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Introduction

Every finite lattice L with operations A and V has a set representation by
the following construction.

L has two generating systems:
J(L) =set of V—irreducibles is a V—generating system
M(L) =set of A—irreducibles is a A—generating system

Every element x € L is represented as
x =~ (A,B)

with A CJ(L),BC M(L) and A={aeJ(L)|a<x}=xl, the down-set of x,
B={beM(L)|x<b}=x!, the up-set of x.



The general situation

Given a finite lattice L and an element x L, x is represented by the pair (A,B)

The up-set B=x" of the element xeL

The set M(L) of meet-irreducibles

j An element xeL

| The lattice L
D

The set J(L) of join-irreducibles

The down-set A=x* of the element x L




Two closure systems:

The system of all down-sets is a closure system on J(L), the system of
all up-sets is a closure system on M(L).

Galois Connection:
A—A ={beM(L)|a<b for all ac A} for AC J(L)
B— B :={acJ(L)|a<b for all bc B} for BC M(L)
Closure operators: X — X" for X CJ(L), and Y —Y" for Y CM(L).

If x~ (A,B), then A and B are closed sets and A =x!}, B=x!

The order of L is now represented by set inclusion

(A,B)<(X,Y) < ACX (<= BDY)

the lattice operations are

(A,B)A(X,Y)=(ANX,(BUY)") and (A,B)V (X,Y)=((AUX)",BNY).



Application to partition lattices

I1,,: Lattice of set partitions of an n—element set [1,n] ={l1,...,n} under
refinement order. II, is a graded lattice with rank function rk(n) =n—#mr,
where #n denotes the number of blocks of =.

Join irreducibles:

partitions with exactly n—1 blocks, (rank =1)

— n—2 singleton blocks and one 2—block {k,/} with 1 <k<i<n
— are in bijection with 2—subsets of x:

J(IT,;) < ([li"]) (write (3) for ([li”]))

Meet irreducibles:

partitions © with exactly 2 blocks, (rank =n—2)

— one of them does not contain the element n (= the proper class)
— are in bijection with non-empty subsets of {1,...,n—1}:

M(I1,) < 2"~ 1 — {0} (n =531,42 € M(I15) has proper class {2,4} €2%)



The relation < in I, for irreducibles is

{k,1} <X <= |{k,[}NX|=0mod 2

Galois connection:

A=A ={Xxec2" | 1Xn{k,01}|=0 mod?2 for all {k,I} €A} for AC (’;)

BB ={{kI} € (3) | XN {kI}|=0 mod2 for all X € B} for BC2""!

Closure operators:

1. For AC (3) apply the rules
{Hk, 1}, {l,m}}y — {kym} if k<l<m
Hk,m}b {l,m}}y — {k,m} if k<l <m
{{k, 1}, {k,m}} — {l,m} if k<l<m

closure under transitivity
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2. For BC 2"l apply the rules

(X,Y} — X UY
(X, Y} —X\Y

Closed subsets of 2"~ ! are boolean algebras contained (as sublattices)
in 271

In a partition © ~ (A,B) the set B is the boolean algebra defined by the
proper classes of m (= classes not containing n).
A can be seen as the graph of the equivalence relation defined by .



. =242,6531,87 € Ig

The graph A has #r connected b o .

components (= blocks of ). A
can be reduced (by transitivity) /\

until we are left with a spanning

forest A, and then we have #rn = I N SO ke
A i R L

n—|Al. ¢

The boolean algebra B can be l 1

reduced (by boolean operations)
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generating system B. Every pos- e

sible B has cardinality |B| = dimB.

m = (A,B) = (11,3}, 11,5}, {1,6},13,5},{3,6},{2,4},15,6},17,8} },
{0,{2,4},{1,3,5,6},{1,2,3,4,5,6}})

The improper class is 87 ={1,...,8} \UB.



In our case:

({{1,3},{3,5},{5,6},{2,4},{7,8}},{{1,3,5,6},{1,2,3,4,5,6}}) and
({{1,3},{1,5},{1,6},{2,4},{7,8}},{{1,3,5,6},{2,4}}) are possible (A,B).

The atoms of B are the proper classes of the partition n ~ (A,B), hence
#1n = |B|+ 1 =n—|A| for every reduced representation (A,B) of (A,B).

N——"

Consequence:

1. For every reduced representation (A,B) we have |A|+|B|=n—1
2. rk(A,B) = |A|

3. For every partition ©# = (A,B) we have rk(n)+dimB=n—1



Application to noncrossing partitions

. (from Armstrong [1])

A noncrossing partition (nc-partition) and a (crossing) partition

A partition © of {1,...,n} is noncrossing if there is no crossing in the
picture for .
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Let NC(n) be the set of all nc-partitions on {1,...,n}. The order of NC(n)
is inherited from the lattice IT,. With this order NC(n) is a lattice, but
not a sublattice of the partition lattice:

For , the join of the nc-partitions 2,31,4 and 1,3,42 in I14 is 31,42.
/ﬁ

NC(n) is not distributive since NC(3) =1,32 ﬁE\Z_I
e
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To obtain a set-representation of NC(n), we need

Join-irreducibles: Every join-irreducible partition is noncrossing, hence
join-irreducible nc-partitions are in bijection with (5) as before.

Meet-irreducibles: A meet-irreducible partition is noncrossing if and only
if its proper class X C{1,...,n—1} is a nonempty interval:

/6/1\ The interval 2,5 =1{2,...,5} defines (together with
5 its complement) the meet-irreducible nc-partition

2
5432,61 of {1,...,6}.
§4v3% ot }
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Define I,_; :={intervals #0 of {I,....n—1}} ={[i,j]|1 <i<j<n—1}C2"1

n 1

Every nc-partition is represented by a pair (P,Q) with PC (}), 0 C 1, such
that

P=0Q and Q=P NI,

and 0" =P'. This means:
The boolean algebra P’ is generated by the intervals contained in P'.
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For , the (crossing) partition 31,42,5 has P = {{1,3},{2,4}} and
defines (on {l1,...,4}) the boolean algebra P' = {0,{1,3},{2,4},[1,4]} which
IS not generated by intervals.

The nc-partition 32,41,5 has P = {{1,4},{2,3}} and generates the boolean
algebra P'={0,[2,3],{1,4},[1,4]} which has the generating system
Q=Pnly={23],[L4}t L4

In other words:

e A partition nm ~ (A,B) €1, is an nc-partition iff the boolean algebra B
has a generating system Y C [, ;.

Remark: From the system Y a Dyck-word representing (A,B) can be

uniquely constructed, thus showing that the number of nc-partitions on

n points is C, = #(2’?)
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The closure operators for nc-partitions

Every m € NC(n) is represented by a pair (P,Q) with PC (3) and QC 1,
such that

P is closed under transitivity and the “non-crossing rules”
ik} ), 1} — {1} ifi<j<k<l.
This results in four groups of rules for 2—subsets

Q is closed under the rules describing the boolean operations U,N,\
restricted to intervals:

This again results in four groups of interval rules.
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. Given two nc-partitions on {1,..., 8}

T =21,3,5,6,874=(P,Q)
= ({{1,2},{4,7},{7,8},{4.8} },{[1,2], 3], [L1,3],[5],6],(5,6]})

p = 43,521,876 = (R, S)
= ({{1,2},{1,5},{2,5},{3,4},{6,7},{7,8},{6,8} },{[3,4,[1,5]})

tAap = (U, V) e (2(),2) with U = PAR = {{1,2},{7,8}}.

V = closure of QuS={[1,2],[3],[1,3],[5],[6],[5,6],[3,4],[1,5]} under the interval
implications:

~ V= {[1,2],[3},[1,3],[5],[6], 15,6}, 3,4],[1,5],(3,6],3,5], [4], [1,4], [1,6], [4,5], 4,6]}
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U= {{1,2},{7,8}} (here it is unique), V reduced for interval implications
can be chosen as {[1,2],[3],4],[5],[6]} or as {[1,2],[3],[3,4],[3,5],[3,6]} or ....

Note that |U|+|V]|=n—1=8-1=71.

For the nc-partition nVvp take intersection in the second component
ons={[1,2],[3],[1,3},[5],[6],[5,6]}n{[3,4],[1,5]} =0, and =vp =T (in the lattice
NC(8)) follows.

n =21,3,5,6,874 and p = 43,521,876 have join 521,87643 in Ils.
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Kreweras-complement

For every n define two functions

Q{5

W (2) o hyy By (k1 e (I~ 1]

0, and vy, are bijections, but not mutually inverses.

ifi>1
ifi=1
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p
(k—1,0—1} ifk>1
Rather we have k,l})=<
q)nO\Vn({ }> \{l—l,n} if k=1
o li—j=1] i1

are counterclockwise rotations of the circle of length n, compatible with
nc-partitions. When applied to 2—subsets {i,j} or to intervals [i,j] with
i # 1 this is obvious. For the rest consider the interval [1,4] on {1,...,6}.
It represents the meet-irreducible partition 4321,65

6—1

%6A1N2

5 is transformed by ygodg to [4,5]: 5 \

2
\\4w3% \\\4\/3%

which is in fact the appropriate description of the rotated partition.

The same applies to 2—subsets: {1,k} ~ [1,k— 1]~ {k—1,n}.
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0, and y, define a bijection %, : 1, W (5) — I,_1 ¥ (5) by the scheme

In—l o In—l
Jn: Y V.
Wn
(3) (3)

with the properties J#? = ¢poy, Uy, 00, and %" =id. It is clear that
— (P,Q) € NC(n) <= (Jn(Q), #n(P)) € NC(n)

— (P,0) <(R,S) < (Hn(Q), #n(P)) = (Jn(S), #n(R))

— (P,Q)€NC(n) = Ju(P)NQ =0 and PNJ,(Q) =0
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Theorem: For every nc-partition (P,Q) € NC(n) the Kreweras-complement
is the nc-partition J4,(P,Q) := (J,(Q),#,(P)). This means

1. (PO)A(Hu(Q), Hn(P

(P,Q)V (Hn(Q), Hn(P

2. The nc-partition (J£,(Q),#,(P)) is the unique solution of the equation

Q) o perm(#,(Q), #u(P)) = (1,...,n)

perm(P.

~

perm(P,Q) is the permutation that consists of the cycles defined by the
blocks of the partition n = (P,Q) (written in ascending order).

: T =43,521,876 is noncrossing, perm(43,521,876) =(1,2,5)(3,4)(6,7,8)
H3(n) =1,3,42,6,7,85 with perm(.#g(n)) = (2,4)(5,8) and
(1,2,5)(3,4)(6,7,8) 0 (2,4)(5,8) = (1,2,3,4,5,6,7,8)
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My is not only a bijection L, W (5) — L,_1W(3).

J, transforms the system of interval implications to the system of 2—subset-
implications and vice versa, hence %, is a transformation of one closure
operator to the other. For example, transitivity goes to

%({{k,l},{l,s}} — {k75}> — {[kvl_ 1]7 [I,S— 1]} — [k,S— 1]

It follows that

1. If (P,Q) is reduced, then (J%,(Q), #,(P)) is reduced.
2. rk(p(n)) =n—1—rk(n)

3. |0|=#n—1

4. #(m)+#(Hp(n)) =n—rk(n)+n—rk(J(n)) =n+1

Hence Kreweras' pictorial, not very transparent construction can be re-
placed by mere application of J,.
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Further Consequences:

Jpn is an anti-automorphism from NC(n) onto itself interchanging level k
and level n—1—k. (rank-inverting)

7% is an isomorphism of NC(n) with the property
type(perm(A, B)) = type(perm(J,2(A), 7,7 (B))).

KM =id = X" is an involution on NC(n). If n is odd, then J#" is a
rank-inverting involution on NC(n): rk(J£(n)) =n—1—rk(n).

G. Kreweras' construction has been modified by several authors for spe-
cial purposes. For example, R. Simion defined a rank-inverting anti-
isomorphism of NC(n) (and V. Reiner for type B nc-partitions) for all n.
These pictorial constructions can be described by the operator .

I imagine that people who are more experienced in Coxeter theory, root
systems, Weyl groups ... than I am may ask questions that can be an-
swered by extending this set representation approach.
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