ORIENTABILITY OF CUBES

Ilda Perez da Silva

CELC / University of Lisbon

September 2008

Content

I - Matroids and Oriented Matroids

A very brief introduction.

II - Orientability of cubes.

How many cubes are orientable?

For proofs:

IS08 - Ilda P.F. da Silva, Orientability of Cubes, *Discrete Maths.*, **308** (2008), 3574-3585.

IS07 - Ilda P. F. da Silva, On Minimal nonorientable matroids with 2*n*-elements and rank *n*, preprint 2007, to appear in *Europ. J. Comb.*

Matroid (Whitney 35's ...)

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Matroid (Whitney 35's ...)

Matroid over a (finite) set E - M(E)

$$M = M(E) = (E, \mathcal{H}) \simeq (E, \mathcal{C})$$

 $\mathcal{H} \subset 2^E$ satisfying the axioms of hyperplanes of a matroid. $\mathcal{C} \subset 2^E$ satisfying the axioms of circuits of a matroid. Matroid (Whitney 35's ...)

Matroid over a (finite) set E - M(E)

 $M = M(E) = (E, \mathcal{H}) \simeq (E, \mathcal{C})$

 $\mathcal{H} \subset 2^{E}$ satisfying the axioms of hyperplanes of a matroid. $\mathcal{C} \subset 2^{E}$ satisfying the axioms of circuits of a matroid.

A Matroid is representable over a field K - Aff_K(E) - when:
E is a (finite) set of points of some affine space Kⁿ.
a hyperplane - is a subset of E lying in an affine hyperplane spanned by points of E.

a circuit - is subset of E which is minimal affine dependent.

Example: $Aff_{\mathbb{R}}(E)$ and its dual matroid

1 5 3 4		1,3 5 2,4
\mathcal{H} – hyperplanes	compl.	\mathcal{C}^* – cocircuits
12	_	345
135	_	24
14	_	235
23	_	145
245	_	13
34	_	125
C – circuits		\mathcal{H}^* – cohyperplanes
135	_	24
245	_	13
1234	_	5

Oriented Matroid (Bland, Las Vergnas, Folkman-Lawrence 75's...) Oriented Matroid $\mathcal{M}(E)$ = Matroid M(E) + Orientation Realizable OM= Matroid representable over \mathbb{R} + Canonical Orientation.

Convexity in oriented Matroids (Las Vergnas 80) - Face lattice of a polytope $conv(E) \longrightarrow LV$ - face lattice of an (acyclic) oriented matroid.

Matroids and Oriented Matroids

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = 三 の < ⊙

Representation Theorems for Oriented Matroids

Topological Representation Theorem. (Folkman/Lawrence 78)

Oriented Matroid over [n] and rank $d \iff$ cell complex of a (signed)

arrangement of n pseudo-spheres of the unit sphere S^{d-1} .

Euclidean Representation Theorem. (IS 98)

Oriented Matroid over [n] (without loops) \iff subset $\mathcal{T} \subseteq \{-1,1\}^n$ of vertices of the real cube $[-1,1]^n$ of \mathbb{R}^n satisfying symmetry conditions - centers of faces and orthogonal projections onto faces.

This is a representation theorem for oriented matroids on the <u>LV-face lattice</u> of the <u>oriented real affine cube</u> $\mathcal{A}ff(C^n)$, $C^n = \{-1, 1\}^n$. Why this particular orientation? Why this particular cube?

Las Vergnas Cube Conjecture. The real affine cube has a unique orientation.

Las Vergnas Cube Conjecture. The real affine cube has a unique orientation.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Why this particular cube?

Las Vergnas Cube Conjecture. The real affine cube has a unique orientation.

Why this particular cube?

What happens if we choose another orientable cube ?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

II. Orientability of Cubes

What is a cube:

<ロ>

What is a cube:

Definition(IS 08) **A Cubic Matroid (or cube)** is a matroid *M* over $C^n = \{0, 1\}^n$ that satisfies the following two conditions: (i) Every <u>facet</u> and <u>skew-facet</u> of C^n is a hyperplane of *M*. 2*n* facets : $x_i = 0, 1$ $\binom{n}{2}$ skew facets: $x_i + x_j = 1, x_i - x_j = 0$. (ii) Every rectangle of C^n is a circuit of *M*.

(ii) Every rectangle of C^n is a circuit of M.

Lots of rectangles! Each vertex is contained in 3ⁿ rectangles!

Properties of Cubic Matroids IS08

For every field K the matroid $Aff_K(C^n)$ is a cubic matroid.

All cubes have 2^n points and rank n+1.

Theorem 1. The class of cubic matroids remains invariant under certain perturbations of matroids: pushing an element onto a hyperplane.

Cubic Matroids over $C^3 = \{0, 1\}^3$:

Invariants of ALL Orientable Cubes

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへぐ

Invariants of ALL Orientable Cubes

Theorems 2,3 (IS 08) - Topologic version

Every arrangement of 2^n pseudospheres of the sphere S^n representing an oriented cubic matroid $\mathcal{M}(C^n)$ has the following properties:

1) (n + 1)-pairs of opposite regions which are "n-cross-polytopes" bounded by the 2^n pseudospheres .

2) The relative position of these 2(n + 1) regions is the same as in the arrangement of spheres representing the real oriented cube $\mathcal{A}ff(\mathbb{C}^n)$.

In particular,

Every orientable cube has exactly one orientation with the same LV-face lattice then the oriented real n-cube. Good!

How many cubes are Orientable?

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

How many cubes are Orientable?

1. Non-orientability results

How many cubes are Orientable?

1. Non-orientability results

From Theorems 2 and 3, with a very short proof:

Theorem 4. (implicit in B-LV 78, IS08) If K is a field of prime characteristic p then K-affine cube $Aff_{K}(C^{n})$ is not orientable for $n \ge p + 1$.

2. Perturbations of matroids and orientability

Alternative proof for Theorem 4: for $n \ge q + 1$, $Aff_{\mathcal{K}}(\mathbb{C}^n)$ contains a Bland-Las Vergnas minimal non-orientable matroid M_{n+1} .

In IS 07 we use the operation of

pushing an element onto a hyperplane to obtain **NEW minimal non-orientable matroids** - minors of perturbations of the real affine cube.

Conjectures

Conjectures

Conjecture 1. (Las Vergnas Cube Conjecture) **The real affine cube has a unique orientation** (class).

Conjecture 2. The real affine cube is the unique orientable cube.

Both Conjectures are true for small dimensions - $n \le 7$: (Bokowski, Guedes de Oliveira etal 96, da Silva 06) *Las Vergnas Cube Conjecture is true for* $n \le 7$. (da Silva 06)*Conjecture 2 is true for* $n \le 7$.

All proofs use <u>explicit descriptions of the real affine cube</u>. The real afine cube is a difficult object.

Recall that:

Determining whether a linear equation $\mathbf{h}.\mathbf{x} = b$, with $(\mathbf{h}, b) \in \mathbb{Z}^{n+1}$, has a ± 1 solution is \mathcal{NP} – complete.

<ロ> <@> < E> < E> E のQの

Let M_n be a random $n \times n$, ± 1 -matrix (random with respect to the uniform distribution) = Bernoulli matrix

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Problem: Determine the asymptotic behaviour of $P_n := Pr(M_n \text{ is singular})$

Let M_n be a random $n \times n$, ± 1 -matrix (random with respect to the uniform distribution) = Bernoulli matrix

Problem: Determine the asymptotic behaviour of $P_n := Pr(M_n \text{ is singular})$

Conjecture 3. $P_n = (\frac{1}{2} + o(1))^n$.

Let M_n be a random $n \times n$, ± 1 -matrix (random with respect to the uniform distribution) = Bernoulli matrix

Problem: Determine the asymptotic behaviour of $P_n := Pr(M_n \text{ is singular})$

Conjecture 3. $P_n = (\frac{1}{2} + o(1))^n$.

Results.

(Khan, Komlós, Szemerédi, 95) There is a positive constant $\epsilon > 0$ for which $P_n < (1 - \epsilon)^n$. True for $\epsilon = 0.001$. (Tao, Vu, 07) $P_n \le (\frac{3}{4} + o(1))^n$.

(日) (同) (三) (三) (三) (○) (○)

Let M_n be a random $n \times n$, ± 1 -matrix (random with respect to the uniform distribution) = Bernoulli matrix

Problem: Determine the asymptotic behaviour of $P_n := Pr(M_n \text{ is singular})$

Conjecture 3. $P_n = (\frac{1}{2} + o(1))^n$.

Results.

(Khan, Komlós, Szemerédi, 95) There is a positive constant $\epsilon > 0$ for which $P_n < (1 - \epsilon)^n$. True for $\epsilon = 0.001$. (Tao, Vu, 07) $P_n \le (\frac{3}{4} + o(1))^n$.

(日) (同) (三) (三) (三) (○) (○)

This last result strengthens our results and conjecture because:

The last Conjecture 3 is equivalent to the following one:(KKS 95, Tao/Vu 06, Voigt/Ziegler 06)

Conjecture 3'. For $\mathbf{v_1}, \ldots, \mathbf{v_r}$ chosen randomly from $\{\pm 1\}^n$, $r \le n-1$, $Pr(lin(\mathbf{v_1}, \ldots, \mathbf{v_r}) \cap \{\pm 1\}^n \ne \{\pm \mathbf{v_1}, \ldots \pm \mathbf{v_r}\}) \simeq$ the probability that 3 of the $\pm \mathbf{v'_js}$ span a rectangle with the fourth vertex different from any $\pm \mathbf{v_j}$.

This means essentially that rectangles determine the closure operator of the real affine cube.

and

This is exactly our proof of Conjectures 1 and 2 for small dimensions!

Final Remark.

Conjecture 1 and 2 TRUE imply :

No need of numbers to define the affine/linear dependencies of C^n over the REALS!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Orientability of Cubes: picture - September 08

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)