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o

Some of the notation

set of all nonnegative integers

set of all positive integers

set of all complex numbers

vector space of polynomials with coefficients in C
dual space of P

n-th derivative of p € P, n€ N

n-th normalized derivative, so that p["] is monic
actionof ue P’ on pe P

Monic Polynomial Sequence {P,}n>0 such that Py(x) = x" 4+ pn—1(x),
with deg pp—1 =n—1
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Derivative and product by a polynomial of a form
(W' fy:=—{(uf"y , (gu,f):=(ugf), feP,
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Some of the notation

N set of all nonnegative integers
N* set of all positive integers
C set of all complex numbers
P vector space of polynomials with coefficients in C
P’ dual space of P
(p)™ n-th derivative of p € P, n € N
p'" n-th normalized derivative, so that pl” is monic
(u,p) actionof u€ P’ onpeP

MPS Monic Polynomial Sequence {P,},>0 such that P,(x) = x" + pp—1(x),
with deg pp—1 =n—1
Preliminary results

Derivative and product by a polynomial of a form
(W' fy:=—{(uf"y , (gu,f):=(ugf), feP,

The dual sequence {u,},>0 of a monic polynomial sequence (MPS)
{Pn}n>o0 is defined by (un, P) = 0nk, n,k>0.
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Orthogonal polynomial sequences (OPS)

Definition

A MPS {P,}n>0 is said to be a MOPS with respect to u € P’ if
<U7 Pan> - Knén,m, n,mZ2= 0
Ko#0, n>=0.

In this case, u is called a regular form and it is proportional to wg
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Orthogonal polynomial sequences (OPS)

Definition

A MPS {P,}n>0 is said to be a MOPS with respect to u € P’ if
<U7 PﬂPm> - Knén,m, n,mZ2= 0
Ko#0, n>=0.

In this case, u is called a regular form and it is proportional to wg

Some characterisation properties:
Consider {P,}n>0 to be a MPS. The statements are equivalent:
(a) {Pn}n>0 is a MOPS with respect to up

Pi(x) = x — Bo; Pi(x)=1
(b) { Paia(x) = (X — Bui1)Para(x) — 7oi1Pa(x)
<U0,XP3> <U0, P/3+1>

with 3, = ~———= and 741 = (o, P2)

(uo, P2) #0, neN.

(c) un= ((uo, P§>)71 P,u, neN,
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Classical polynomial sequence

Let k € N* and {P,},50 be a MPS. The sequence {P}},cx with
P,[,k](x) = (PL’E”(X)) , n€N, (and P .= p, n> 0), is also a MPS.

n+1
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Classical polynomial sequence

Let k € N* and {P,},50 be a MPS. The sequence {P}},cx with
P,[,k](x) = L (P[kfll(x)> , n€N, (and P .= p, n> 0), is also a MPS.

n+1 n+1

factorials

Definition

A MOPS {P,}ncn is said to be classical when {PI},cx is also orthogonal
(Hahn's property, [Hahn(1935)]) The associated regular form wp is called
classical form (Hermite, Laguerre, Bessel and Jacobi ).
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Classical polynomial sequences - characterisation

For any MOPS {P,}ncn associated to ug, the statements are equivalent:

(a) {Pn}nen is a classical sequence.

(b) 3k > 1 such that {P}!},cn is orthogonal (Hahn's theorem).
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Classical polynomial sequences - characterisation

For any MOPS {P,}ncn associated to ug, the statements are equivalent:

(a) {Pn}nen is a classical sequence.

(b) 3k > 1 such that {P}!},cn is orthogonal (Hahn's theorem).
(c) 3@ W € P such that the associated regular form uo satisfies

D(d)Uo) +WVu =0,

where deg ® < 2 (® monic) and deg(V) =1
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Classical polynomial sequences - characterisation

For any MOPS {P,}ncn associated to ug, the statements are equivalent:

(a) {Pn}nen is a classical sequence.

(b) 3k > 1 such that {P}!},cn is orthogonal (Hahn's theorem).

(c) 3@ W € P such that the associated regular form uo satisfies
D(d)Uo) +WVu =0,

where deg ® < 2 (® monic) and deg(V) =1

(d) There exist two polynomials ® (monic with deg ® < 2) and W (with deg W = 1)
and a sequence {xn}nen With xo =0 and xnt+1 # 0, n € N, such that

F(Pa(x)) = xnPa, n=0, [Bochner (1929)]

where

F=0(x)D*-w(x)D.




Introduction Generalisations on Bochner's characterisation Powers of a variable and its factorials Powers of F and its “factorials’

[e] 000 [e]

[e] o [e]

(o]} (o]e] [e]
[e]e]

Construction of a generalisation on the Bochner differential equation
fulfilled by classical polynomials
Let k € N* and {Pp}n>0 be a MPS.

If {un}nen and {uLk]}neN represent the dual sequences of {P,}n>0 and
{PYY en (resp.), then it holds

K
D* (u,[,k]) = (-1) H (n+p) tUnpk, n€N

p=1
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Construction of a generalisation on the Bochner differential equation
fulfilled by classical polynomials

Let k € N* and {Pp}n>0 be a MPS.
If {un}nen and {uLk]}neN represent the dual sequences of {P,}n>0 and
{PYY en (resp.), then it holds

K
D* (u,[,k]) = (-1) H (n+p) tUnpk, n€N

p=1

Suppose {P,}nen and {P,[,k]},,eN are two MOPS.
Therefore, the elements of the corresponding dual sequences are related by

®
(PL” u([)k]> =\ Pouo, neN,

with
< 4, (PR > .
A= (1) <u0,Pn+k> 1;[ n+ ) neN.
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construction of a generalisation on the Bochner (cont. )

Using Leibniz relation for derivation, it follows

k
OWRING
34 (P (ub))™ 7 = 2s Poscwo, meN,

v
v=0
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construction of a generalisation on the Bochner (cont. )

Using Leibniz relation for derivation, it follows

k
(v) (k=v)
5 (k) (P ()™ = Prvi s, me

v=0

Inasmuch as {Py]}neN, 0 <j < k, is also classical
we derive
k) k=) Kk av plvl
(uo) = wew M OYPY wy . 0< v <k

(=v'(0)" if 0<deg®<1,

with Wy = 1 .
’ —_ f b =2
(k—1-w(o)), ' 8 ’
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construction of a generalisation on the Bochner (cont. )

Using Leibniz relation for derivation, it follows

k
@) (k=v)
> (£) (#) ()" <2t Pron, mem

v=0

Inasmuch as {P,E']}neN, 0 <j < k, is also classical
we derive

(k=) ,
(u{,k]) = wew M OYPY wy . 0< v <k

(=v'(0)" if 0<deg®<1,

with Wy = 1 .
) —_— f b =2
(k—1-w(0)), " e®=2

thereby...

k
k . ()
Z < )(/Jk,y 2§ ¥ P,[(JV (Pﬁk]) Up = Al Porkug, neN,
v
v=0

By virtue of the regularity of ug, this last equality permits to deduce ...

factorials
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Generalisation of Bochner's differential equation

Theorem
Let {Py},cn be a MOPS. Suppose there is an integer k > 1 such that

{P,[f]},,eN is a MOPS. Then any polynomial P, fulfils the following
differential equation of order 2k:

k
ST AL (kix) DXTPyik (x) = Za (k) Pask (), n €N,
v=0

where A i @)
Ak x) = 22 0 (x) (Pk(x)) . 0<v<k,
Sh(k) =X {n+k}y, neN

0 (v, Q)
<”0’P§+k>

with D representing the differential operator and
Xt =x(x=1)...(x—k+1), ke N.

As=(-1) (n+1),, neN;

factorials
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Extension of Bochner’s differential equation

Corollary

Let {Pn}nen be a classical MOPS and k a positive integer. Consider the
differential operator F = ®(x)D* — W(x)D where & is a monic polynomial with
deg® < 2, and V a polynomial such that degWV = 1.

Then, for any set {ck,, : 0 < p < k} of complex numbers not depending on n,
each element of {Pn}nen fulfils the differential equation given by

chp]:P ch,u, Xn n()7 nEN7

where {xn}n>1 represents a sequence of nonzero complex numbers and F* is
recursively defined through F*[y](x) = F(F*'[y](x)), for k € N* with F°
denote the identity operator.
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Relation between the two generalisations

Corollary

Let {Pn}nen be a classical sequence and k a positive integer. If there exist
coefficients dy,,, and dx,, 0 < p < k, not depending on n, such that

E"—k(k) = Zi:o dkﬂ' (X")T I n 2 07
(X")k = Zf—;o gk,ﬂ' En—‘r('r) 5 n> 0,

then the two following equalities hold:

k k
D> Mk x)DF =" d, FT
=0

v=0

k T B
Fr = Z Ek,T ZAV(T;X)DT+U
7=0 v=0
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canonical elements for each one of the classical families
Hermite Laguerre Bessel Jacobi
— _n o, B # _(n + 1)
neN a#—(n+1) a# =3 a+pB#—(n+2)
d(x) 1 X x2 x2—1
W(x) 2x x—a-—1 —2(ax+1) —(a+B8+2)x+ (a—p)
(xn)* (=2)k n (=1)k n n* (n+2a — 1) n“(n+a+pB+1)*
D) | Dty A () CRea 1t mny  Chala b A1t ) ()
Sn—k T (a1, U0 aled M () o, Bl M (1)
where Cé = 47k(204)2k Cgc,ﬁ = (O (a+6+2)p

(a+1)y (B+D)
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Stirling numbers
Representing by s(k,v) and S(k,v), with k,v € N, the Stirling numbers of
first and second kind, respectively, the following equalities hold:

k

{x}tw = Zs(k, v) x”.

v=0

and )
X =>"S(k,v) {x}, ;
v=0

where {x} ) = x(x —1)...(x — k + 1) represent the falling factorial of x
Such numbers fulfil a " triangular” recurrence relation, more precisely...

s(k+1,v+1)=s(k,v)— ks(k,v+1)
S(k,O) = S(O,k) = 6;(70
s(k,v)=0, v>k+1

and
S(k+1,v+1)=5S(k,v)+(v+1)S(k,v+1)
5(k,0) = 5(0,k) = dko
S(k,v)=0, v>k+1

alisations on Bochner's characterisation Powers of a variable and its factorials Powers of F and its “factorials’
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A-modified factorial of a number

Definition
Let A be a number (possibly complex) and k € N. For any number x we define
1 if k=0,
k—1
X}eny ‘= 1
Y [[x=vwv+A) if ken, )

v=0

to be the A-modified falling factorial (of order k).
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A-modified factorial of a number

Definition
Let A be a number (possibly complex) and k € N. For any number x we define
1 if k=0,
k—1
Xtaea) = 1
O om [[x-vw+a) if ken, )
v=0
to be the A-modified falling factorial (of order k).

As a result, there exist two unique sequences of numbers {Sa(k, )}k, ven
and {Sa(k,v)}«,ven such that

k
{X}(k;A) = Z/S\A(k7l/) x" ’ keN
k

Z Ak, v {X}(VA)v €N,

v=0

lisations on Bochner's characterisation Powers of a variable and its factorials >owers of F and its “factorials
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A-modified Stirling numbers

Proposition
The set of numbers {Sa(k,v)}, k>0 satisfy the following “triangular” recurrence
relation

Sa(k+1,v+1) =3a(k,v) — k(k+ A)Sa(k,v + 1),

Sa(k,0) =3a(0, k) = bk,

Salk,v)=0,v > k+1,

whereas the set of numbers {§A(k, v)},k>o0 satisfy the “triangular” relation

Salk+1,v+1) = Sa(k,v) + (W + 1) (v + 1+ A)Sa(k, v + 1) ,
Sa(k,0) = Sa(0, k) = 6k ,
§A(k,1/) =0,v>k+1,

for k,v € N.
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A-modified Stirling numbers: some properties

. Saln) = ;Z (1) AT20)T(A+0) (U(U+A)> 7

TA+o+v+1)
fork,veNand 1< v <
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A-modified Stirling numbers: some properties

1 e (A+20)T(A+0) ,
o Sa(k,v) = V|Z<> MAtotvt) olc+A) |,
fork,reNand 1< v <k.

e When x = n(n+ A) for n € N and A € C, its A-modified factorial (of
order k) is given by:

{n(n+ A} ny = klf[: (n(n+A) - 1/(1/+A)) = kli[: ((nfy)(nJrAJru))

which, in accordance with the definition of falling or rising factorial, may
be expressed like

{n(n+A}ay = {nduy (n+A) (2)

lisations on Bochner's characterisation Powers of a variable and its factorials 2owers of F and its “factorials
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Generalisations on Boc

hner's characterisation

Powers of a variable and its factorials

Powers of F

list of the first A-modified Stirling numbers of
first kind: Sa(k, v)

and its

v |1 2 3 4 5
k
1 1 0 0 0 0
2 —(1+A) 1 0 0 0
3 2(1+A), —5—3A 1 0 0
4 —6(1+A); 49+ A(48 + 11A) —2(7+3A) 1 0
5 24 (1+ A), —2(410 4 515 A) 273 +5A(40 + 7A)  —10(3+A) 1
—2 A%(202 + 25A)
second kind: Sa(k,v)
v| 1 2 3 4 5
k
1 1 0 0 0 0
2 1+A 1 0 0 0
3 (1+A)? 5+3A 1 0 0
4 (1+ AP 214 A(24 +7A) 14 + 6A 1 0
5 (1+ A"  (5+3A)(17 + A(18 +54)) 147 +5A(24 +5A) 103+ A) 1

fac

oria
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Hermite Case

we have
F =D?*—-2xD
k k—v
Ao(k;x) = (-2) Peow(x), 0< v <k,
v
therefore ...
k k
D> A (kix) D = (=2) T s(k,7) FT
v=0 =0
k T ’
FE=>(=2)""S(k,7) D A (rix) DT

=0 v=0
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Laguerre Case

we have
F=xD>—(x—a-1)D

Ao(k;x) = (l;) % X" Peoy(x; a0+ v)

therefore ...

k

Z/\u (k;x) D*" = i 7(_1)k_T s(k,7) F"

v=0 —o (a+1),

FE=3 (=) (a+1), S(k,7) D A (ix) DT
7=0

v=0
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Bessel Case
we have
F=x*D*+2(ax+1)D

Ao(k;x) = (zlj Cé a—1+k+v),_, X2V Pe_v(x;a+v), 0< v

therefore ...

N
=
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Jacobi Case

we have
.7-'=(x2—1)D+((a+ﬂ+2)x—(a—ﬁ))D
A(k;x) = <I;> Chsla+B+1+k+v),_, (x*=1) Pou(x;a+v,8+v)

therefore ...

k k
DM (kix) DM = Cop Savpa(k,T) FT

v=0 7=0

k T
.7:k e (C(;B)il §a+ﬁ+1(k7T) ZA’/ (T;X) DT-H/
=0

T v=0
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