coxeter system) if W is a

group with presentation

Generators: S, such that

s2 = e, for all s ∈ S,

Relations: for s, s′ ∈ S

s s′ s s′ s . . .︸ ︷︷ ︸
m(s,s′)

= s′ s s′ s s′ . . .︸ ︷︷ ︸
m(s,s′)
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Coxeter groups

Examples

1. The symmetric group Sn.
Coxeter generators = Adjacent transpositions (i, i + 1)

2. Affine reflection groups

The Ã2, C̃2 and G̃2 tesselations of the affine plane.
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Coxeter groups

∃ classifications

finite Coxeter groups: type An, Bn, . . . etc.

affine Coxeter groups: type Ãn, B̃n, . . . etc.

hyperbolic Coxeter groups

Definition: (W, S) is crystallographic if m(s, t) ∈ {2,3,4,6,∞}

for all distinct generators s and t.

E.g., finite and affine Weyl groups are crystallographic.
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Coxeter groups

The finite irreducible Coxeter systems

Name Diagram Order |T | Exponents

An

(n ≥ 1)
(n + 1)!

(n + 1

2

)
1, 2, . . . , n

Bn

(n ≥ 2)

4
2nn! n2 1, 3, . . . , 2n− 1

Dn

(n ≥ 4)
2n−1n! n2 − n 1, 3, . . . , 2n− 3, n− 1

0



Coxeter groups

E6 27 34 5 36 1, 4, 5, 7, 8, 11

E7 210 34 57 63 1, 5, 7, 9, 11, 13, 17

E8 214 35 52 7 120 1, 7, 11, 13, 17, 19, 23, 29

F4
4 1152 24 1, 5, 7, 11

G2
6 12 6 1, 5

H3
5 120 15 1, 5, 9

H4
5 14400 60 1, 11, 19, 29

I2(m)
(m ≥ 3)

m 2m m 1, m− 1
1





Bruhat order

Bruhat order: For u, w ∈W :

u ≤ w
def
⇐⇒ for ∀ reduced expression w = s1s2 . . . sq

∃ a reduced subexpression u = si1si2 . . . sik
,

1 ≤ i1 < . . . < ik ≤ q.

a b

ab ba

aba bab

abab = baba

e

Bruhat order of B2
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Bruhat order

3214

3124

2341

2134

2413
3142

34214312

324124314213
4132

4123

2314

3412

1432

13241243

2143

13421423

1234

4231

4321

Bruhat order of S4.
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Bruhat order

Bruhat order of B3.
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Bruhat order

Some global properties of Bruhat order of a finite W , as a poset:

** Bottom element e, top element w0

** Graded (all maximal chains of same size)

** Poset rank = Group-theoretic length ℓ( · )

** Rank-generating function

∑

w∈W

qℓ(w) =
∏

1≤i≤d

(1 + q + q2 + · · · qei)

** Anti-automorphic under map w 7→ ww0
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Bruhat order

Quotients W J: Minimal coset representatives modulo parabolic subgroups
WJ =< J >, J ⊆ S, with induced order.

The Bruhat poset E6 modulo D5.
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Bruhat order

Global poset properties of Bruhat order of finite quotients W J:

** Graded

** Bottom element e, top element wJ
0

** Poset rank = Group-theoretic length ℓ( · )

** Rank-generating function
∑

w∈W J qℓ(w) =

∑
w∈W qℓ(w)

∑
w∈WJ

qℓ(w)

** Anti-automorphic under map w 7→ wJ,0ww0
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Bruhat order

A special case of quotient W J: Young’s lattice

∅

Lower intervals [∅, λ]: Ferrers’ diagrams contained

in shape λ, and ordered by containment

# maximal chains = # standard Young tableaux of shape λ
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Bruhat order

General Problem:

Study the combinatorial structure of intervals

[u, w]J
def
= {z : u ≤ z ≤ w} ∩W J
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Bruhat order

TOPIC 1: f-vectors of Bruhat intervals

– Joint work with T.Ekedahl

If asking for global interval structure is too hard, study the

enumerative “shadow”.
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Bruhat interval f-vectors

7

1

3

5

7

1

4

fw-vector of Bruhat interval [e, w]
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Bruhat interval f-vectors

Shape (or f-vector) of lower interval [e, w]J:

fw,J = {fw,J
0 , f

w,J
1 , . . . , f

w,J
ℓ(w)
},

f
w,J
i

def
= number of elements x ≤ w, x ∈W J, of length i.

Special case of full group:

W = W ∅

fw def
= fw,∅
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Bruhat interval f-vectors

Another example of fw-vector of Bruhat interval [e, w]

Here w ∈ C4, ℓ(w) = 13:

fw = (1,4,9,16,24,32,39,44,46,42,31,17,6,1)

0



Bruhat interval f-vectors

Another example of fw-vector of Bruhat interval [e, w]

Here w ∈ C4, ℓ(w) = 13:

fw = (1,4,9,16,24,32,39 | 44,46,42,31,17,6,1)

↑

MID
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Bruhat interval f-vectors

∃ analogy

Intervals [e, w] in Bruhat order ↔ Face lattices of convex polytopes

Weyl group ↔ rational polytope
Schubert variety ↔ toric variety

Kazhdan-Lusztig polynomial ↔ g-polynomial

Also: Both determine regular CW decompositions of a sphere
Intersection cohomology lurks in the background

Remark:

For all polytopes: ∃ combinatorial intersection cohomology the-
ory satisfying hard Lefschetz (recent work of K. Karu and others)

Question: ∃ ??? combinatorial intersection cohomology theory
for all Coxeter groups (”virtual Schubert varieties”)?
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Bruhat interval f-vectors

Note: Analogy with f-vector of convex polytope Compare: Known

for f-vector of simplicial (d + 1)-dimensional polytope:

(1) fi ≤ fj if i < j ≤ d− i. In particular,

• f0 ≤ f1 ≤ · · · ≤ fd/2 and fi ≤ fd−i

(2) f3d/4 ≥ f(3d/4)−1 ≥ · · · ≥ fd

(3) The bounds d/2 and 3d/4 are best possible.

Conjecture: (2) is true for all polytopes.
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Bruhat interval f-vectors

Does it make sense to ask such questions for fw-vectors of

Bruhat intervals [e, w]?

Perhaps . . . — consider this:

THM (Carrell-Peterson 1994)

The Schubert variety Xw is rationally smooth

⇐⇒ fw
i = fw

ℓ(w)−i
, ∀i

THM (Brion 2000)

∑

0≤i≤k

fw
i ≤

∑

0≤i≤k

fw
ℓ(w)−i

0



Bruhat interval f-vectors

Theorem 1. The fw,J-vector fw,J = {f0, f1, . . . , fℓ(w)} of an in-

terval [e, w]J in a crystallographic Coxeter group satisfies:

fi ≤ fj , if 0 ≤ i < j ≤ ℓ(w)− i.

Equivalently,

• fi ≤ fℓ(w)−i, for all i < ℓ(w)/2

• f0 ≤ f1 ≤ · · · ≤ f⌈ℓ(w)/2⌉
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Bruhat interval f-vectors

Gives new inequalities already for the special case of Young’s

lattice:

∅

Lower intervals [∅, λ]: Ferrers’ diagrams contained

in shape λ, and ordered by containment
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Bruhat interval f-vectors

Recall definition: (W, S) is crystallographic if m(s, s′) ∈ {2,3,4,6,∞} for all

distinct generators s and s′.

Fact: Crystallographic ⇔ appears as Weyl group of a Kac-

Moody algebra

Fact: Crystallographic ⇒ ∃ Schubert varieties
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Bruhat interval f-vectors

Let (W, S) be crystallographic, J ⊆ S.

For each w ∈W J there exists a complex projective variety (called

Schubert variety) Xw containing closed subvarieties Xu for all

u ∈ [e, w]J , which are disjoint unions

Xu =
⊎

z
Xz,

where z ∈ [e, u]J.

Furthermore, Xu is a subvariety of Xw isomorphic to affine space

Aℓ(u).
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Bruhat interval f-vectors

Idea of proof of Thm:

* Use ℓ-adic étale cohomology H∗(X, Qℓ) and intersection coho-

mology IH∗(X, Qℓ).

* There is a H∗(X, Qℓ)-module map ϕ : H∗(X, Qℓ)→ IH∗(X, Qℓ)

* For Schubert varieties X = Xw this map ϕ is injective.

* fw
i = dimQℓ

H2i(Xw, Qℓ)
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Bruhat interval f-vectors

0



Bruhat interval f-vectors

Idea of proof of Thm (cont’d)

Let X = Xw. The map ϕ is an H∗(X, Qℓ)-module map

⇒ for i ≤ j ≤ m− i it commutes with multiplication by c1(L)
j−i

⇒ commutative diagram

H2i(X, Qℓ) −→ IH2i(X, Qℓ)y∩c1(L)
j−i

y∩c1(L)
j−i

H2j(X, Qℓ) −→ IH2j(X, Qℓ).

The horisontal maps ϕ are injective, and the right vertical map

is an injection by hard Lefschetz.
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Bruhat interval f-vectors

Idea of proof of Thm (cont’d)

For i ≤ j ≤ m− i, we have a commutative diagram

H2i(X, Qℓ) −→ IH2i(X, Qℓ)y∩c1(L)
j−i

y∩c1(L)
j−i

H2j(X, Qℓ) −→ IH2j(X, Qℓ).

The horisontal maps ϕ are injective, and the right vertical map

is an injection by hard Lefschetz. Hence the left vertical map is

injective, giving

fw
i = dimQℓ

H2i(X, Qℓ) ≤ dimQℓ
H2j(X, Qℓ) = fw

j .
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Bruhat interval f-vectors
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4

Theorem 2. Let (W, S) be crystallographic, J ⊆ S. Fix w ∈ W J

and i such that 0 ≤ i < ℓ(w)/2. Then, in [e, w]J there exist f
w,J
i

pairwise disjoint chains

ui < ui+1 < · · · < uℓ(w)−i

such that ℓ(uj) = j.
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Bruhat interval f-vectors

References:

Stanley (1980) did the J = S, w = w0 case for finite groups
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Interpretation of Theorem 2 for Young’s lattice: ∅

Given a partition λ of n and k ≤ n/2. Suppose that there are

b = b(λ, k) partitions of k below λ. Then there exist b standard

Young tableaux of shape λ, T1, . . . , T b, such that

shape(T i
p) 6= shape(T j

p)

for all i 6= j and all p = k, k + 1, . . . , n− k.

Here Tp is the subtableau gotten by erasing the boxes with num-

bers > p.
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Bruhat interval f-vectors

Question: what about the case of equality in some of the rela-

tions fi ≤ fℓ(w)−i?

From now on: Only the J = ∅ case.

Then W J = W , so we drop ”J” from the notation.
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Bruhat interval f-vectors

Fix w ∈W , and let m := ⌊(ℓ(w)− 1)/2⌋. Let

Pe,w(q) = 1 + β1q + · · ·+ βmqm

be the Kazhdan-Lusztig polynomial of the interval [e, w].

Known:

* βi ≥ 0 if W is crystallographic,

* Pe,w(q) = 1 ⇐⇒ Xw is rationally smooth

* Xw is rationally smooth ⇐⇒ fw
i = fw

ℓ(w)−i
, ∀i

(Carrell-Peterson ’94)

* For simply-laced W : smooth⇔ rationally smooth
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Bruhat interval f-vectors

Theorem 3. Suppose that W is crystallographic, w ∈ W and

1 ≤ k ≤ m. Then the following conditions are equivalent:

(a) fw
i = fw

ℓ(w)−i
, for i = 1, . . . , k,

(b) βi = 0, for i = 1, . . . , k.

Remark: The equivalence of (a) and (b) in the case k = m

gives the Carrell-Peterson criterion for rational smoothness of

the Schubert variety Xw.
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Bruhat interval f-vectors

Theorem 4. Suppose that W is crystallographic, w ∈ W and

1 ≤ k ≤ m. Then the following conditions are equivalent:

(a) fw
i = fw

ℓ(w)−i
, for i = 1, . . . , k,

(b) βi = 0, for i = 1, . . . , k.

Furthermore, if k < m then (a) and (b) imply

(c) βk+1 = fw
ℓ(w)−k−1

− fw
k+1.
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Bruhat interval f-vectors

Idea of proof: Based on

* Monotonicity theorem for K-L polynomials

(extending Braden-MacPherson ’01).

* Polynomial Fw(q) =
∑

x≤w qℓ(x)Px,w(q) is palindromic

(Kazhdan-Lusztig ’79).
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Bruhat interval f-vectors

More can be said about the increasing inequalities

f0 ≤ f1 ≤ · · · ≤ f⌈ℓ(w)/2⌉,

namely, the sequence cannot grow too fast.
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Bruhat interval f-vectors

Recall:

For n, k ≥ 1 there is a unique expansion

n =
(ak

k

)
+

(ak−1

k − 1

)
+ · · ·+

(ai

i

)
,

with ak > ak−1 > · · · > ai ≥ i ≥ 1. Let

∂k(n) =
(ak − 1

k − 1

)
+

(ak−1 − 1

k − 2

)
+ · · ·+

(ai − 1

i− 1

)
,

∂k(0) = 0.
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Bruhat interval f-vectors

Theorem (Macaulay-Stanley)

For an integer sequence (1, m1, m2, . . .) the following are equiva-

lent (and this defines an M-sequence):

(1) ∂k(mk) ≤ mk−1, for all k ≥ 1,

(2) some order ideal of monomials contains exactly mk monomi-

als of degree k,

(3) dim(Ak) = mk for some graded commutative algebra

A = ⊕k≥0Ak which is generated by A1.
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Bruhat interval f-vectors

More can be said about the increasing inequalities

f0 ≤ f1 ≤ · · · ≤ f⌈ℓ(w)/2⌉,

namely, the sequence cannot grow too fast.

Theorem 5. In the case of finite Weyl groups every f-vector

fw = {f0, f1, . . . , fℓ(w)} is an M-sequence.

0



Bruhat interval f-vectors

Idea of proof of Thm: Based on

* The f-vector fw = {f0, f1, . . . , fℓ(w)} is coeff-sequence of Poincaré

polynomial of H∗(Xw), the cohomology algebra of the Schubert

variety Xw (over C).

* So, we only need that H∗(Xw) is generated in degree one

(dim = 2).

* For w = w0 this is classical: H∗(Xw0)
∼= coinvariant algebra of

W .

* For w 6= w0 there is algebra surjection H∗(Xw0)→ H∗(Xw)

0



Bruhat interval f-vectors

Remarks:

** M-sequence property fails for the affine group C̃2:∑
qℓ(w) = 1 + 3q + 5q2 + 8q3 + · · ·

Consequence: H∗(Xw) not necessarily generated in degree one

for affine Schubert varieties Xw.

** M-sequence property fails for general intervals in finite B4:∑
w≤x≤w0

qℓ(x)−ℓ(w) = 1 + 4q + 11q2 + · · ·

for certain w ∈ B4.
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Bruhat interval f-vectors

The increasing inequalities f0 ≤ f1 ≤ · · · ≤ f⌈ℓ(w)/2⌉ have decreas-

ing counterparts at the upper end of the Bruhat interval

— but the information we are able to give about this is much

weaker.
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Bruhat interval f-vectors

Theorem 6. For all k ≥ 1 there exists a number Nk, such that

for every finite Coxeter group (W, S) and every w ∈W such that

ℓ(w) ≥ Nk we have that

fw
ℓ(w)−k ≥ fw

ℓ(w)−k+1 ≥ · · · ≥ fw
ℓ(w).
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Bruhat interval f-vectors

Questions

1. Do fw-vectors satisfy more inequalities?

(Noticed by D. Stanton: unimodality fails on some intervals in

Young’s lattice. Unimodality might be true for full intervals, i.e.

J = ∅.)
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Bruhat interval f-vectors

Questions

1. Does fw-vector satisfy more inequalities?

2. Are the theorems true for general (non-crystallographic) Cox-

eter groups?
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Bruhat interval f-vectors

Questions

1. Does fw-vector satisfy more inequalities?

2. Are the theorems true for general (non-crystallographic) Cox-

eter groups?

3. Does there exist some α < 1 such that

fw
⌊α·ℓ(w)⌋ ≥ fw

⌊α·ℓ(w)⌋+1 ≥ · · · ≥ fw
ℓ(w).

Will α = 3
4 do?
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Bruhat interval f-vectors

Questions

1. Does fw-vector satisfy more inequalities?

2. Are Theorems 1–2 true for general (non-crystallographic)

Coxeter groups?

3. Does there exist some α < 1 such that

fw
⌊α·ℓ(w)⌋ ≥ fw

⌊α·ℓ(w)⌋+1 ≥ · · · ≥ fw
ℓ(w).

Will α = 3
4 do?

4. What can be said about the shape of general intervals [u, w]J?

(I.e., for u 6= e)
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Bruhat interval f-vectors
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Def: An upper chain decomposition is a partition of [e, w]J into

pairwise disjoint saturated chains

ui < ui+1 < · · · < uk

such that ℓ(j) = j for all j = i, . . . , k, and k ≥ ℓ(w)− i.
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Bruhat interval f-vectors

Questions

5. Do the intervals [e, w]J admit upper chain decompositions?

Note:

1. This would imply Thms 6 and 7.

2. Specializes to symmetric chain decomposition, if fw-vector is

symmetric.

3. Symmetric chain decomposition question still open for inter-

vals [∅, λ] in Young’s lattice, λ of rectangular shape.
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Shape of Bruhat intervals
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THE END
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