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Introduction

Context: The PASEP, Partially Assymetric Self-Exclusion Process,
is a 1D-model of particles in n sites, hopping from each site to its
neighbours.

q.dt dt g.dt dt
—~ —

cdeo000Ceéo0o0
This model is solved by a matrix ansatz (cf. Derrida &al). If:
DE — qED = D + E,
we can write (D + E)" in normal form:

(D+E)"=> GE'D,

i,j>0

Then the partition function is Z =< (D + E)" >= " ¢j;.
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If we define:

H— a1 1 F— a1 1

D="-D+, E="7E+
Then we have inversion formulas:

n
(L-a)"(D+E)" =) (2" “(-1)*¢"(D + E)*, and
k=0
n
(D + B =37 ()27 (- 1)(1 - q)*(D + E)*.
k=0

And the commutation relation is (cf. Uchiyama-Sasamoto, Evans) :

B gD = L

ol
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The rewriting of (D 4 E)" in normal form is combinatorially
described by alternative tableaux (cf. Viennot).

This explains the link between the PASEP and the combinatorics
of permutations (cf. Corteel-Williams).

The rewriting of (D + E)" in normal form is combinatorially
described by rook placements in Young diagrams.
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Rewriting rules for D and E

Definition
A rook placement is a filling of the cells of a Young diagram with
o, with at most one o per line (resp. column).

We distinguish by a x the cells that are
S not directly below or to the left of a o
o (cf. Garsia-Remmel).

Each o has a weight p.
Each x has a weight g.

o

Theorem
Suppose more generally that DE — qED = p, then < (D + E)" >
is the sum of weight of rook placements of half-perimeter n.
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Rewriting rules for D and E

Since (D + E)" expands into the sum of all words of length n in D
and E, it is consequence of:

Proposition
Let w be a word in D and E. Then < w > is the sum of weights
of rook placements of shape A\(w).

wl
my

w = DEED... A(w)= Eb
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Rewriting rules: Sketch of proof

Operator point of view:

Combinatorial point of view:

u N u ui m

= X 4 0 —q +p—IE
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Rewriting rules: Sketch of proof

Operator point of view:

Combinatorial point of view:
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Rewriting rules: Sketch of proof

Operator point of view:

Combinatorial point of view:

These are identical recurrence relations.
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Enumeration of rook placements: Examples

Let T; k. be the sum of weights of rook placements of
half-perimeter n, with k lines and j lines without rook. We have:

Proposition

n
Tikn= [k] .
q

Proposition

When p=1 and q =0, Ty, is the number of (left factor of)
Dyck paths of n steps ending at height n — 2k. Hence:

Tosn= (1)~ (71)
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This is a consequence of:

Proposition

For any X there is at most one rook placement of shape A with no

X and one rook per line, with equality in the case where the NE
boudary of A\ is a Dyck path.

T
If it is a Dyck path there is only one way to
place the rooks:

If the path goes
below the diagonal, it
is impossible to place
one rook per line.
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This is a consequence of:

Proposition

For any X there is at most one rook placement of shape A with no

X and one rook per line, with equality in the case where the NE
boudary of A\ is a Dyck path.

][9]
If it is a Dyck path there is only one way to
place the rooks:

If the path goes

below the diagonal, it ] ]
_ . e There is one in each corner,
is impossible to place

one rook per line.
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This is a consequence of:

Proposition

For any X there is at most one rook placement of shape A with no

X and one rook per line, with equality in the case where the NE
boudary of A\ is a Dyck path.
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If it is a Dyck path there is only one way to
place the rooks:

If the path goes

below the diagonal, it ] ]

_ . e There is one in each corner,

is impossible to place

one rook per line. e One in each corner of the remaining
shape, and so on.



Enumeration of rook placements
oe

This is a consequence of:

Proposition

For any X there is at most one rook placement of shape A with no

X and one rook per line, with equality in the case where the NE
boudary of A\ is a Dyck path.

NEE
If it is a Dyck path there is only one way to
place the rooks:

If the path goes

below the diagonal, it ] ]

_ . e There is one in each corner,

is impossible to place

one rook per line. e One in each corner of the remaining
shape, and so on.



Enumeration of rook placements
oe

This is a consequence of:

Proposition

For any X there is at most one rook placement of shape A with no

X and one rook per line, with equality in the case where the NE
boudary of A\ is a Dyck path.

NEE
If it is a Dyck path there is only one way to
place the rooks:

If the path goes

below the diagonal, it ] ]

_ . e There is one in each corner,

is impossible to place

one rook per line. e One in each corner of the remaining
shape, and so on.



Enumeration of rook placements
oe

This is a consequence of:

Proposition

For any X there is at most one rook placement of shape A with no

X and one rook per line, with equality in the case where the NE
boudary of A\ is a Dyck path.

NEE
If it is a Dyck path there is only one way to
place the rooks:

If the path goes

below the diagonal, it ] ]

_ . e There is one in each corner,

is impossible to place

one rook per line. e One in each corner of the remaining
shape, and so on.



Enumeration of rook placements

oe

This is a consequence of:

Proposition

For any X there is at most one rook placement of shape A with no
X and one rook per line, with equality in the case where the NE

boudary of A\ is a Dyck path.

N

[o]

If the path goes
below the diagonal, it

place the rooks:

If it is a Dyck path there is only one way to

_ . e There is one in each corner,
is impossible to place

one rook per line. e One in each corner of the remaining

shape, and so on.
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Enumeration: The bijective part

For each rook placement we define an involution (cf. Kerov):

12 3 4
o[X]s
ofx[ [Xx[¢7 8
o|Xx[X] 9 _
X X[x]10 I'= ° ° °
o1 1234567891011
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Enumeration: The bijective part

For each rook placement we define an involution (cf. Kerov):

123 4
o[X]s
ofX 578
o I: [ ) [ [ )
X X|[X|10
o1 1234567891011
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Enumeration: The bijective part

For each rook placement we define an involution (cf. Kerov):

12 3 4
o[X]s
ofx] Tx]67
o|X
X X

10
11

I - L] L o

1234567891011

Conclusion
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Enumeration: The bijective part

For each rook placement we define an involution (cf. Kerov):
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Enumeration: The bijective part

For each rook placement we define an involution (cf. Kerov):

12 3 4
o[X]s
ofx[ [Xx[¢7 8
o|Xx[X] 9 _
X X[x]10 I'= ° ° °
o1 1234567891011

This is not a bijection because fixed points may correspond either
to empty lines or empty columns.
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Enumeration: The bijective part

For each rook placement we define an involution (cf. Kerov):

12 3 4
o[X]s
ofx] [X]%; s i
o[X[X] 9 Y g —
X X[ x{10 I'= ° °
olu1 1234567891011

This is not a bijection because fixed points may correspond either
to empty lines or empty columns.

To keep track of empty lines or columns, we also define:

A=[T]
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We have a bijection between rook placements of half-perimeter n,
and couples (/, A) where:

e [ is an involution on {1,...,n},

e \is a Young diagram of half-perimeter #Fix(/).

Proposition

With respect to this decomposition R — (I, \), the parameter
"number of crosses” is additive:

#crosses(R) = || + u(/)
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We have a bijection between rook placements of half-perimeter n,
and couples (/, A) where:

e [ is an involution on {1,...,n},
e \is a Young diagram of half-perimeter #Fix(/).
Proposition

With respect to this decomposition R — (I, \), the parameter
"number of crosses” is additive:

#crosses(R) = || + u(/)
It is possible to describe p precisely:

p(l) = #crossings(/) + Z height(x)
xeFix(1)
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Enumeration of rook placements
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e |\| counts the number of x with no
rook in the same line, no rook in the
same column.

e F#crossings counts the number of x
with one rook in the same line, one
rook in the same column.

e > height(x) counts all remaining x.

Al =3, #crossings = 2,
D height(x) =1+1+2+0=4
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Consequence : Remember that T; x , is the sum of weights of rook
placements of half-perimeter n, with k lines, j lines without rook.

Then we have a factorization:

n—2k+2j
Evk’n = |: H J:| T07k_j’n'
J q

/ T \

> rw(R) Do g™ p< 2 gt
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Besides this factorization property, we have a recurrence relation:

Tokn = Tokn—1+PT1kn-1-

/ \

Case 1: Case 2:
The first column The first column
contains no rook. contains a rook.

Hence:

Tokn = Tokn—1 + p[n+1—2k]gTok—1,n—1-
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Proposition
This recurrence is solved by:

k

Ton = (125) D" 72 ((2) ~ ()

i=0

It remains to compute:

A oa n—2k+2j
< (D E Z T kn—Z|: _] :| TO,k—j,n'
q

Jrk
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In the PASEP case, ie. p = q2 , we can simplify this sum with
g-binomial identities. We obtain:

Proposition

A~ 2F(n)—F(n+1)
<OHE =g

where
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Remember that (D 4 E)" and (D + E)" are linked by inversion
formulas. We get a new proof of:

Theorem

<D+ B = S0 - ()
k k—1
y <Z gl 3 qj(k—j))
j=0 j=0

(Conjecture of Corteel-Rubey, March 2008. Proof T. Prellberg,
May 2008. Alternative proof, J-V, August 2008)
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Conclusion

< (D + E)" > is the one-parameter function partition of the
PASEP, but also:

e The g-enumeration of permutations wrt the number of 13-2
patterns (or equivalently, the number of crossings)

e The g-enumeration of permutation tableaux wrt the number
of non-topmost 1's.

e The momentum of simple g-Laguerre polynomials.

These results also give an expression for the 3-parameter partition
function of the PASEP, although it seems there is no nice
simplification.

A generalization to (aD + E)" and (aD + E)" would give the
momentum of (non-simple) g-Laguerre polynomials.
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