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Matroid (Whitney 35’s ...)

Matroid over a (finite) set E - M(E )

M = M(E ) = (E ,H) ' (E , C)

H ⊂ 2E satisfying the axioms of hyperplanes of a matroid.
C ⊂ 2E satisfying the axioms of circuits of a matroid.

A Matroid is representable over a field K - AffK (E ) - when:

E is a (finite) set of points of some affine space Kn.

a hyperplane - is a subset of E lying in an affine hyperplane
spanned by points of E .

a circuit - is subset of E which is minimal affine dependent.
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Example: AffR(E ) and its dual matroid

H − hyperplanes compl . C∗ − cocircuits
12 − 345

135 − 24
14 − 235
23 − 145

245 − 13
34 − 125

C − circuits H∗ − cohyperplanes
135 − 24
245 − 13

1234 − 5



Oriented Matroid (Bland, Las Vergnas, Folkman-Lawrence 75’s...)

Oriented Matroid M(E ) = Matroid M(E ) + Orientation

Realizable OM= Matroid representable over R + Canonical

Orientation.

C⊥ − or .cocircuits comb.orthog . C − or .circuits

345, 345 ←→
24, 24 135, 135

235, 235 245, 245
145, 145 1324, 1324

13, 13
125, 125

Convexity in oriented Matroids ( Las Vergnas 80) - Face lattice of a

polytope conv(E ) −→ LV- face lattice of an (acyclic) oriented matroid.



Matroids and Oriented Matroids



Representation Theorems for Oriented Matroids

Topological Representation Theorem. (Folkman/Lawrence 78)

Oriented Matroid over [n] and rank d ⇐⇒ cell complex of a
(signed)
arrangement of n pseudo-spheres of the unit sphere Sd−1.

Euclidean Representation Theorem. (IS 98)

Oriented Matroid over [n] (without loops) ⇐⇒ subset
T ⊆ {−1, 1}n of vertices of the real cube [−1, 1]n of Rn

satisfying symmetry conditions - centers of faces and orthogonal
projections onto faces .

This is a representation theorem for oriented matroids on the
LV-face lattice of the oriented real affine cube Aff (C n), C n = {−1, 1}n.

Why this particular orientation? Why this particular cube?
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II. Orientability of Cubes



What is a cube:

Definition(IS 08) A Cubic Matroid (or cube) is a matroid M over
Cn = {0, 1}n that satisfies the following two conditions:

(i) Every facet and skew-facet of Cn is a hyperplane of M.
2n facets : xi = 0, 1(

n
2

)
skew facets: xi + xj = 1, xi − xj = 0.

(ii) Every rectangle of Cn is a circuit of M.

A rectangle of C 5

Lots of rectangles! Each vertex is contained in 3n rectangles!
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Properties of Cubic Matroids IS08

For every field K the matroid AffK (C n) is a cubic matroid.

All cubes have 2n points and rank n + 1.

Theorem 1. The class of cubic matroids remains invariant under
certain perturbations of matroids: pushing an element onto a
hyperplane.

a ”large” class of matroids



Cubic Matroids over C 3 = {0, 1}3:



Invariants of ALL Orientable Cubes

Theorems 2,3 (IS 08) - Topologic version

Every arrangement of 2n pseudospheres of the sphere Sn

representing an oriented cubic matroid M(Cn) has the following
properties:

1) (n + 1)-pairs of opposite regions which are ”n-cross-polytopes”
bounded by the 2n pseudospheres .

2) The relative position of these 2(n + 1) regions is the same as in
the arrangement of spheres representing the real oriented cube
Aff (Cn).

In particular,

Every orientable cube has exactly one orientation with the
same LV-face lattice then the oriented real n-cube. Good!
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How many cubes are Orientable?

1. Non-orientability results

From Theorems 2 and 3, with a very short proof:

Theorem 4. (implicit in B-LV 78, IS08) If K is a field of prime
characteristic p then K -affine cube AffK (Cn) is not orientable for
n ≥ p + 1.

2. Perturbations of matroids and orientability

Alternative proof for Theorem 4: for n ≥ q + 1, AffK (Cn) contains
a Bland-Las Vergnas minimal non-orientable matroid Mn+1.

In IS 07 we use the operation of
pushing an element onto a hyperplane to obtain NEW minimal

non-orientable matroids - minors of perturbations of the real
affine cube.
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Conjectures

Conjecture 1. (Las Vergnas Cube Conjecture) The real affine

cube has a unique orientation (class).

Conjecture 2. The real affine cube is the unique orientable cube.

Both Conjectures are true for small dimensions - n ≤ 7:
(Bokowski, Guedes de Oliveira etal 96, da Silva 06) Las Vergnas
Cube Conjecture is true for n ≤ 7.
(da Silva 06)Conjecture 2 is true for n ≤ 7.

All proofs use explicit descriptions of the real affine cube. The
real afine cube is a difficult object.
Recall that:
Determining whether a linear equation h.x = b, with (h, b) ∈ Zn+1, has a
±1 solution is NP − complete.



Conjectures

Conjecture 1. (Las Vergnas Cube Conjecture) The real affine

cube has a unique orientation (class).

Conjecture 2. The real affine cube is the unique orientable cube.

Both Conjectures are true for small dimensions - n ≤ 7:
(Bokowski, Guedes de Oliveira etal 96, da Silva 06) Las Vergnas
Cube Conjecture is true for n ≤ 7.
(da Silva 06)Conjecture 2 is true for n ≤ 7.

All proofs use explicit descriptions of the real affine cube. The
real afine cube is a difficult object.
Recall that:
Determining whether a linear equation h.x = b, with (h, b) ∈ Zn+1, has a
±1 solution is NP − complete.



Asymptotic results about the real affine cube

Let Mn be a random n× n, ±1-matrix (random with respect to the
uniform distribution) = Bernoulli matrix

Problem: Determine the asymptotic behaviour of
Pn := Pr(Mn is singular)

Conjecture 3. Pn = (1
2 + o(1))n.

Results.

(Khan, Komlós, Szemerédi, 95) There is a positive constant ε > 0
for which Pn < (1− ε)n. True for ε = 0.001.

(Tao, Vu, 07) Pn ≤ (3
4 + o(1))n.

This last result strengthens our results and conjecture
because:
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The last Conjecture 3 is equivalent to the following one:(KKS 95,
Tao/Vu 06, Voigt/Ziegler 06)

Conjecture 3’.For v1, . . . , vr chosen randomly from {±1}n, r ≤ n − 1,

Pr(lin(v1, . . . , vr) ∩ {±1}n 6= {±v1, . . .± vr}) ' the probability
that 3 of the ±v′js span a rectangle with the fourth vertex

different from any ±vj.

This means essentially that rectangles determine the closure
operator of the real affine cube.

and

This is exactly our proof of Conjectures 1 and 2 for small
dimensions!



Final Remark.

Conjecture 1 and 2 TRUE imply :

No need of numbers to define the affine/linear dependencies
of Cn over the REALS!



Orientability of Cubes: picture - September 08


