On the shape of Bruhat intervals

\author{

* * * * * *

}

Anders Björner
Institut Mittag-Leffler

$$
* * * * * *
$$

Séminaire Lotharingien de Combinatoire 61
Curia, September, 2008

Finite Coxeter groups \longleftrightarrow Finite reflection groups (i.e., groups generated by orthogonal reflections in hyperplanes)

The dodecahedron as a reflection group

The pair (W, S) is a Coxeter group (Coxeter system) if W is a group with presentation

Generators: S, such that

$$
s^{2}=e, \quad \text { for all } s \in S
$$

Relations: for $s, s^{\prime} \in S$

$$
\underbrace{s s^{\prime} s s^{\prime} s \ldots}_{m\left(s, s^{\prime}\right)}=\underbrace{s^{\prime} s s^{\prime} s s^{\prime} \ldots}_{m\left(s, s^{\prime}\right)}
$$

Coxeter groups

Examples

1. The symmetric group S_{n}.

Coxeter generators $=$ Adjacent transpositions $(i, i+1)$
2. Affine reflection groups

The $\widetilde{A}_{2}, \widetilde{C}_{2}$ and \widetilde{G}_{2} tesselations of the affine plane.

\exists Classifications

finite Coxeter groups: type A_{n}, B_{n}, \ldots etc.
affine Coxeter groups: type $\widetilde{A}_{n}, \widetilde{B}_{n}, \ldots$ etc.
hyperbolic Coxeter groups

Definition: (W, S) is crystallographic if $m(s, t) \in\{2,3,4,6, \infty\}$ for all distinct generators s and t.
E.g., finite and affine Weyl groups are crystallographic.

The finite irreducible Coxeter systems

Coxeter groups

E_{6}		$2^{7} 3^{4} 5$	36	$1,4,5,7,8,11$
E_{7}	$\ldots \ldots$	$2^{10} 3^{4} 57$	63	$1,5,7,9,11,13,17$
E_{8}		$2^{14} 3^{5} 5^{2} 7$	120	$1,7,11,13,17,19,23,29$
F_{4}	$\bigcirc 4_{0}$	1152	24	$1,5,7,11$
G_{2}	6	12	6	1, 5
H_{3}	5	120	15	1, 5, 9
H_{4}	$5 \ldots$	14400	60	1, 11, 19, 29
$\begin{gathered} I_{2}(m) \\ (m \geq 3) \end{gathered}$	$m_{\text {。 }}$	$12 m$	m	1, m-1

Bruhat order: For $u, w \in W$:

$$
\begin{aligned}
u \leq w \stackrel{\text { def }}{\Longleftrightarrow} & \text { for } \forall \text { reduced expression } w=s_{1} s_{2} \ldots s_{q} \\
& \exists \text { a reduced subexpression } u=s_{i_{1}} s_{i_{2}} \ldots s_{i_{k}}, \\
& 1 \leq i_{1}<\ldots<i_{k} \leq q .
\end{aligned}
$$

$a b a b=b a b a$

Bruhat order of B_{2}

Bruhat order of S_{4}.

Bruhat order of B_{3}.

Some global properties of Bruhat order of a finite W, as a poset:
** Bottom element e, top element w_{0}
** Graded (all maximal chains of same size)
** Poset rank $=$ Group-theoretic length $\ell(\cdot)$
** Rank-generating function

$$
\sum_{w \in W} q^{\ell(w)}=\prod_{1 \leq i \leq d}\left(1+q+q^{2}+\cdots q^{e_{i}}\right)
$$

** Anti-automorphic under map $w \mapsto w_{0}$

Quotients W^{J} : Minimal coset representatives modulo parabolic subgroups $W_{J}=\langle J\rangle, J \subseteq S$, with induced order.

The Bruhat poset E_{6} modulo D_{5}.

Bruhat order

Global poset properties of Bruhat order of finite quotients W^{J} :
** Graded
** Bottom element e, top element w_{0}^{J}
** Poset rank $=$ Group-theoretic length $\ell(\cdot)$
** Rank-generating function $\sum_{w \in W^{J}} q^{\ell(w)}=\frac{\sum_{w \in W^{\prime}} q^{\ell(w)}}{\sum_{w \in W_{J}} q^{\ell(w)}}$
** Anti-automorphic under map $w \mapsto w_{J, 0} w w_{0}$

Bruhat order

A special case of quotient W^{J} : Young's lattice

Lower intervals $[\emptyset, \lambda]$: Ferrers' diagrams contained in shape λ, and ordered by containment
\# maximal chains $=\#$ standard Young tableaux of shape λ

General Problem:

Study the combinatorial structure of intervals

$$
[u, w]^{J} \stackrel{\text { def }}{=}\{z: u \leq z \leq w\} \cap W^{J}
$$

TOPIC 1: f-vectors of Bruhat intervals
 - Joint work with T.Ekedahl

If asking for global interval structure is too hard, study the enumerative "shadow".

f^{w}-vector of Bruhat interval $[e, w]$

Shape (or f-vector) of lower interval $[e, w]^{J}$:

$$
f^{w, J}=\left\{f_{0}^{w, J}, f_{1}^{w, J}, \ldots, f_{\ell(w)}^{w, J}\right\}
$$

$f_{i}^{w, J} \stackrel{\text { def }}{=}$ number of elements $x \leq w, x \in W^{J}$, of length i.

Special case of full group:
$W=W^{\emptyset}$
$f^{w} \stackrel{\text { def }}{=} f^{w, \emptyset}$

Another example of f^{w}-vector of Bruhat interval $[e, w]$ Here $w \in C_{4}, \ell(w)=13$:

$$
f^{w}=(1,4,9,16,24,32,39,44,46,42,31,17,6,1)
$$

Another example of f^{w}-vector of Bruhat interval $[e, w]$ Here $w \in C_{4}, \ell(w)=13$:

$$
\begin{gathered}
f^{w}=(1,4,9,16,24,32,39 \mid 44,46,42,31,17,6,1) \\
\uparrow \\
\text { MID }
\end{gathered}
$$

Bruhat interval f-vectors
\exists analogy

| Intervals $[e, w]$ in Bruhat order | \leftrightarrow | Face lattices of convex polytopes |
| :---: | :---: | :---: | :---: |
| Weyl group | \leftrightarrow | rational polytope |
| Schubert variety | \leftrightarrow | toric variety |
| Kazhdan-Lusztig polynomial | \leftrightarrow | g-polynomial |

Also: Both determine regular CW decompositions of a sphere Intersection cohomology lurks in the background

Remark:
For all polytopes: \exists combinatorial intersection cohomology theory satisfying hard Lefschetz (recent work of K. Karu and others)

Question: \exists ??? combinatorial intersection cohomology theory for all Coxeter groups ("virtual Schubert varieties")?

Note: Analogy with f-vector of convex polytope Compare: Known for f-vector of simplicial $(d+1)$-dimensional polytope:
(1) $f_{i} \leq f_{j}$ if $i<j \leq d-i$. In particular,

- $f_{0} \leq f_{1} \leq \cdots \leq f_{d / 2} \quad$ and $\quad f_{i} \leq f_{d-i}$
(2) $f_{3 d / 4} \geq f_{(3 d / 4)-1} \geq \cdots \geq f_{d}$
(3) The bounds $d / 2$ and $3 d / 4$ are best possible.

Conjecture: (2) is true for all polytopes.

Does it make sense to ask such questions for f^{w}-vectors of Bruhat intervals $[e, w]$?

Perhaps ... - consider this:

THM (Carrell-Peterson 1994)
The Schubert variety X_{w} is rationally smooth

$$
\Longleftrightarrow f_{i}^{w}=f_{\ell(w)-i}^{w}, \forall i
$$

THM (Brion 2000)

$$
\sum_{0 \leq i \leq k} f_{i}^{w} \leq \sum_{0 \leq i \leq k} f_{\ell(w)-i}^{w}
$$

Theorem 1. The $f^{w, J}$-vector $f^{w, J}=\left\{f_{0}, f_{1}, \ldots, f_{\ell(w)}\right\}$ of an interval $[e, w]^{J}$ in a crystallographic Coxeter group satisfies:

$$
f_{i} \leq f_{j} \quad, \quad \text { if } 0 \leq i<j \leq \ell(w)-i
$$

Equivalently,

- $f_{i} \leq f_{\ell(w)-i}, \quad$ for all $i<\ell(w) / 2$
- $f_{0} \leq f_{1} \leq \cdots \leq f_{\lceil\ell(w) / 2\rceil}$

Bruhat interval f-vectors

Gives new inequalities already for the special case of Young's lattice:

Lower intervals $[\emptyset, \lambda]$: Ferrers' diagrams contained in shape λ, and ordered by containment

Recall definition: (W, S) is crystallographic if $m\left(s, s^{\prime}\right) \in\{2,3,4,6, \infty\}$ for all distinct generators s and s^{\prime}.

Fact: Crystallographic \Leftrightarrow appears as Weyl group of a KacMoody algebra

Fact: Crystallographic $\Rightarrow \exists$ Schubert varieties

Let (W, S) be crystallographic, $J \subseteq S$.

For each $w \in W^{J}$ there exists a complex projective variety (called Schubert variety) \bar{X}_{w} containing closed subvarieties \bar{X}_{u} for all $u \in[e, w]^{J}$, which are disjoint unions

$$
\bar{X}_{u}=\biguplus_{z} X_{z}
$$

where $z \in[e, u]^{J}$.
Furthermore, X_{u} is a subvariety of \bar{X}_{w} isomorphic to affine space $\mathrm{A}^{\ell(u)}$.

Idea of proof of Thm:

* Use ℓ-adic étale cohomology $H^{*}\left(X, \mathbb{Q}_{\ell}\right)$ and intersection cohomology $I H^{*}\left(X, \mathbb{Q}_{\ell}\right)$.
* There is a $H^{*}\left(X, \mathbb{Q}_{\ell}\right)$-module map $\varphi: H^{*}\left(X, \mathbb{Q}_{\ell}\right) \rightarrow I H^{*}\left(X, \mathbb{Q}_{\ell}\right)$
* For Schubert varieties $X=X_{w}$ this map φ is injective.
$* f_{i}^{w}=\operatorname{dim}_{\mathbb{Q}_{\ell}} H^{2 i}\left(X_{w}, \mathbb{Q}_{\ell}\right)$

Bruhat interval f-vectors

Idea of proof of Thm (cont'd)

Let $X=X_{w}$. The map φ is an $H^{*}\left(X, \mathbb{Q}_{\ell}\right)$-module map
\Rightarrow for $i \leq j \leq m-i$ it commutes with multiplication by $c_{1}(\mathcal{L})^{j-i}$
\Rightarrow commutative diagram

$$
\begin{gathered}
H^{2 i}\left(X, \mathbb{Q}_{\ell}\right) \longrightarrow \\
\mid \cap H^{2 i}\left(X, \mathbb{Q}_{\ell}\right) \\
H^{2 j}\left(X, \mathbb{Q}_{\ell}\right) \longrightarrow I H^{2 j}\left(X, \mathbb{Q}_{\ell}\right) .
\end{gathered}
$$

The horisontal maps φ are injective, and the right vertical map is an injection by hard Lefschetz.

Bruhat interval f-vectors

Idea of proof of Thm (cont'd)

For $i \leq j \leq m-i$, we have a commutative diagram

$$
\begin{gathered}
H^{2 i}\left(X, \mathbb{Q}_{\ell}\right) \longrightarrow \\
\mid \cap H^{2 i}\left(X, \mathbb{Q}_{\ell}\right) \\
H^{2 j}\left(X, \mathbb{Q}_{\ell}\right) \longrightarrow \\
H^{j-i}
\end{gathered}
$$

The horisontal maps φ are injective, and the right vertical map is an injection by hard Lefschetz. Hence the left vertical map is injective, giving

$$
f_{i}^{w}=\operatorname{dim}_{\mathbb{Q}_{\ell}} H^{2 i}\left(X, \mathbb{Q}_{\ell}\right) \leq \operatorname{dim}_{\mathbb{Q}_{\ell}} H^{2 j}\left(X, \mathbb{Q}_{\ell}\right)=f_{j}^{w}
$$

Theorem 2. Let (W, S) be crystallographic, $J \subseteq S$. Fix $w \in W^{J}$ and i such that $0 \leq i<\ell(w) / 2$. Then, in $[e, w]^{J}$ there exist $f_{i}^{w, J}$ pairwise disjoint chains

$$
u_{i}<u_{i+1}<\cdots<u_{\ell(w)-i}
$$

such that $\ell\left(u_{j}\right)=j$.

References:

Stanley (1980) did the $J=S, w=w_{0}$ case for finite groups

Interpretation of Theorem 2 for Young's lattice:

Given a partition λ of n and $k \leq n / 2$. Suppose that there are $b=b(\lambda, k)$ partitions of k below λ. Then there exist b standard Young tableaux of shape $\lambda, T^{1}, \ldots, T^{b}$, such that

$$
\operatorname{shape}\left(T_{p}^{i}\right) \neq \operatorname{shape}\left(T_{p}^{j}\right)
$$

for all $i \neq j$ and all $p=k, k+1, \ldots, n-k$.
Here T_{p} is the subtableau gotten by erasing the boxes with numbers $>p$.

Question: what about the case of equality in some of the relations $f_{i} \leq f_{\ell(w)-i}$?

From now on: Only the $J=\emptyset$ case.
Then $W^{J}=W$, so we drop " J " from the notation.

Fix $w \in W$, and let $m:=\lfloor(\ell(w)-1) / 2\rfloor$. Let

$$
P_{e, w}(q)=1+\beta_{1} q+\cdots+\beta_{m} q^{m}
$$

be the Kazhdan-Lusztig polynomial of the interval $[e, w]$.

Known:

* $\beta_{i} \geq 0$ if W is crystallographic,
* $P_{e, w}(q)=1 \Longleftrightarrow X_{w}$ is rationally smooth
* X_{w} is rationally smooth $\Longleftrightarrow f_{i}^{w}=f_{\ell(w)-i}^{w}, \forall i$
(Carrell-Peterson '94)
* For simply-laced W : smooth \Leftrightarrow rationally smooth

Theorem 3. Suppose that W is crystallographic, $w \in W$ and $1 \leq k \leq m$. Then the following conditions are equivalent:
(a) $f_{i}^{w}=f_{\ell(w)-i}^{w}, \quad$ for $i=1, \ldots, k$,
(b) $\beta_{i}=0$, for $i=1, \ldots, k$.

Remark: The equivalence of (a) and (b) in the case $k=m$ gives the Carrell-Peterson criterion for rational smoothness of the Schubert variety X_{w}.

Theorem 4. Suppose that W is crystallographic, $w \in W$ and $1 \leq k \leq m$. Then the following conditions are equivalent:
(a) $f_{i}^{w}=f_{\ell(w)-i}^{w}, \quad$ for $i=1, \ldots, k$,
(b) $\beta_{i}=0$, for $i=1, \ldots, k$.

Furthermore, if $k<m$ then (a) and (b) imply
(c) $\beta_{k+1}=f_{\ell(w)-k-1}^{w}-f_{k+1}^{w}$.

Idea of proof: Based on

* Monotonicity theorem for K-L polynomials (extending Braden-MacPherson '01).
* Polynomial $F_{w}(q)=\sum_{x \leq w} q^{\ell(x)} P_{x, w}(q)$ is palindromic (Kazhdan-Lusztig '79).

More can be said about the increasing inequalities

[^0]Recall:

For $n, k \geq 1$ there is a unique expansion

$$
n=\binom{a_{k}}{k}+\binom{a_{k-1}}{k-1}+\cdots+\binom{a_{i}}{i},
$$

with $a_{k}>a_{k-1}>\cdots>a_{i} \geq i \geq 1$. Let

$$
\begin{aligned}
& \partial^{k}(n)=\binom{a_{k}-1}{k-1}+\binom{a_{k-1}-1}{k-2}+\cdots+\binom{a_{i}-1}{i-1} \\
& \partial^{k}(0)=0
\end{aligned}
$$

Theorem (Macaulay-Stanley)

For an integer sequence ($1, m_{1}, m_{2}, \ldots$) the following are equivalent (and this defines an M-sequence):
(1) $\partial^{k}\left(m_{k}\right) \leq m_{k-1}$, for all $k \geq 1$,
(2) some order ideal of monomials contains exactly m_{k} monomials of degree k,
(3) $\operatorname{dim}\left(A_{k}\right)=m_{k}$ for some graded commutative algebra $A=\oplus_{k \geq 0} A_{k}$ which is generated by A_{1}.

More can be said about the increasing inequalities

$$
f_{0} \leq f_{1} \leq \cdots \leq f_{\lceil\ell(w) / 2\rceil},
$$

namely, the sequence cannot grow too fast.

Theorem 5. In the case of finite Weyl groups every f-vector $f^{w}=\left\{f_{0}, f_{1}, \ldots, f_{\ell(w)}\right\}$ is an M-sequence.

Idea of proof of Thm: Based on

* The f-vector $f^{w}=\left\{f_{0}, f_{1}, \ldots, f_{\ell(w)}\right\}$ is coeff-sequence of Poincaré polynomial of $H^{*}\left(X_{w}\right)$, the cohomology algebra of the Schubert variety X_{w} (over \mathbb{C}).
* So, we only need that $H^{*}\left(X_{w}\right)$ is generated in degree one ($\operatorname{dim}=2$).
* For $w=w_{0}$ this is classical: $H^{*}\left(X_{w_{0}}\right) \cong$ coinvariant algebra of W.
* For $w \neq w_{0}$ there is algebra surjection $H^{*}\left(X_{w_{0}}\right) \rightarrow H^{*}\left(X_{w}\right)$

Remarks:
** M-sequence property fails for the affine group \widetilde{C}_{2} :

$$
\sum q^{\ell(w)}=1+3 q+5 q^{2}+8 q^{3}+\cdots
$$

Consequence: $H^{*}\left(X_{w}\right)$ not necessarily generated in degree one for affine Schubert varieties X_{w}.
** M-sequence property fails for general intervals in finite B_{4} :

$$
\sum_{w \leq x \leq w_{0}} q^{\ell(x)-\ell(w)}=1+4 q+11 q^{2}+\cdots
$$

for certain $w \in B_{4}$.

The increasing inequalities $f_{0} \leq f_{1} \leq \cdots \leq f_{\lceil\ell(w) / 2\rceil}$ have decreasing counterparts at the upper end of the Bruhat interval

- but the information we are able to give about this is much weaker.

Theorem 6. For all $k \geq 1$ there exists a number N_{k}, such that for every finite Coxeter group (W, S) and every $w \in W$ such that $\ell(w) \geq N_{k}$ we have that

$$
f_{\ell(w)-k}^{w} \geq f_{\ell(w)-k+1}^{w} \geq \cdots \geq f_{\ell(w)}^{w}
$$

Questions

1. Do f^{w}-vectors satisfy more inequalities?
(Noticed by D. Stanton: unimodality fails on some intervals in Young's lattice. Unimodality might be true for full intervals, i.e. $J=\emptyset$.)

Questions

1. Does f^{w}-vector satisfy more inequalities?
2. Are the theorems true for general (non-crystallographic) Coxeter groups?

Questions

1. Does f^{w}-vector satisfy more inequalities?
2. Are the theorems true for general (non-crystallographic) Coxeter groups?
3. Does there exist some $\alpha<1$ such that

$$
f_{\lfloor\alpha \cdot \ell(w)\rfloor}^{w} \geq f_{\lfloor\alpha \cdot \ell(w)\rfloor+1}^{w} \geq \cdots \geq f_{\ell(w)}^{w}
$$

Will $\alpha=\frac{3}{4}$ do?

Questions

1. Does f^{w}-vector satisfy more inequalities?
2. Are Theorems 1-2 true for general (non-crystallographic) Coxeter groups?
3. Does there exist some $\alpha<1$ such that

$$
f_{\lfloor\alpha \cdot \ell(w)\rfloor}^{w} \geq f_{\lfloor\alpha \cdot \ell(w)\rfloor+1}^{w} \geq \cdots \geq f_{\ell(w)}^{w}
$$

Will $\alpha=\frac{3}{4}$ do?
4. What can be said about the shape of general intervals $[u, w]^{J}$? (I.e., for $u \neq e$)

Def: An upper chain decomposition is a partition of $[e, w]^{J}$ into pairwise disjoint saturated chains

$$
u_{i}<u_{i+1}<\cdots<u_{k}
$$

such that $\ell(j)=j$ for all $j=i, \ldots, k$, and $k \geq \ell(w)-i$.

Questions

5. Do the intervals $[e, w]^{J}$ admit upper chain decompositions?

Note:

1. This would imply Thms 6 and 7 .
2. Specializes to symmetric chain decomposition, if f^{w}-vector is symmetric.
3. Symmetric chain decomposition question still open for intervals $[\emptyset, \lambda]$ in Young's lattice, λ of rectangular shape.

THE END

[^0]: $f_{0} \leq f_{1} \leq \cdots \leq f_{\lceil\ell(w) / 2\rceil}$,
 namely, the sequence cannot grow too fast.

