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ON THE REPRESENTATION THEORY OF FINITE J -TRIVIAL
MONOIDS

TOM DENTON, FLORENT HIVERT, ANNE SCHILLING, AND NICOLAS M. THIÉRY

Abstract. In 1979, Norton showed that the representation theory of the 0-Hecke
algebra admits a rich combinatorial description. Her constructions rely heavily on
some triangularity property of the product, but do not use explicitly that the
0-Hecke algebra is a monoid algebra.

The thesis of this paper is that considering the general setting of monoids
admitting such a triangularity, namely J -trivial monoids, sheds further light on
the topic. This is a step in an ongoing effort to use representation theory to
automatically extract combinatorial structures from (monoid) algebras, often in
the form of posets and lattices, both from a theoretical and computational point
of view, and with an implementation in Sage.

Motivated by ongoing work on related monoids associated to Coxeter systems,
and building on well-known results in the semi-group community (such as the
description of the simple modules or the radical), we describe how most of the data
associated to the representation theory (Cartan matrix, quiver) of the algebra of
any J -trivial monoid M can be expressed combinatorially by counting appropriate
elements in M itself. As a consequence, this data does not depend on the ground
field and can be calculated in O(n2), if not O(nm), where n = |M | and m is the
number of generators. Along the way, we construct a triangular decomposition of
the identity into orthogonal idempotents, using the usual Möbius inversion formula
in the semi-simple quotient (a lattice), followed by an algorithmic lifting step.

Applying our results to the 0-Hecke algebra (in all finite types), we recover
previously known results and additionally provide an explicit labeling of the edges
of the quiver. We further explore special classes of J -trivial monoids, and in
particular monoids of order preserving regressive functions on a poset, generalizing
known results on the monoids of nondecreasing parking functions.
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1. Introduction

The representation theory of the 0-Hecke algebra (also called degenerate Hecke
algebra) was first studied by P.-N. Norton [Nor79] in type A and expanded to other
types by Carter [Car86]. Using an analogue of Young symmetrizers, they describe
the simple and indecomposable projective modules together with the Cartan matrix.
An interesting combinatorial application was then found by Krob and Thibon [KT97]
who explained how induction and restriction of these modules gives an interpretation
of the products and coproducts of the Hopf algebras of noncommutative symmetric
functions and quasi-symmetric functions. Two other important steps were further
made by Duchamp–Hivert–Thibon [DHT02] for type A and Fayers [Fay05] for other
types, using the Frobenius structure to get more results, including a description
of the Ext-quiver. More recently, a family of minimal orthogonal idempotents was
described in [Den10a, Den10b]. Through divided difference (Demazure operator),
the 0-Hecke algebra has a central role in Schubert calculus and also appeared has
connection with K-theory [Dem74, Las01, Las04, Mil05, BKS+08, LSS10].

Like several algebras whose representation theory was studied in recent years
in the algebraic combinatorics community (such as degenerated left regular bands,
Solomon-Tits algebras, ...), the 0-Hecke algebra is the algebra of a finite monoid
endowed with special properties. Yet this fact was seldomly used (including by the
authors), despite a large body of literature on finite semi-groups, including repre-
sentation theory results [Put96, Put98, Sal07, Sal08, MS08, Sch08, Ste06, Ste08,
AMV05, AMSV09, GMS09, IRS10]. From these, one can see that much of the rep-
resentation theory of a semi-group algebra is combinatorial in nature (provided the
representation theory of groups is known). One can expect, for example, that for
aperiodic semi-groups (which are semi-groups which contain only trivial subgroups)
most of the numerical information (dimensions of the simple/projective indecom-
posable modules, induction/restriction constants, Cartan matrix) can be computed
without using any linear algebra. In a monoid with partial inverses, one finds (non-
trivial) local groups and an understanding of the representation theory of these
groups is necessary for the full representation theory of the monoid. In this sense,
the notion of aperiodic monoids is orthogonal to that of groups as they contain only
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trivial group-like structure (there are no elements with partial inverses). On the
same token, their representation theory is orthogonal to that of groups.

The main goal of this paper is to complete this program for the class of J -trivial
monoids (a monoid M is J -trivial provided that there exists a partial ordering ≤
on M such that for all x, y ∈ M , one has xy ≤ x and xy ≤ y). In this case, we
show that most of the combinatorial data of the representation theory, including
the Cartan matrix and the quiver can be expressed by counting particular elements
in the monoid itself. A second goal is to provide a self-contained introduction to
the representation theory of finite monoids, targeted at the algebraic combinatorics
audience, and focusing on the simple yet rich case of J -trivial monoids.

The class of J -trivial monoids is by itself an active subject of research (see
e.g. [ST88, HP00, Ver08]), and contains many monoids of interest, starting with
the 0-Hecke monoid. Another classical J -trivial monoid is that of nondecreasing
parking functions, or monoid of order preserving regressive functions on a chain.
Hivert and Thiéry [HT06, HT09] showed that it is a natural quotient of the 0-Hecke
monoid and used this fact to derive its complete representation theory. It is also a
quotient of Kiselman’s monoid which is studied in [KM09] with some representation
theory results. Ganyushkin and Mazorchuk [GM10] pursued a similar line with a
larger family of quotients of both the 0-Hecke monoid and Kiselman’s monoid.

The extension of the program to larger classes of monoids, like R-trivial or aperi-
odic monoids, is the topic of a forthcoming paper. Some complications necessarily
arise since the simple modules are not necessarily one-dimensional in the latter
case. The approach taken there is to suppress the dependence upon specific prop-
erties of orthogonal idempotents. Following a complementary line, Berg, Bergeron,
Bhargava, and Saliola [BBBS10] have very recently provided a construction for a
decomposition of the identity into orthogonal idempotents for the class of R-trivial
monoids.

The paper is arranged as follows. In Section 2 we recall the definition of a number
of classes of monoids, including the J -trivial monoids, define some running examples
of J -trivial monoids, and establish notation.

In Section 3 we establish the promised results on the representation theory of
J -trivial monoids, and illustrates them on several examples including the 0-Hecke
monoid. We describe the radical, construct combinatorial models for the projective
and simple modules, give a lifting construction to obtain orthogonal idempotents,
and describe the Cartan matrix and the quiver, with an explicit labelling of the
edges of the latter. We briefly comment on the complexity of the algorithms to
compute the various pieces of information, and their implementation in Sage. All
the constructions and proofs involve only combinatorics in the monoid or linear
algebra with unitriangular matrices. Due to this, the results do not depend on the
ground field K. In fact, we have checked that all the arguments pass to K = Z and
therefore to any ring (note however that the definition of the quiver that we took
comes from [ARO97], where it is assumed that K is a field). It sounds likely that
the theory would apply mutatis-mutandis to semi-rings, in the spirit of [IRS10].

Finally, in Section 4, we examine the monoid of order preserving regressive func-
tions on a poset P , which generalizes the monoid of nondecreasing parking functions
on the set {1, . . . , N}. We give combinatorial constructions for idempotents in the
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monoid and also prove that the Cartan matrix is upper triangular. In the case
where P is a meet semi-lattice (or, in particular, a lattice), we establish an idempo-
tent generating set for the monoid, and present a conjectural recursive formula for
orthogonal idempotents in the algebra.
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2. Background and Notation

A monoid is a set M together with a binary operation · : M ×M →M such that
we have closure (x · y ∈ M for all x, y ∈ M), associativity ( (x · y) · z = x · (y · z)
for all x, y, z ∈M), and the existence of an identity element 1 ∈M (which satisfies
1 · x = x · 1 = x for all x ∈ M). In this paper, unless explicitly mentioned, all
monoids are finite. We use the convention that A ⊆ B denotes A a subset of B, and
A ⊂ B denotes A a proper subset of B.

Monoids come with a far richer diversity of features than groups, but collections
of monoids can often be described as varieties satisfying a collection of algebraic
identities and closed under subquotients and finite products (see e.g. [Pin86, Pin10a]
or [Pin10a, Chapter VII]). Groups are an example of a variety of monoids, as are all
of the classes of monoids described in this paper. In this section, we recall the basic
tools for monoids, and describe in more detail some of the varieties of monoids that
are relevant to this paper. A summary of those is given in Figure 1.

In 1951 Green introduced several preorders on monoids which are essential for the
study of their structures (see for example [Pin10a, Chapter V]). Let M be a monoid
and define ≤R,≤L,≤J ,≤H for x, y ∈M as follows:

x ≤R y if and only if x = yu for some u ∈M
x ≤L y if and only if x = uy for some u ∈M
x ≤J y if and only if x = uyv for some u, v ∈M
x ≤H y if and only if x ≤R y and x ≤L y.
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Figure 1. Classes of finite monoids, with examples

These preorders give rise to equivalence relations:

x R y if and only if xM = yM

x L y if and only if Mx = My

x J y if and only if MxM = MyM

x H y if and only if x R y and x L y.

We further add the relation ≤B (and its associated equivalence relation B) defined
as the finest preorder such that x ≤B 1, and

(2.1) x ≤B y implies that uxv ≤B uyv for all x, y, u, v ∈M .

(One can view ≤B as the intersection of all preorders with the above property; there
exists at least one such preorder, namely x ≤ y for all x, y ∈M).

Beware that 1 is the largest element of these (pre)-orders. This is the usual
convention in the semi-group community, but is the converse convention from the
closely related notions of left/right/Bruhat order in Coxeter groups.

Definition 2.1. A monoid M is called K-trivial if all K-classes are of cardinality
one, where K ∈ {R,L,J ,H,B}.



6 TOM DENTON, FLORENT HIVERT, ANNE SCHILLING, AND NICOLAS M. THIÉRY

An equivalent formulation of K-triviality is given in terms of ordered monoids. A
monoid M is called:

right ordered if xy ≤ x for all x, y ∈M
left ordered if xy ≤ y for all x, y ∈M
left-right ordered if xy ≤ x and xy ≤ y for all x, y ∈M
two-sided ordered if xy = yz ≤ y for all x, y, z ∈M with xy = yz

ordered with 1 on top if x ≤ 1 for all x ∈M , and x ≤ y

implies uxv ≤ uyv for all x, y, u, v ∈M
for some partial order ≤ on M .

Proposition 2.2. M is right ordered (respectively left ordered, left-right ordered,
two-sided ordered, ordered with 1 on top) if and only if M is R-trivial (respectively
L-trivial, J -trivial, H-trivial, B-trivial).

When M is K-trivial for K ∈ {R,L,J ,H,B}, then ≤K is a partial order, called
K-order. Furthermore, the partial order ≤ is finer than ≤K: for any x, y ∈ M ,
x ≤K y implies x ≤ y.

Proof. We give the proof for right-order as the other cases can be proved in a similar
fashion.

Suppose M is right ordered and that x, y ∈ M are in the same R-class. Then
x = ya and y = xb for some a, b ∈ M . This implies that x ≤ y and y ≤ x so that
x = y.

Conversely, suppose that all R-classes are singletons. Then x ≤R y and y ≤R x
imply that x = y, so that the R-preorder turns into a partial order. Hence M is
right ordered using xy ≤R x. �

2.1. Aperiodic and R-trivial monoids. The class of H-trivial monoids coincides
with that of aperiodic monoids (see for example [Pin10a, Proposition 4.9]): a monoid
is called aperiodic if for any x ∈ M , there exists some positive integer N such that
xN = xN+1. The element xω := xN = xN+1 = xN+2 = · · · is then an idempotent
(the idempotent xω can in fact be defined for any element of any monoid [Pin10a,
Chapter VI.2.3], even infinite monoids; however, the period k such that xN = xN+k

need no longer be 1). We write E(M) := {xω | x ∈ M} for the set of idempotents
of M .

Our favorite example of a monoid which is aperiodic, but not R-trivial, is the
biHecke monoid studied in [HST10a, HST10b]. This is the submonoid of functions
from a finite Coxeter group W to itself generated simultaneously by the elementary
bubble sorting and antisorting operators πi and πi

(2.2) M(W ) := 〈π1, π2, . . . , πn, π1, π2, . . . , πn〉 .
See [HST10a, Definition 1.1] and [HST10a, Proposition 3.8].

The smaller class of R-trivial monoids coincides with the class of so-called weakly
ordered monoids as defined by Schocker [Sch08]. Also, via the right regular represen-
tation, any R-trivial monoid can be represented as a monoid of regressive functions
on some finite poset P (a function f : P → P is called regressive if f(x) ≤ x for
every x ∈ P ); reciprocally any such monoid isR-trivial. We now present an example
of a monoid which is R-trivial, but not J -trivial.



ON THE REPRESENTATION THEORY OF FINITE J -TRIVIAL MONOIDS 7

Example 2.3. Take the free left regular band B generated by two idempotents
a, b. Multiplication is given by concatenation taking into account the idempotent
relations, and then selecting only the two left factors (see for example [Sal07]). So
B = {1, a, b, ab, ba} and 1B = B, aB = {a, ab}, bB = {b, ba}, abB = {ab}, and
baB = {ba}. This shows that all R-classes consist of only one element and hence B
is R-trivial.

On the other hand, B is not L-trivial since {ab, ba} forms an L-class since b·ab = ba
and a · ba = ab. Hence B is also not J -trivial.

2.2. J -trivial monoids. The most important for our paper is the class of J -trivial
monoids. In fact, our main motivation stems from the fact that the submonoid
M1 = {f ∈ M | f(1) = 1} of the biHecke monoid M in (2.2) of functions that fix
the identity, is J -trivial (see [HST10a, Corollary 4.2] and [HST10b]).

Example 2.4. The following example of a J -trivial monoid is given in [ST88].
Take M = {1, x, y, z, 0} with relations x2 = x, y2 = y, xz = zy = z, and all other
products are equal to 0. Then M1M = M , MxM = {x, z, 0}, MyM = {y, z, 0},
MzM = {z, 0}, and M0M = {0}, which shows that M is indeed J -trivial. Note
also that M is left-right ordered with the order 1 > x > y > z > 0, which by
Proposition 2.2 is equivalent to J -triviality.

2.3. Ordered monoids (with 1 on top). Ordered monoids M with 1 on top form
a subclass of J -trivial monoids. To see this suppose that x, y ∈M are in the same
R-class, that is x = ya and y = xb for some a, b ∈ M . Since a ≤ 1, this implies
x = ya ≤ y and y = xb ≤ x so that x = y. Hence M is R-trivial. By analogous
arguments, M is also L-trivial. Since M is finite, this implies that M is J -trivial
(see [Pin10a, Chapter V, Theorem 1.9]).

The next example shows that ordered monoids with 1 on top form a proper
subclass of J -trivial monoids.

Example 2.5. The monoid M of Example 2.4 is not ordered. To see this suppose
that ≤ is an order on M with maximal element 1. The relation y ≤ 1 implies
0 = z2 ≤ z = xzy ≤ xy = 0 which contradicts z 6= 0.

It was shown by Straubing and Thérien [ST88] and Henckell and Pin [HP00] that
every J -trivial monoid is a quotient of an ordered monoid with 1 on top.

In the next two subsections we present two important examples of ordered monoids
with 1 on top: the 0-Hecke monoid and the monoid of regressive order preserving
functions, which generalizes nondecreasing parking functions.

2.4. 0-Hecke monoids. Let W be a finite Coxeter group. It has a presentation

(2.3) W = 〈 si for i ∈ I | (sisj)
m(si,sj), ∀i, j ∈ I 〉 ,

where I is a finite set, m(si, sj) ∈ {1, 2, . . . ,∞}, and m(si, si) = 1. The elements si
with i ∈ I are called simple reflections, and the relations can be rewritten as:

(2.4)

s2
i = 1 for all i ∈ I ,

sisjsisjsi · · ·︸ ︷︷ ︸
m(si,sj)

= sjsisjsisj · · ·︸ ︷︷ ︸
m(si,sj)

for all i, j ∈ I ,
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where 1 denotes the identity in W . An expression w = si1 · · · si` for w ∈ W is called
reduced if it is of minimal length `. See [BB05, Hum90] for further details on Coxeter
groups.

The Coxeter group of type An−1 is the symmetric group Sn with generators
{s1, . . . , sn−1} and relations:

(2.5)

s2
i = 1 for 1 ≤ i ≤ n− 1 ,

sisj = sjsi for |i− j| ≥ 2 ,

sisi+1si = si+1sisi+1 for 1 ≤ i ≤ n− 2 ;

the last two relations are called the braid relations.

Definition 2.6 (0-Hecke monoid). The 0-Hecke monoid H0(W ) = 〈πi | i ∈ I〉 of
a Coxeter group W is generated by the simple projections πi with relations

(2.6)

π2
i = πi for all i ∈ I,

πiπjπiπj · · ·︸ ︷︷ ︸
m(si,sj)

= πjπiπjπi · · ·︸ ︷︷ ︸
m(si,sj)

for all i, j ∈ I .

Thanks to these relations, the elements of H0(W ) are canonically indexed by the
elements of W by setting πw := πi1 · · · πik for any reduced word i1 . . . ik of w.

Bruhat order is a partial order defined on any Coxeter group W and hence also the
corresponding 0-Hecke monoid H0(W ). Let w = si1si2 · · · si` be a reduced expression
for w ∈ W . Then, in Bruhat order ≤B,

u ≤B w if there exists a reduced expression u = sj1 · · · sjk
where j1 . . . jk is a subword of i1 . . . i`.

In Bruhat order, 1 is the minimal element. Hence, it is not hard to check that, with
reverse Bruhat order, the 0-Hecke monoid is indeed an ordered monoid with 1 on
top.

In fact, the orders ≤L, ≤R, ≤J , ≤B on H0(W ) correspond exactly to the usual
(reversed) left, right, left-right, and Bruhat order on the Coxeter group W .

2.5. Monoid of regressive order preserving functions. For any partially or-
dered set P , there is a particular J -trivial monoid which has some very nice proper-
ties and that we investigate further in Section 4. Notice that we use the right action
in this paper, so that for x ∈ P and a function f : P → P we write x.f for the value
of x under f .

Definition 2.7 (Monoid of regressive order preserving functions). Let (P,≤P
) be a poset. The set OR(P ) of functions f : P → P which are

• order preserving, that is, for all x, y ∈ P, x ≤P y implies x.f ≤P y.f
• regressive, that is, for all x ∈ P one has x.f ≤P x

is a monoid under composition.

Proof. It is trivial that the identity function is order preserving and regressive and
that the composition of two order preserving and regressive functions is as well. �
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According to [GM09, 14.5.3], not much is known about these monoids.
When P is a chain on N elements, we obtain the monoid NDPFN of nondecreasing

parking functions on the set {1, . . . , N} (see e.g. [Sol96]; it also is described under
the notation Cn in e.g. [Pin10a, Chapter XI.4] and, together with many variants,
in [GM09, Chapter 14]). The unique minimal set of generators for NDPFN is given
by the family of idempotents (πi)i∈{1,...,n−1}, where each πi is defined by (i+1).πi := i
and j.πi := j otherwise. The relations between those generators are given by:

πiπj = πjπi for all |i− j| > 1 ,

πiπi−1 = πiπi−1πi = πi−1πiπi−1 .

It follows that NDPFn is the natural quotient of H0(Sn) by the relation πiπi+1πi =
πi+1πi, via the quotient map πi 7→ πi [HT06, HT09, GM10]. Similarly, it is a natural
quotient of Kiselman’s monoid [GM10, KM09].

To see that OR(P ) is indeed a subclass of ordered monoids with 1 on top, note
that we can define a partial order by saying f ≤ g for f, g ∈ OR(P ) if x.f ≤P x.g
for all x ∈ P . By regressiveness, this implies that f ≤ id for all f ∈ OR(P ) so
that indeed id is the maximal element. Now take f, g, h ∈ OR(P ) with f ≤ g.
By definition x.f ≤P x.g for all x ∈ P and hence by the order preserving property
(x.f).h ≤P (x.g).h, so that fh ≤ gh. Similarly since f ≤ g, (x.h).f ≤P (x.h).g so
that hf ≤ hg. This shows that OR(P ) is ordered.

The submonoid M1 of the biHecke monoid (2.2), and H0(W ) ⊂ M1, are sub-
monoids of the monoid of regressive order preserving functions acting on the Bruhat
poset.

2.6. Monoid of unitriangular Boolean matrices. Finally, we define the J -
trivial monoid Un of unitriangular Boolean matrices, that is of n × n matrices m
over the Boolean semi-ring which are unitriangular: m[i, i] = 1 and m[i, j] = 0
for i > j. Equivalently (through the adjacency matrix), this is the monoid of
the binary reflexive relations contained in the usual order on {1, . . . , n} (and thus
antisymmetric), equipped with the usual composition of relations. Ignoring loops,
it is convenient to depict such relations by acyclic digraphs admitting 1, . . . , n as
linear extension. The product of g and h contains the edges of g, of h, as well as
the transitivity edges i→k obtained from one edge i→j in g and one edge j→k in h.
Hence, g2 = g if and only if g is transitively closed.

The family of monoids (Un)n (respectively (NDPFn)n) plays a special role, be-
cause any J -trivial monoid is a subquotient of Un (respectively NDPFn) for n large
enough [Pin10a, Chapter XI.4]. In particular, NDPFn itself is a natural submonoid
of Un.

Remark 2.8. We now demonstrate how NDPFn can be realized as a submonoid of
relations. For simplicity of notation, we consider the monoid OR(P ) where P is the
reversed chain {1 > · · · > n}. Otherwise said, OR(P ) is the monoid of functions
on the chain {1 < · · · < n} which are order preserving and extensive (x.f ≥ x).
Obviously, OR(P ) is isomorphic to NDPFn.

The monoid OR(P ) is isomorphic to the submonoid of the relations A in Un such
that i→j ∈ A implies k→l ∈ A whenever i ≥ k ≥ l ≥ j (in the adjacency matrix:
(k, l) is to the south-west of (i, j) and both are above the diagonal). The isomorphism
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is given by the map A 7→ fA ∈ OR(P ), where

u · fA := max{v | u→v ∈ A} .
The inverse bijection f ∈ OR(P ) 7→ Af ∈ Un is given by

u→v ∈ Af if and only if u · f ≤ v .

For example, here are the elements of OR({1 > 2 > 3}) and the adjacency matrices
of the corresponding relations in U3:

1 1

2 2

3 3

1 1

2 2

3 3

1 1

2 2

3 3

1 1

2 2

3 3

1 1

2 2

3 3

1 0 0
0 1 0
0 0 1

 1 1 0
0 1 0
0 0 1

 1 0 0
0 1 1
0 0 1

 1 1 0
0 1 1
0 0 1

 1 1 1
0 1 1
0 0 1

 .

3. Representation theory of J -trivial monoids

In this section we study the representation theory of J -trivial monoids M , using
the 0-Hecke monoid H0(W ) of a finite Coxeter group as running example. In Sec-
tion 3.1 we construct the simple modules of M and derive a description of the radical
radKM of the monoid algebra of M . We then introduce a star product on the set
E(M) of idempotents in Theorem 3.4 which makes it into a semi-lattice, and prove
in Corollary 3.7 that the semi-simple quotient of the monoid algebra KM/ radKM
is the monoid algebra of (E(M), ?). In Section 3.2 we construct orthogonal idempo-
tents in KM/ radKM which are lifted to a complete set of orthogonal idempotents
in KM in Theorem 3.11 in Section 3.3. In Section 3.4 we describe the Cartan matrix
of M . We study several types of factorizations in Section 3.5, derive a combinatorial
description of the quiver of M in Section 3.6, and apply it in Section 3.7 to several
examples. Finally, in Section 3.8, we briefly comment on the complexity of the al-
gorithms to compute the various pieces of information, and their implementation in
Sage.

3.1. Simple modules, radical, star product, and semi-simple quotient. The
goal of this subsection is to construct the simple modules of the algebra of a J -trivial
monoid M , and to derive a description of its radical and its semi-simple quotient.
The proof techniques are similar to those of Norton [Nor79] for the 0-Hecke algebra.
However, putting them in the context of J -trivial monoids makes the proofs more
transparent. In fact, most of the results in this section are already known and admit
natural generalizations in larger classes of monoids (R-trivial, ...). For example, the
description of the radical is a special case of the one in Almeida, Margolis, Steinberg,
and Volkov [AMSV09], and that of the simple modules of [GMS09, Corollary 9].

Also, the description of the semi-simple quotient is often derived alternatively
from the description of the radical, by noting that it is the algebra of a monoid
which is J -trivial and idempotent (which is equivalent to being a semi-lattice; see
e.g. [Pin10a, Chapter VII, Proposition 4.12]).
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Proposition 3.1. Let M be a J -trivial monoid and x ∈ M . Let Sx be the 1-
dimensional vector space spanned by an element εx, and define the right action of
any y ∈M by

(3.1) εxy =

{
εx if xy = x,

0 otherwise.

Then Sx is a right M-module. Moreover, any simple module is isomorphic to Sx for
some x ∈M and is in particular one-dimensional.

Note that some Sx may be isomorphic to each other, and that the Sx can be
similarly endowed with a left M -module structure.

Proof. Recall that, if M is J -trivial, then ≤J is a partial order called J -order (see
Proposition 2.2). Let (x1, x2, . . . , xn) be a linear extension of J -order, that is an
enumeration of the elements of M such that xi ≤J xj implies i ≤ j. For 0 < i ≤ n,
define Fi = K{xj | j ≤ i} and set F0 = {0K}. Clearly the Fi’s are ideals of KM
such that the sequence

F0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fn−1 ⊂ Fn

is a composition series for the regular representation Fn = KM of M . Moreover, for
any i > 0, the quotient Fi/Fi−1 is a one-dimensional M -module isomorphic to Sxi .
Since any simple M -module must appear in any composition series for the regular
representation, it has to be isomorphic to Fi/Fi−1

∼= Sxi for some i. �

Corollary 3.2. Let M be a J -trivial monoid. Then, the quotient of its monoid
algebra KM by its radical is commutative.

Note that the radical radKM is not necessarily generated as an ideal by {gh−hg |
g, h ∈ M}. For example, in the commutative monoid {1, x, 0} with x2 = 0, the
radical is K(x− 0). However, thanks to the following this is true if M is generated
by idempotents (see Corollary 3.8).

The following proposition gives an alternative description of the radical of KM .

Proposition 3.3. Let M be a J -trivial monoid. Then

(3.2) {x− xω | x ∈M\E(M)}
is a basis for radKM .

Moreover (Se)e∈E(M) is a complete set of pairwise non-isomorphic representatives
of isomorphism classes of simple M-modules.

Proof. For any x, y ∈ M , either yx = y and then yxω = y, or yx <J y and then
yxω <J y. Therefore x− xω is in radKM because for any y the product εy(x− xω)
vanishes. Since xω ≤ x, by triangularity with respect to J -order, the family

{x− xω | x ∈M\E(M)} ∪ E(M)

is a basis of KM . There remains to show that the radical is of dimension at most the
number of non-idempotents in M , which we do by showing that the simple modules
(Se)e∈E(M) are not pairwise isomorphic. Assume that Se and Sf are isomorphic.
Then, since εee = εe, it must be that εef = εe so that ef = e. Similarly fe = f , so
that e and f are in the same J -class and therefore equal. �
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The following theorem elucidates the structure of the semi-simple quotient of the
monoid algebra KM .

Theorem 3.4. Let M be a J -trivial monoid. Define a product ? on E(M) by:

(3.3) e ? f := (ef)ω .

Then, the restriction of ≤J on E(M) is a lattice such that

(3.4) e ∧J f = e ? f ,

where e∧J f is the meet or infimum of e and f in the lattice. In particular (E(M), ?)
is an idempotent commutative J -trivial monoid.

We start with two preliminary easy lemmas (which are consequences of e.g. [Pin10a,
Chapter VII, Proposition 4.10]).

Lemma 3.5. If e ∈ E(M) is such e = ab for some a, b ∈M , then

e = ea = be = ae = eb .

Proof. For e ∈ E(M), one has e = e3 so that e = eabe. As a consequence, e ≤J
ea ≤J e and e ≤J be ≤J e, so that e = ea = be. In addition e = e2 = eab = eb and
e = e2 = abe = ae. �

Lemma 3.6. For e ∈ E(M) and y ∈M , the following three statements are equiva-
lent:

(3.5) e ≤J y, e = ey, e = ye .

Proof. Suppose that e, y are such that e ≤J y. Then e = ayb for some a, b ∈ M .
Applying Lemma 3.5 we obtain e = ea = be so that eye = eaybe = eee = e since
e ∈ E(M). A second application of Lemma 3.5 shows that ey = eye = e and
ye = eye = e. The converse implications hold by the definition of ≤J . �

Proof of Theorem 3.4. We first show that, for any e, f ∈ E(M) the product e ? f is
the greatest lower bound e ∧J f of e and f so that the latter exists. It is clear that
(ef)ω ≤J e and (ef)ω ≤J f . Take now z ∈ E(M) satisfying z ≤J e and z ≤J f .
Applying Lemma 3.6, z = ze = zf , and therefore z = z(ef)ω. Applying Lemma 3.6
backward, z ≤J (ef)ω, as desired.

Hence (E(M),≤J ) is a meet semi-lattice with a greatest element which is the
unit of M . It is therefore a lattice (see e.g. [Sta97, Wik10]). Since lower bound
is a commutative associative operation, (E(M), ?) is a commutative idempotent
monoid. �

We can now state the main result of this section.

Corollary 3.7. Let M be a J -trivial monoid. Then, (KE(M), ?) is isomorphic to
KM/ radKM and φ : x 7→ xω is the canonical algebra morphism associated to this
quotient.

Proof. Denote by ψ : KM → KM/ radKM the canonical algebra morphism. It
follows from Proposition 3.3 that, for any x (idempotent or not), ψ(x) = ψ(xω) and
that {ψ(e) | e ∈ E(M)} is a basis for the quotient. Finally, ? coincides with the
product in the quotient: for any e, f ∈ E(M),

ψ(e)ψ(f) = ψ(ef) = ψ((ef)ω) = ψ(e ? f) . �
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Corollary 3.8. Let M be a J -trivial monoid generated by idempotents. Then the
radical radKM of its monoid algebra is generated as an ideal by

(3.6) {gh− hg | g, h ∈M} .

Proof. Denote by C the ideal generated by {gh − hg | g, h ∈ M}. Since radKM is
the linear span of (x − xω)x∈M , it is sufficient to show that for any x ∈ M one has
x ≡ x2 (mod C). Now write x = e1 · · · en where ei are all idempotent. Then,

x ≡ e2
1 · · · e2

n ≡ e1 · · · ene1 · · · en ≡ x2 (mod C) . �

Example 3.9 (Representation theory of H0(W )). Consider the 0-Hecke monoid
H0(W ) of a finite Coxeter group W , with index set I = {1, 2, . . . , n}. For any
J ⊆ I, we can consider the parabolic submonoid H0(WJ) generated by {πi | i ∈ J}.
Each parabolic submonoid contains a unique longest element πJ . The collection
{πJ | J ⊆ I} is exactly the set of idempotents in H0(W ).

For each i ∈ I, we can construct the evaluation maps Φ+
i and Φ−i defined on

generators by:

Φ+
i : CH0(W )→ CH0(WI\{i})

Φ+
i (πj) =

{
1 if i = j,

πj if i 6= j,

and

Φ−i : CH0(W )→ CH0(WI\{i})

Φ−i (πj) =

{
0 if i = j,

πj if i 6= j.

One can easily check that these maps extend to algebra morphisms from H0(W )→
H0(WI\{i}). For any J , define Φ+

J as the composition of the maps Φ+
i for i ∈ J ,

and define Φ−J analogously (the map Φ+
J is the parabolic map studied by Billey,

Fan, and Losonczy [BFL99]). Then, the simple representations of H0(W ) are given

by the maps λJ = Φ+
J ◦ Φ−

Ĵ
, where Ĵ = I \ J . This is clearly a one-dimensional

representation.

3.2. Orthogonal idempotents. We describe here a decomposition of the identity
of the semi-simple quotient into minimal orthogonal idempotents. We include a
proof for the sake of completeness, though the result is classical. It appears for
example in a combinatorial context in [Sta97, Section 3.9] and in the context of
semi-groups in [Sol67, Ste06].

For e ∈ E(M), define

(3.7) ge :=
∑
e′≤J e

µe′,ee
′ ,

where µ is the Möbius function of ≤J , so that

(3.8) e =
∑
e′≤J e

ge′ .
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Proposition 3.10. The family {ge | e ∈ E(M)} is the unique maximal decomposi-
tion of the identity into orthogonal idempotents for ? that is in KM/ radKM .

Proof. First note that 1M =
∑

e ge by (3.8).
Consider now the new product • on KE(M) = K{ge | e ∈ E(M)} defined by

gu • gv = δu,vgu. Then,

u • v =
∑
u′≤J u

gu′ •
∑
v′≤J v

gv′ =
∑

w′≤u∧J v

gw′ = u ∧J v = u ? v .

Hence the product • coincides with ?.
Uniqueness follows from semi-simplicity and the fact that all simple modules are

one-dimensional. �

3.3. Lifting the idempotents. In the following we will need a decomposition of
the identity in the algebra of the monoid with some particular properties. The goal
of this section is to construct such a decomposition. The idempotent lifting is a
well-known technique (see [CR06, Chapter 7.7]), however we prove the result from
scratch in order to obtain a lifting with particular properties. Moreover, the proof
provided here is very constructive.

Theorem 3.11. Let M be a J -trivial monoid. There exists a family (fe)e∈E(M) of
elements of KM such that

• (fe) is a decomposition of the identity of KM into orthogonal idempotents:

(3.9) 1 =
∑

e∈E(M)

fe with fefe′ = δe,e′fe .

• (fe) is compatible with the semi-simple quotient:

(3.10) φ(fe) = ge with φ as in Corollary 3.7.

• (fe) is uni-triangular with respect to the J -order of M :

(3.11) fe = e+
∑
x<J e

cx,ex

for some scalars cx,e.

This theorem will follow directly from Proposition 3.15 below. In the proof, we
will use the following proposition:

Proposition 3.12. Let A be a finite-dimensional K-algebra and φ the canonical al-
gebra morphism from A to A/ radA. Let x ∈ A be such that e = φ(x) is idempotent.
Then, there exists a polynomial P ∈ xZ[x] (i.e. without constant term) such that
y = P (x) is idempotent and φ(y) = e. Moreover, one can choose P so that it only
depends on the dimension of A (and not on x or A).

Let us start with two lemmas, where we keep the same assumptions as in Propo-
sition 3.12, namely x ∈ A such that φ(x) = e is an idempotent:

Lemma 3.13. x(x− 1) is nilpotent: (x(x− 1))u = 0 for some u.

Proof. e = φ(x) is idempotent so that e(e− 1) = 0. Hence x(x− 1) ∈ radA and is
therefore nilpotent. �
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For any number a denote by dae the smallest integer larger than a.

Lemma 3.14. Suppose that (x(x−1))u = 0 and define y := 1−(1−x2)2 = 2x2−x4.
Then (y(y − 1))v = 0 with v = du

2
e.

Proof. It suffices to expand and factor y(y−1) = x2(x−1)2(x+1)2(x2−2). Therefore
(y(y − 1))v is divisible by (x(x− 1))u and must vanish. �

Proof of Proposition 3.12. Define y0 := x and yn+1 := 1 − (1 − y2
n)2. Then by

Lemma 3.13 there is a u0 such that (y0(y0 − 1))u0 = 0. Define un+1 = dun
2
e. Clearly

there is an N such that uN = 1. Then let y = yN . Clearly y is a polynomial in x
and y(y − 1) = 0 so that y is idempotent. Finally if φ(yn) = e then

(3.12) φ(yn+1) = φ(1− (1− y2
n)2) = 1− (1− e2)2 = 1− (1− e2) = e ,

so that φ(y) = e by induction.
Note that the nilpotency order u0 is smaller than the dimension of the algebra.

Hence the choice N = dlog2(dim(A))e is correct for all x ∈ A. �

In practical implementations, the given bound is much too large. A better method
is to test during the iteration of yn+1 := 1− (1− y2

n)2 whether y2
n = yn and to stop

if it holds.
For a given J -trivial monoid, we choose P according to the size of the monoid

and therefore, for a given x, denote by P (x) the corresponding idempotent.
Recall that in the semi-simple quotient, Equation (3.7) defines a maximal decom-

position of the identity 1 =
∑

e∈E(M) ge using the Möbius function. Furthermore, ge
is uni-triangular and moreover by Lemma 3.6 ge = ege = gee.

Now pick an enumeration (that is a total ordering) of the set of idempotents:

(3.13) E(M) = {e1, e2, . . . , ek} and gi := gei .

Then define recursively

f1 := P (g1), f2 := P ((1− f1)g2(1− f1)) , . . .(3.14)

and for i > 1, fi := P

(
(1−

∑
j<i

fj)gi(1−
∑
j<i

fj)

)
.(3.15)

We are now in position to prove Theorem 3.11:

Proposition 3.15. The fi defined above form a uni-triangular decomposition of the
identity compatible with the semi-simple quotient.

Proof. First it is clear that the fi are pairwise orthogonal idempotents. Indeed, since
P has no constant term one can write fi as

(3.16) fi = (1−
∑
j<i

fj)U .

Now, assuming that the (fj)j<i are orthogonal, the product fkfi with k < i must
vanish since fk(1−

∑
j<i fj) = fk− fk = 0. Therefore one obtains by induction that

for all j < i, fjfi = 0. The same reasoning shows that fifj = 0 with j < i.
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Next, assuming that φ(fj) = gj holds for all j < i, one has

(3.17) φ

(
(1−

∑
j<i

fj)gi(1−
∑
j<i

fj)

)
= (1−

∑
j<i

gj)gi(1−
∑
j<i

gj) = gi .

As a consequence φ(fi) = φ(P (gi)) = P (φ(gi)) = gi. So that again by induction
φ(fi) = gi holds for all i. Now φ(

∑
i fi) =

∑
i gi = 1. As a consequence 1 −

∑
i fi

lies in the radical and must therefore be nilpotent. But, by orthogonality of the fi
it must be idempotent as well:

(3.18) (1−
∑
i

fi)
2 = 1− 2

∑
i

fi + (
∑
i

fi)
2 = 1− 2

∑
i

fi +
∑
i

f 2
i =

1− 2
∑
i

fi +
∑
i

fi = 1−
∑
i

fi .

The only possibility is that 1−
∑

i fi = 0.
It remains to show triangularity. Since the polynomial P has no constant term

fi is of the form fi = AgiB for A,B ∈ KM . One can therefore write fi = AeigiB.
By definition of the J -order, any element of the monoid appearing with a nonzero
coefficient in fi must be smaller than or equal to ei. Finally, using φ one shows that
the coefficient of ei in fi must be 1 because the coefficient of ei in gi is 1 and that if
x <J ei then φ(x) = xω <J ei. �

3.4. The Cartan matrix and indecomposable projective modules. In this
subsection, we give a combinatorial description of the Cartan invariants of a J -
trivial monoid as well as its left and right indecomposable projective modules. The
main ingredient is the notion of lfix and rfix which generalize left and right descent
classes in H0(W ).

Proposition 3.16. For any x ∈M , the set

(3.19) rAut(x) := {u ∈M | xu = x}
is a submonoid of M . Moreover, its J -smallest element rfix(x) is the unique idem-
potent such that

(3.20) rAut(x) = {u ∈M | rfix(x) ≤J u} .
The same holds for the left: there exists a unique idempotent lfix(x) such that

(3.21) lAut(x) := {u ∈M | ux = x} = {u ∈M | lfix(x) ≤J u} .

Proof. The reasoning is clearly the same on the left and on the right. We write the
right one. The fact that rAut(x) is a submonoid is clear. Pick a random order on
rAut(x) and define

(3.22) r :=

 ∏
u∈rAut(x)

u

ω

.

Clearly, r is an idempotent which belongs to rAut(x). Moreover, by the definition
of r, for any u ∈ rAut(x), the inequality r ≤J u holds. Hence rfix(x) = r exists.
Finally it is unique by antisymmetry of ≤J (since M is J -trivial). �
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Note that, by Lemma 3.6,

rfix(x) = min{e ∈ E(M) | xe = x} ,(3.23)

lfix(x) = min{e ∈ E(M) | ex = x} ,(3.24)

the min being taken for the J -order. These are called the right and left symbol of
x, respectively.

We recover some classical properties of descents:

Proposition 3.17. lfix is decreasing for the R-order. Similarly, rfix is decreasing
for the L-order.

Proof. By definition, lfix(a)ab = ab, so that lfix(a) ∈ lAut(ab). One concludes that
lfix(ab) ≤R lfix(a). �

3.4.1. The Cartan matrix. We now can state the key technical lemma toward the
construction of the Cartan matrix and indecomposable projective modules.

Lemma 3.18. For any x ∈ M , the tuple (lfix(x), rfix(x)) is the unique tuple (i, j)
in E(M)× E(M) such that fix and xfj have a nonzero coefficient on x.

Proof. By Proposition 3.1, for any y ∈ KM , the coefficient of x in xy is the same
as the coefficient of εx in εxy. Now since Sx is a simple module, the action of y
on it is the same as the action of φ(y). As a consequence, εxfrfix(x) = εxgrfix(x).
Now εx rfix(x) = εx, and εxe = 0 for any e <J rfix(x), so that εxgrfix(x) = εx and
εxfrfix(x) = εx.

It remains to prove the uniqueness of fj. We need to prove that for any e 6= rfix(x),
the coefficient of x in xfe is zero. Since this coefficient is equal to the coefficient of
εx in εxfe it must be zero because εxfe = εxfrfix(x)fe = εx0 = 0 by the orthogonality
of the fi. �

During the proof, we have seen that the coefficient is actually 1:

Corollary 3.19. For any x ∈M , we denote bx := flfix(x)xfrfix(x). Then,

(3.25) bx = x+
∑
y<J x

cyy ,

with cy ∈ K. Consequently, (bx)x∈M is a basis for KM .

Theorem 3.20. The Cartan matrix of KM defined by ci,j := dim(fiKMfj) for
i, j ∈ E(M) is given by ci,j = |Ci,j|, where

(3.26) Ci,j := {x ∈M | i = lfix(x) and j = rfix(x)} .

Proof. For any i, j ∈ E(M) and x ∈ Ci,j, it is clear that bx belongs to fiKMfj. Now
because (bx)x∈M is a basis of KM and since KM =

⊕
i,j∈E(M) fiKMfj, it must be

true that (bx)x∈Ci,j
is a basis for fiKMfj. �
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Example 3.21 (Representation theory of H0(W ), continued). Recall that the left
and right descent sets and content of w ∈ W can be respectively defined by:

DL(w) = {i ∈ I | `(siw) < `(w)},
DR(w) = {i ∈ I | `(wsi) < `(w)},

cont(w) = {i ∈ I | si appears in some reduced word for w},

and that the above conditions on siw and wsi are respectively equivalent to πiπw =
πw and πwπi = πw. Furthermore, writing wJ for the longest element of the para-
bolic subgroup WJ , so that πJ = πwJ

, one has cont(πJ) = DL(wJ), or equivalently
cont(πJ) = DR(wJ). Then, for any w ∈ W , we have πωw = πcont(w), lfix(πw) = πDL(w),
and rfix(πw) = πDR(w).

Thus, the entry aJ,K of the Cartan matrix is given by the number of elements
w ∈ W having those left and right descent sets.

3.4.2. Projective modules. By the same reasoning we have the following corollary:

Corollary 3.22. The family {bx | lfix(x) = e} is a basis for the right projective
module associated to Se.

Actually one can be more precise: the projective modules are combinatorial.

Theorem 3.23. For any idempotent e denote by R(e) = eM ,

R=(e) = {x ∈ eM | lfix(x) = e} and R<(e) = {x ∈ eM | lfix(x) <R e} .

Then, the projective module Pe associated to Se is isomorphic to KR(e)/KR<(e). In
particular, the projective module Pe is combinatorial: taking as basis the image of
R=(e) in the quotient, the action of m ∈M on x ∈ R=(e) is given by:

(3.27) x ·m =

{
xm if lfix(xm) = e,

0 otherwise.

Proof. By Proposition 3.17, R(e) and R<(e) are two ideals in the monoid, so that
A := KR(e)/KR<(e) is a right M -module. In order to show that A is isomorphic
to Pe, we first show that A/ radA is isomorphic to Se and then use projectivity and
dimension counting to conclude the statement.

We claim that

(3.28) K(R=(e)\{e}) ⊆ radA .

Take indeed x ∈ R=(e)\{e}. Then, xω is in KR<(e) since lfix(xω) = xω ≤R x <R e.
If follows that, in A, x = x− xω = e(x− xω) which, by Proposition 3.3, is in radA.

Since radA ⊂ A, the inclusion in (3.28) is in fact an equality, and A/ radA is
isomorphic to Se. Then, by the definition of projectivity, any isomorphism from
Se = Pe/ radPe to A/ radA extends to a surjective morphism from Pe to A which,
by dimension count, must be an isomorphism. �
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Figure 2. The decomposition of H0(S4) into indecomposable right
projective modules. This decomposition follows the partition of S4

into left descent classes, each labelled by its descent set J . The blue,
red, and green lines indicate the action of π1, π2, and π3 respectively.
The darker circles indicate idempotent elements of the monoid.

Example 3.24 (Representation theory of H0(W ), continued). The right projective
modules of H0(W ) are combinatorial, and described by the decomposition of the
right order along left descent classes, as illustrated in Figure 2. Namely, let PJ be
the right projective module of H0(W ) corresponding to the idempotent πJ . Its basis
bw is indexed by the elements of w having J as left descent set. The action of πi
coincides with the usual right action, except that bw.πi = 0 if w.πi has a strictly
larger left descent set than w.

Here we reproduce Norton’s construction of PJ [Nor79], as it is close to an explicit
description of the isomorphism in the proof of Theorem 3.23. First, notice that the
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elements {π−i = (1 − πi) | i ∈ I} are idempotent and satisfy the same Coxeter
relations as the πi. Thus, the set {π−i } generates a monoid isomorphic to H0(W ).
For each J ⊆ I, let π−J be the longest element in the parabolic submonoid associated
to J generated by the π−i generators, and π+

J = πJ . For each subset J ⊆ I, let

Ĵ = I \ J . Define fJ = π−
Ĵ
π+
J . Then, fJπw = 0 if J ⊂ DL(w). It follows that

the right module fJH0(W ) is isomorphic to PJ and its basis {fJπw | DL(w) = J}
realizes the combinatorial module of PJ .

One should notice that the elements π−
Ĵ
π+
J are, in general, neither idempotent nor

orthogonal. Furthermore, π−
Ĵ
π+
JH0(W ) is not a submodule of πJH0(W ) as in the

proof of Theorem 3.23.
The description of left projective modules is symmetric.

3.5. Factorizations. It is well-known that the notion of factorization x = uv and
of irreducibility play an important role in the study of J -trivial monoids M . For
example, the irreducible elements of M form the unique minimal generating set of
M [Doy84, Doy91]. In this section, we further refine these notions, in order to obtain
in the next section a combinatorial description of the quiver of the algebra of M .

Let x be an element of M , and e := lfix(x) and f := rfix(x). By Proposition 3.16,
if x = uv is a factorization of x such that eu = e (or equivalently e ≤J u), then
u ∈ lAut(x), that is ux = x. Similarly on the right side, vf = f implies that xv = x.
The existence of such trivial factorizations for any element of M , beyond the usual
x = 1x = x1, motivate the introduction of refinements of the usual notion of proper
factorizations.

Definition 3.25. Take x ∈M , and let e := lfix(x) and f := rfix(x). A factorization
x = uv is

• proper if u 6= x and v 6= x;
• non-trivial if eu 6= e and vf 6= f (or equivalently e 6≤J u and f 6≤J v, or
u /∈ lAut(x) and v /∈ rAut(x));
• compatible if u and v are non-idempotent and

lfix(u) = e , rfix(v) = f and rfix(u) = lfix(v) .

Example 3.26. Among the factorizations of π2π1π3π2 in H0(S4), the following are
non-proper and trivial:

(id, π2π1π3π2) (π2, π2π1π3π2) (π2π1π3π2, id) (π2π1π3π2, π2) .

The two following factorizations are proper and trivial:

(π2, π1π3π2) (π2π1π3, π2) .

Here are the non-trivial and incompatible factorizations:

(π2π1, π3π2) (π2π3, π1π2) (π2π1, π1π3π2)
(π2π3, π1π3π2) (π2π1π3, π1π2) (π2π1π3, π3π2) .

The only non-trivial and compatible factorization is:

(π2π1π3, π1π3π2) .

Lemma 3.27. Any non-trivial factorization is also proper.
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Proof. Indeed by way of contradiction, if x = xv then v ∈ rAut(x) and therefore
rfix(x) ≤J v. The case x = vx can be proved similarly. �

Lemma 3.28. If x is an idempotent, x admits only trivial factorizations.

Proof. Indeed if x is idempotent then x = rfix(x) = lfix(x). Then from x = uv, one
obtains that x = xuv. Therefore x ≤J xu ≤J x and therefore x = xu. �

Lemma 3.29. Any compatible factorization is non-trivial.

Proof. Let x = uv be a compatible factorization. Then lfix(u) = e implies that
eu = u. Since u is not idempotent it cannot be equal to e so that eu 6= e. The same
holds on the other side. �

We order the factorizations of x by the product J -order: Suppose that x = uv =
u′v′. Then we write (u, v) ≤J (u′, v′) if and only if u ≤J u′ and v ≤J v′.

Lemma 3.30. If x = uv is a non-trivial factorization which is minimal for the
product J -order, then it is compatible.

Proof. Let x = uv be a minimal non-trivial factorization. Then (eu, vf) with e =
lfix(x) and f = rfix(x) is a factorization of x which is also clearly non-trivial. By
minimality we must have that u = eu and v = vf . On the other hand, lfix(u)x =
lfix(u)uv = uv = x, so that e = lfix(x) ≤J lfix(u) and therefore e = lfix(u). This
in turn implies that u is non-idempotent since it is different from its left fix. The
same holds on the right side.

It remains to show that rfix(u) = lfix(v). If g is an idempotent such that ug = u,
then x = u(gv) is a non-trivial factorization, because gvf ≤J vf <J f so that
gvf 6= f . Therefore by minimality, gv = v. By symmetry ug = u is equivalent to
gv = v. �

Putting together these two last lemmas we obtain:

Proposition 3.31. Take x ∈M . Then the following are equivalent:

(1) x admits a non-trivial factorization;
(2) x admits a compatible factorization.

Definition 3.32. An element is called irreducible if it admits no proper factoriza-
tion. The set of all irreducible elements of a monoid M is denoted by Irred(M).

An element is called c-irreducible if it admits no non-trivial factorization. The
set of all c-irreducible elements of a monoid M is denoted by c-Irred(M).

We also denote by Q(M) the set of c-irreducible non-idempotent elements.

Remark 3.33. By Lemma 3.27, Irred(M) ⊆ c-Irred(M). In particular c-Irred(M)
generates M .

3.6. The Ext-quiver. The goal of this section is to give a combinatorial description
of the quiver of the algebra of a J -trivial monoid. We start by recalling some well-
known facts about algebras and quivers.

Recall that a quiverQ is a directed graph where loops and multiple arrows between
two vertices are allowed. The path algebra KQ of Q is defined as follows. A path in
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Q is a sequence of arrows anan−1 · · · a3a2a1 such that the head of ai+1 is equal to the
tail of ai. The product of the path algebra is defined by concatenating paths if tail
and head matches and by zero otherwise. Let F denote the ideal in KQ generated
by the arrows of Q. An ideal I ⊆ KQ is said to be admissible if there exists an
integer m ≥ 2 such that Fm ⊆ I ⊆ F 2. An algebra is called split basic if and only if
all the simple A-modules are one-dimensional. The relevance of quivers comes from
the following theorem:

Theorem 3.34 (See e.g. [ARO97]). For any finite-dimensional split basic algebra A,
there is a unique quiver Q such that A is isomorphic to KQ/I for some admissible
ideal I.

In other words, the quiver Q can be seen as a first order approximation of the
algebra A. Note however that the ideal I is not necessarily unique.

The quiver of a split basic K-algebra A can be computed as follows: Let {fi | i ∈
E} be a complete system of primitive orthogonal idempotents. There is one vertex
vi in Q for each i ∈ E. If i, j ∈ E, then the number of arrows in Q from vi to vj is
dim fi

(
radA/rad2A

)
fj. This construction does not depend on the chosen system

of idempotents.

Theorem 3.35. Let M be a J -trivial monoid. The quiver of the algebra of M is
the following:

• There is one vertex ve for each idempotent e ∈ E(M).
• There is an arrow from vlfix(x) to vrfix(x) for every c-irreducible element x ∈

Q(M).

This theorem follows from Corollary 3.41 below.

Lemma 3.36. Let x ∈ Q(M) and set e = lfix(x) and f = rfix(x). Recall that, by
definition, whenever x = uv, then either eu = e or vf = f . Then,

(3.29) [x, e[R= {u ∈M | eu = u 6= e and uf = x}.

Proof. Obviously, {u ∈ M | eu = u 6= e and uf = x} ⊆ [x, e[R. Now take u ∈
[x, e[R. Then, u = ea for some a ∈ M and hence eu = eea = ea = u 6= e.
Furthermore, we can choose v such that x = uv with vf = v. Since x admits no
non-trivial factorization, we must have v = f . �

Proposition 3.37. Take x ∈ Q(M) and let e := lfix(x) and f := rfix(x). Then,
there exists a combinatorial module Mx with basis ε = εx, ξ = ξx and action given by

ε ·m :=


ε if m ∈ [e, 1]R
ξ if m ∈ [x, 1]R \ [e, 1]R
0 otherwise,

and(3.30)

ξ ·m :=

{
ξ if m ∈ [f, 1]R
0 otherwise.

(3.31)

This module of dimension 2 is indecomposable, with composition factors given by
[e] + [f ].
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Proof. We give a concrete realization of Mx. Let Ix := eM \ [x, e]R. This is a right
ideal, and we endow the interval [x, e]R with the quotient structure of eM/Ix. The
second step is to further quotient this module by identifying all elements in [x, e[R.
Namely, define

Θ : [x, e]R →Mx

e 7→ ε

u 7→ ξ for u ∈ [x, e[R.

(3.32)

It remains to prove that this map is compatible with the right action of M . This
boils down to checking that, for u ∈ [x, e[R and y ∈M :

(3.33) uy ∈ [x, e[R ⇐⇒ y ∈ [f, 1]R .

Recall that, by Lemma 3.36, uf = x. Hence, for y ∈ [f, 1]R, uy ≥R uf = x. Also,
since u ∈ [x, e[R we have that uy <R e. Now take y such that uy ∈ [x, e[R, and
let v = yf . Then uv = uyf = x, while v = vf . Therefore, since x is c-irreducible,
v = f . �

Corollary 3.38. The family (x− xω)x∈Q(M) is free modulo rad2 KM .

Proof. We use a triangularity argument: If some y ∈ KM lies in rad2 KM it must
act by zero on all modules without square radical. In particular it must act by zero
on all 2-dimensional modules. Suppose that

(3.34)
∑

x∈Q(M)

cx(x− xω)

with cx ∈ K acts by zero on all the previously constructed modulesMx. Suppose that
some cx is nonzero and choose such an x0 maximal in J -order. Consider the module
M := Mx0 . Since x0 ∈ Q(M), x0 is not idempotent so that xω0 ≤J x0 <J rfix(x0).
As a consequence

(3.35) εx0 · x0 = ξx0 and εx0 · xω0 = 0 .

Moreover, if x is not bigger than x0 in J -order, then x is also not bigger than x0 in
R-order, so that εx0 · x = 0. Therefore

(3.36) εx0 ·

 ∑
x∈Q(M)

cx(x− xω)

 = cx0ξx0

which must vanish in contradiction with the assumption. �

We now show that the square radical rad2 KM is at least as large as the number
of factorizable elements:

Proposition 3.39. Suppose that x = uv is a non-trivial factorization of x. Then

(3.37) (u− uω)(v − vω) = x+
∑
y<J x

cyy

for some scalars cy ∈ K.
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Proof. We need to show that uωv and uvω are both different from x. Suppose
that uωv = x. Then uωx = x so that lfix(x) ≤J uω. Since u lfix(x) ∈ lAut(x),
we have lfix(x) ≤J u lfix(x) ≤J lfix(x). Thus u lfix(x) = lfix(x) contradicting the
non-triviality of the factorization uv. The same reasoning shows that uvω <J x. �

Corollary 3.40. The family (x− xω)x∈Q(M) is a basis of radKM/ rad2 KM .

Proof. By Corollary 3.38 we know that radKM/ rad2 KM is at least of dimension
Card(Q(M)). We just showed that rad2 KM is at least of dimension Card(M) −
Card(E(M))−Card(Q(M)). Therefore all those inequalities must be equalities. �

We conclude by an explicit description of the arrows of the quiver as elements of
the monoid algebra.

Corollary 3.41. For all idempotents i, j ∈ E(M), the family (fi(x− xω)fj) where
x runs along the set of non-idempotent c-irreducible elements such that lfix(x) = i
and rfix(x) = j is a basis for fi radKMfj modulo rad2 KM .

Proof. By Corollary 3.19, one has (fixfj) = x +
∑

y<J x
cyy. Since xω <J x, such a

triangularity must also hold for (fi(x− xω)fj). �

Remark 3.42. By Remark 3.33 a J -trivial monoid M is generated by (the labels
of) the vertices and the arrows of its quiver.

Lemma 3.43. If x is in the quiver, then it is of the form x = epf with p irreducible,
e = lfix(x), and f = rfix(x). Furthermore, if p is idempotent, then x = ef .

Proof. Since x = ex = xf , one can always write x as x = eyf . Assume that y is not
irreducible, and write y = uv with u, v <J y. Then, since x is in the quiver, one has
either eu = e or vf = f , and therefore x = euf or x = evf . Repeating the process
inductively eventually leads to x = epf with p irreducible.

Assume further that p is an idempotent. Then, x = (ep)(pf) and therefore ep = e
or pf = f . In both cases, x = ef . �

Corollary 3.44. In a J -trivial monoid generated by idempotents, the quiver is
given by a subset of all products ef with e and f idempotents such that e and f are
respectively the left and right symbols of ef .

3.7. Examples of Cartan matrices and quivers. We now use the results of the
previous sections to describe the Cartan matrix and quiver of several monoids. Along
the way, we discuss briefly some attempts at describing the radical filtration, and
illustrate how certain properties of the monoids (quotients, (anti)automorphisms,
...) can sometimes be exploited.

3.7.1. Representation theory of H0(W ) (continued). We start by recovering the de-
scription of the quiver of the 0-Hecke algebra of Duchamp-Hivert-Thibon [DHT02]
in type A and of Fayers [Fay05] in general type. We further refine it by providing a
natural indexing of the arrows of the quiver by certain elements of H0(W ).

Proposition 3.45. The quiver elements x ∈ Q(M) are exactly the products x =
πJπK where J and K are two incomparable subsets of I such that, for any j ∈ J \K
and k ∈ K \ J , the generators πj and πk do not commute.
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Proof. Recall that the idempotents of H0(W ) are exactly the πJ for all subsets J
and that by Corollary 3.44, the c-irreducible elements are among the products πJπK .

First of all if J ⊆ K then πJπK = πKπJ = πK so that, for πJπK to be c-irreducible,
J and K have to be incomparable. Now suppose that there exists some j ∈ J \K
and k ∈ K \ J such that πjπk = πkπj. Then

(3.38) πJπK = πJπjπkπK = πJπkπjπK .

But since k /∈ J , one has πJπk 6= πJ . Similarly, πjπK 6= πK . This implies that
(πJπk, πjπK) is a non-trivial factorization of πJπK .

Conversely, suppose that there exists a non-trivial factorization πJπK = uv. Since
πJu 6= πJ , there must exist some k ∈ K\J such that u ≤J πk (or equivalently πk
appears in some and therefore any reduced word for u). Similarly, one can find
some j ∈ J\K such that v ≤J πj. Then, for <B as defined in (2.1), that is reversed
Bruhat order, we have

πJπK = πJuvπK ≤B πJπkπjπK ≤B πJπK ,
and therefore πJπkπjπK = πJπK . Hence the left hand side of this equation can be
rewritten to its right hand side using a sequence of applications of the relations of
H0(W ). Notice that using π2

i = πi or any non trivial braid relation preserves the
condition that there exists some πk to the left of some πj. Hence rewriting πJπkπjπK
into πJπK requires using the commutation relation πkπj = πjπk at some point, as
desired. �

3.7.2. About the radical filtration. Proposition 3.45 suggests to search for a natural
indexing by elements of the monoid not only of the quiver, but of the full Loewy
filtration.

Problem 3.46. Find some statistic r(m) for m ∈ M such that, for any two idem-
potents i, j and any integer k,

(3.39) dim fi
(

radk A/ radk+1 A
)
fj =

Card{m ∈M | r(m) = k, lfix(m) = i, rfix(m) = j} .

Such a statistic is not known for H0(W ), even in type A. Its expected generating
series for small Coxeter group is shown in Table 1. Note that all the coefficients
appearing there are even. This is a general fact:

Proposition 3.47. Let W be a Coxeter group and H0(W ) its 0-Hecke monoid.
Then, for any k, the dimension dk := dim radkKH0(W ) is an even number.

Proof. This is a consequence of the involutive algebra automorphism θ : πi 7→
1 − πi. This automorphism exchanges the eigenvalues 0 and 1 for the idempotent
πi. Therefore it exchanges the projective module PJ associated to the descent set J
(see Example 3.9 for the definition of PJ) with the projective module PJ associated
to the complementary descent set J = I \ J . As a consequence it must exchange
radk PJ and radk PJ which therefore have the same dimensions. Since there is no
self-complementary descent set, dk =

∑
J⊂I radk PJ must be even. �

Also, as suggested by Table 1, Problem 3.46 admits a simple solution for H0(In).
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Type Generating series
A1 2
A2 2q + 4
A3 6q2 + 10q + 8
A4 10q4 + 24q3 + 38q2 + 32q + 16
A5 14q7 + 48q6 + 72q5 + 144q4 + 172q3 + 150q2 + 88q + 32
B2 2q2 + 2q + 4
B3 6q4 + 10q3 + 14q2 + 10q + 8
B4 12q8 + 24q7 + 46q6 + 60q5 + 76q4 + 64q3 + 54q2 + 32q + 16
D2 4
D3 6q2 + 10q + 8
D4 6q6 + 12q5 + 20q4 + 38q3 + 62q2 + 38q + 16
H3 6q8 + 10q7 + 14q6 + 18q5 + 22q4 + 18q3 + 14q2 + 10q + 8
I5 2q3 + 2q2 + 2q + 4
I6 2q4 + 2q3 + 2q2 + 2q + 4
In 2qn−2 + · · ·+ 2q2 + 2q + 4

Table 1. The generating series
∑

k dim
(

radk A/ radk+1A
)
qk for the

0-Hecke algebras A = KH0(W ) of the small Coxeter groups.

Proposition 3.48. Let W be the n-th dihedral group (type In) and KH0(W ) its
0-Hecke algebra. Define ak = π1π2π1π2 · · · and bk = π2π1π2π1 · · · where both words
are of length k. Recall that the longest element of H0(W ) is ω = an = bn. Then, for
all k > 0, the set

(3.40) Rk := {ai − ω, bi − ω | k < i < n}
is a basis for radkKH0(W ). In particular, defining the statistic r(w) := `(w) − 1,
one obtains that the family

{ak+1 − ω, bk+1 − ω}
for 0 < k < n− 1 is a basis of radkKH0(W )/ radk+1 KH0(W ).

Note that if k < n− 1 then ω belongs to radk+1 KH0(W ). One can therefore take
{ak+1, bk+1} as a basis.

Proof. The case k = 1 follows from Proposition 3.3, and by Proposition 3.40 the
quiver is given by a2−ω and b2−ω. The other cases are then proved by induction,
using the following relations:

(a2 − ω)(aj − ω) = aj+2 − ω (a2 − ω)(bj − ω) = aj+1 − ω
(b2 − ω)(bj − ω) = bj+2 − ω (b2 − ω)(aj − ω) = bj+1 − ω. �

A natural approach to try to define such a statistic r(m) is to use iterated com-
patible factorizations. For example, one can define a new product •, called the
compatible product on M ∪ {0}, as follows:

x • y =

{
xy if lfix(x) = lfix(xy) and rfix(y) = rfix(xy) and rfix(x) = lfix(y),

0 otherwise.
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However this product is usually not associative. Take for example x = π14352, y =
π31254 and z = π25314 in H0(S5). Then, xy = π41352, yz = π35214 and xyz = π45312.
The following table shows the left and right descents of those elements:

left right
x = π14352 {2, 3} {2, 4}
y = π31254 {2, 4} {1, 4}
z = π25314 {1, 4} {2, 3}
xy = π41352 {2, 3} {1, 4}
yz = π35214 {1, 2, 4} {2, 3}
xyz = π45312 {2, 3} {2, 3}

Consequently (x•y)•z = (xy)•z = xyz whereas y•z = 0 and therefore x•(y•z) = 0.
Due to the lack of associativity there is no immediate definition for r(m) as the

“length of the longest compatible factorization”, and our various attempts to define
this concept all failed for the 0-Hecke algebra in type D4.

3.7.3. Nondecreasing parking functions. We present, without proof, how the descrip-
tion of the Cartan matrix of NDPFn in [HT06, HT09] fits within the theory, and
derive its quiver from that of H0(Sn).

Proposition 3.49. The idempotents of NDPFn are characterized by their image
sets, and there is one such idempotent for each subset of {1, . . . , n} containing 1.
For f an element of NDPFn, rfix(f) is given by the image set of f , whereas lfix(f)
is given by the set of all lowest point in each fiber of f ; furthermore, f is completely
characterized by lfix(f) and rfix(f).

The Cartan matrix is 0, 1, with cI,J = 1 if I = {i1 < · · · < ik} and J = {j1 <
· · · < jk} are two subsets of the same cardinality k with il ≤ jl for all l.

Proposition 3.50. Let M be a J -trivial monoid generated by idempotents. Suppose
that N is a quotient of M such that E(N) = E(M). Then, the quiver of N is a
subgraph of the quiver of M .

Note that the hypothesis implies that M and N have the same generating set.

Proof. It is easy to see that lfix and rfix are the same in M and N . Moreover, any
compatible factorization in M is still a compatible factorization in N . �

As a consequence one recovers the quiver of NDPFn:

Proposition 3.51. The quiver elements of NDPFn are the products πJ∪{i}πJ∪{i+1}
where J ⊂ {1, . . . , n− 1} and i, i+ 1 /∈ J .

Proof. Recall that NDPFn is the quotient of H0(Sn) by the relation πiπi+1πi =
πi+1πi, via the quotient map πi 7→ πi. For J a subset of {1, . . . , n − 1}, define ac-
cordingly πJ in NDPFn as the image of πJ in H0(Sn). Specializing Proposition 3.45
to type An−1, one obtains that there are four types of quiver elements:

• πJ∪{i}πJ∪{i+1} where J ⊂ {1, . . . , n− 1} and i, i+ 1 /∈ J ,
• πJ∪{i+1}πJ∪{i} where J ⊂ {1, . . . , n− 1} and i, i+ 1 /∈ J ,
• πK∪{i,i+2}πK∪{i+1} where K ⊂ {1, . . . , n− 1} and i, i+ 1, i+ 2 /∈ K,
• πK∪{i+1}πK∪{i,i+2} where K ⊂ {1, . . . , n− 1} and i, i+ 1, i+ 2 /∈ K.
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One can easily check that the three following factorizations are non-trivial:

• πJ∪{i+1}πJ∪{i} = (πJ∪{i+1}πi, πi+1πJ∪{i}),
• πK∪{i,i+2}πK∪{i+1} = (πK∪{i,i+2}πi+1, πi+2πK∪{i+1}),
• πK∪{i+1}πK∪{i,i+2} = (πK∪{i+1}πi, πi+1πK∪{i,i+2}).

Conversely, any non-trivial factorization of πJ∪{i}πJ∪{i+1} in NDPFn would have
been non-trivial in the Hecke monoid. �

3.7.4. The incidence algebra of a poset. We show now that we can recover the well-
known representation theory of the incidence algebra of a partially ordered set.

Let (P,≤) be a partially ordered set. Recall that the incidence algebra of P is
the algebra KP whose basis is the set of pairs (x, y) of comparable elements x ≤ y
with the product rule

(3.41) (x, y)(z, t) =

{
(x, t) if y = z,

0 otherwise.

The incidence algebra is very close to the algebra of a monoid except that 0 and 1 are
missing. We therefore build a monoid by adding 0 and 1 artificially and removing
them at the end:

Definition 3.52. Let (P,≤) be a partially ordered set. Let Zero and One be two ele-
ments not in P . The incidence monoid of P is the monoid M(P ), whose underlying
set is

M(P ) := {(x, y) ∈ P | x ≤ y} ∪ {Zero,One} ,

with the product rule given by Equation 3.41 plus One being neutral and Zero ab-
sorbing.

Proposition 3.53. Define an order � on M(P ) by

(3.42) (x, y) � (z, t) if and only if x ≤ z ≤ t ≤ y ,

and One and Zero being the largest and the smallest element, respectively. The
monoid M(P ) is left-right ordered for � and thus J -trivial.

Proof. This is trivial by the product rule. �

One can now use all the results on J -trivial monoids to obtain the representation
theory of M(P ). One gets back to KP thanks to the following result.

Proposition 3.54. As an algebra, KM(P ) is isomorphic to KOne ⊕ KP ⊕ KZero.

Proof. In the monoid algebra KM(P ), the elements (x, x) are orthogonal idempo-
tents. Thus e :=

∑
x∈P (x, x) is itself an idempotent and it is easily seen that KP is

isomorphic to e(KM(P ))e. �

One can then easily deduce the representation theory of KP :
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Proposition 3.55. Let (P,≤) be a partially ordered set and KP its incidence al-
gebra. Then the Cartan matrix C = (cx,y)x,y∈P of KP is indexed by P and given
by

cx,y =

{
1 if x ≤ y ,

0 otherwise.

The arrows of the quiver are x → y whenever (x, y) is a cover in P , that is, x ≤ y
and there is no z such that x ≤ z ≤ y.

Proof. Clearly lfix(x, y) = (x, x) and rfix(x, y) = (y, y). Moreover, the compatible
factorizations of (x, y) are exactly (x, z)(z, y) with x < z < y. �

3.7.5. Unitriangular Boolean matrices. Next we consider the monoid of unitriangu-
lar Boolean matrices Un.

Remark 3.56. The idempotents of Un are in bijection with the posets admitting
1, . . . , n as linear extension (sequence A006455 in [Se03]).

Let m ∈ Un and g be the corresponding digraph. Then mω is the transitive closure
of g, and lfix(g) and rfix(g) are given respectively by the largest “prefix” and “postfix”
of g which are posets: namely, lfix(g) (respectively rfix(g)) correspond to the subgraph
of g containing the edges i→j (respectively j→k) of g such that i→k is in g whenever
j→k (respectively i→j) is.

Figure 3 displays the Cartan matrix and quiver of U4; as expected, their nodes
are labelled by the 40 subposets of the chain. This figure further suggests that they
are acyclic and enjoy a certain symmetry, properties which we now prove in general.

The monoid Un admits a natural antiautomorphism φ; it maps an upper triangular
Boolean matrix to its transpose along the second diagonal or, equivalently, relabels
the vertices of the corresponding digraph by i 7→ n− i and then takes the dual.

Proposition 3.57. The Cartan matrix of Un, seen as a graph, and its quiver are
preserved by the non-trivial antiautomorphism induced by φ.

Proof. Remark that any antiautomorphism φ flips lfix and rfix:

lfix(φ(x)) = rfix(x) and rfix(φ(x)) = lfix(x) ,

and that the definition of c-irreducible is symmetric. �

Fix an ordering of the pairs (i, j) with i < j such that (i, j) always comes before
(j, k) (for example using lexicographic order). Compare two elements of Un lexico-
graphically by writing them as bit vectors along the chosen enumeration of the pairs
(i, j).

Proposition 3.58. The Cartan matrix of Un is unitriangular with respect to the
chosen order, and therefore its quiver is acyclic.

Proof. We prove that, if e = lfix(g) and f = rfix(g), then e ≤ f , with equality if and
only if g is idempotent.

If g is idempotent, then e = f = g, and we are done. Assume now that g is not
idempotent, so that e 6= g and f 6= g. Take the smallest edge j→k which is in g but
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1

0

3

210 32

10

32

10

3

2

10

32
10

3

2

1

0

32
10

3

2

1

0

3

2

1

0

3

210

32

1

0

3

2

10

3

2

1

0

32

1

0

3

2

1

0

3

2

1

0

3

2

10

3 2

1

0

3

2

10

32

10

3

2

10 3

2

10 3

2

1

0 32

10

3

210 3

2

1

0

3

2

10

3 2

10

3

2 10

3

2

10

3

2

10

32

1

0 3

2

10

32

1

0 3

2

1

0

3

2

1

0

3

2

1

0

3

2

1 0

32

10

3

2

1

0

3

210 32

10

32

10

3

2

10

32
10

3

2

1

0

32
10

3

2

1

0

3

2

1

0

3

210

32

1

0

3

2

10

3

2

1

0

32

1

0

3

2

1

0

3

2

1

0

3

2

10

3 2

1

0

3

2

10

32

10

3

2

10 3

2

10 3

2

1

0 32

10

3

210 3

2

1

0

3

2

10

3 2

10

3

2 10

3

2

10

3

2

10

32

1

0 3

2

10

32

1

0 3

2

1

0

3

2

1

0

3

2

1

0

3

2

1 0

32

10

3

2

Figure 3. On top, the Cartan matrix (drawn as a graph) and at
the bottom the quiver of U4. The edge labels have not been drawn
for readability; for the quiver, they can be recovered as the product
of two vertices. Those pictures have been produced automatically by
Sage, dot2tex, and graphviz, up to a manual reorganization of the
connected components using inkscape.
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not in f . Then, there exists i < j such that i→k is not in g but i→j is. Therefore
i→j is not in e, whereas by minimality it is in f . Hence, f > e, as desired. �

Looking further at Figure 3 suggests that the quiver is obtained as the transitive
reduction of the Cartan matrix; we checked on computer that this property still
holds for n = 5 and n = 6.

3.7.6. J -trivial monoids built from quivers. We conclude with a collection of ex-
amples showing in particular that any quiver can be obtained as quiver of a finite
J -trivial monoid.

Example 3.59. Consider a finite commutative idempotent J -trivial monoid, that
is a finite lattice L endowed with its meet operation. Denote accordingly by 0 and
1 the bottom and top elements of L. Extend L by a new generator p, subject to the
relations pep = 0 for all e in L, to get a J -trivial monoid M with elements given by
L ] {epf | e, f ∈ L}.

Then, the quiver of M is a complete digraph: its vertices are the elements of L,
and between any two elements e and f of L, there is a single edge which is labelled
by epf .

Example 3.60. Consider any finite quiver G = (E,Q), that is a digraph, possibly
with loops, cycles, or multiple edges, and with distinct labels on all edges. We

denote by e
l→f an edge in Q from e to f with label l.

Define a monoid M(G) on the set E ]Q ] {0, 1} by the following product rules:

e2 = e for all e ∈ E,

e e
l→f = e

l→f for all e
l→f ∈ Q,

e
l→f f = e

l→f for all e
l→f ∈ Q,

together with the usual product rule for 1, and all other products being 0. In
other words, this is the quotient of the path monoid P (G) of G (which is J -trivial)
obtained by setting p = 0 for all paths p of length at least two.

Then, M(G) is a J -trivial monoid, and its quiver is G with 0 and 1 added
as extra isolated vertices. Those extra vertices can be eliminated by considering
instead the analogous quotient of the path algebra of G (i.e. setting 0M(G) = 0K and
1M(G) =

∑
g∈E g).

Example 3.61. Choose further a lattice structure L on E∪{0, 1}. Define a J -trivial
monoid M(G,L) on the set E ]Q ] {0, 1} by the following product rules:

ef = e ∨L f for all e, f ∈ E,

e
l→f f ′ = e

l→f for all e
l→f ∈ Q and f ′ ∈ E with f ≤L f ′,

e′ e
l→f = e

l→f for all e
l→f ∈ Q and e′ ∈ E with e ≤L e′,

together with the usual product rule for 1, and all other products being 0. Note
that the monoid M(G) of the previous example is obtained by taking for L the
lattice where the vertices of G form an antichain. Then, the semi-simple quotient
of M(G,L) is L and its quiver is G (with 0 and 1 added as extra isolated vertices).
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Example 3.62. We now assume that G = (E,Q) is a simple quiver. Namely, there
are no loops, and between two distinct vertices e and f there is at most one edge
which we denote by e→f for short. Define a monoid structure M ′(G) on the set
E ]Q ] {0, 1} by the following product rules:

e2 = e for all e ∈ E,

ef = e→f for all e→f ∈ Q,

e e→f = e→f for all e→f ∈ Q,

e→f f = e→f for all e→f ∈ Q,

together with the usual product rule for 1, and all other products being 0.
Then, M ′(G) is a J -trivial monoid generated by the idempotents in E and its

quiver is G (with 0 and 1 added as extra isolated vertices).

Exercise 3.63. Let L be a lattice structure on E ∪{0, 1}. Find compatibility condi-
tions between G and L for the existence of a J -trivial monoid generated by idempo-
tents having L as semi-simple quotient and G (with 0 and 1 added as extra isolated
vertices) as quiver.

3.8. Implementation and complexity. The combinatorial description of the rep-
resentation theoretical properties of a J -trivial monoid (idempotents, Cartan ma-
trix, quiver) translate straightforwardly into algorithms. Those algorithms have been
implemented by the authors, in the open source mathematical system Sage [S+09],
in order to support their own research. The code is publicly available from the
Sage-Combinat patch server [SCc08], and is being integrated into the main Sage

library and generalized to larger classes of monoids in collaboration with other
Sage-Combinat developers. It is also possible to delegate all the low-level monoid
calculations (Cayley graphs, J -order, ...) to the blazingly fast C library Semigroupe

by Jean-Éric Pin [Pin10b].
We start with a quick overview of the complexity of the algorithms.

Proposition 3.64. In the statements below, M is a J -trivial monoid of cardinality
n, constructed from a set of m ≤ n generators s1, . . . , sm in some ambient monoid.
The product in the ambient monoid is assumed to be O(1). All complexity statements
are upper bounds, with no claim for optimality. In practice, the number of generators
is usually small; however the number of idempotents, which condition the size of the
Cartan matrix and of the quiver, can be as large as 2m.

(a) Construction of the left / right Cayley graph: O(nm) (in practice it usually
requires little more than n operations in the ambient monoid);

(b) Sorting of elements according to J -order: O(nm);
(c) Selection of idempotents: O(n);
(d) Calculation of all left and right symbols: O(nm);
(e) Calculation of the Cartan matrix: O(nm);
(f) Calculation of the quiver: O(n2).

Proof. (a): See [FP97]
(b): This is a topological sort calculation for the two sided Cayley graph which

has n nodes and 2nm edges.
(c): Brute force selection.
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For each of the following steps, we propose a simple algorithm satisfying the
claimed complexity.

(d): Construct, for each element x of the monoid, two bit-vectors l(x) = (l1, . . . , lm)
and r(x) = (r1, . . . , rm) with li = δsix,x and ri = δxsi,x. This information is trivial
to extract in O(nm) from the left and right Cayley graphs, and could typically be
constructed as a side effect of 3.64. Those bit-vectors describe uniquely lAut(x)
and rAut(x). From that, one can recover all lfix(x) and rfix(x) in O(nm): as a
precomputation, run through all idempotents e of M to construct a binary prefix
tree T which maps l(e) = r(e) to e; then, for each x in M , use T to recover lfix(x)
and rfix(x) from the bit vectors l(x) and r(x).

(e): Obviously O(n) once all left and right symbols have been calculated; so
O(nm) altogether.

(f): A crude algorithm is to compute all products xy in the monoid, check whether
the factorization is compatible, and if yes cross the result out of the quiver (brute
force sieve). This can be improved by running only through the products xy with
rfix(x) = lfix(y); however this does not change the worst case complexity (consider a
monoid with only 2 idempotents 0 and 1, like Nm truncated by any ideal containing
all but n− 2 elements, so that lfix(x) = rfix(x) = 1 for all x 6= 0). �

We conclude with a sample session illustrating typical calculations, using Sage

4.5.2 together with the Sage-Combinat patches, running on Ubuntu Linux 10.5

on a Macbook Pro 4.1. Note that the interface is subject to minor changes before
the final integration into Sage. The authors will gladly provide help in using the
software.

We start by constructing the 0-Hecke monoid of the symmetric group W = S4,
through its action on W :

sage: W = SymmetricGroup(4)

sage: S = semigroupe.AutomaticSemigroup(W.simple_projections(), W.one(),

... by_action = True, category=FiniteJTrivialMonoids())

sage: S.cardinality()

24

We check that it is indeed J -trivial, and compute its 8 idempotents:

sage: S._test_j_trivial()

sage: S.idempotents()

[[], [1], [2], [3], [1, 3], [1, 2, 1], [2, 3, 2], [1, 2, 1, 3, 2, 1]]

Here is its Cartan matrix and its quiver:

sage: S.cartan_matrix_as_graph().adjacency_matrix(),

S.quiver().adjacency_matrix()

(

[0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0]

[0 0 1 0 1 1 0 0] [0 0 1 0 1 1 0 0]

[0 1 0 0 1 0 0 0] [0 1 0 0 0 0 0 0]

[0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0]

[0 1 1 0 0 0 0 0] [0 1 0 0 0 0 0 0]

[0 1 0 0 0 0 1 1] [0 1 0 0 0 0 1 1]

[0 0 0 0 0 1 0 1] [0 0 0 0 0 1 0 0]

[0 0 0 0 0 1 1 0], [0 0 0 0 0 1 0 0]
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)

In the following example, we check that, for any of the 318 posets P on 6 vertices,
the Cartan matrix m of the monoid OR(P ) of order preserving nondecreasing func-
tions on P is unitriangular. To this end, we check that the digraph having m− 1 as
adjacency matrix is acyclic.

sage: from sage.combinat.j_trivial_monoids import *

sage: @parallel

...def check_cartan_matrix(P):

... return DiGraph(NDPFMonoidPoset(P).cartan_matrix()-1).is_directed_acyclic()

sage: time all(res[1] for res in check_cartan_matrix(list(Posets(6))))

CPU times: user 5.68 s, sys: 2.00 s, total: 7.68 s

Wall time: 255.53 s

True

Note: the calculation was run in parallel on two processors, and the displayed CPU
time is just that of the master process, which is not much relevant. The same
calculation on a eight processors machine takes about 71 seconds.

We conclude with the calculation of the representation theory of a larger example
(the monoid Un of unitriangular Boolean matrices). The current implementation is
far from optimized: in principle, the cost of calculating the Cartan matrix should
be of the same order of magnitude as generating the monoid. Yet, this implemen-
tation makes it possible to explore routinely, if not instantly, large Cartan matrices
or quivers that were completely out of reach using general purpose representation
theory software.

M = semigroupe.UnitriangularBooleanMatrixSemigroup(6)

Loading Sage library. Current Mercurial branch is: combinat

sage: time M.cardinality()

CPU times: user 0.14 s, sys: 0.02 s, total: 0.16 s

Wall time: 0.16 s

32768

sage: time M.cartan_matrix()

CPU times: user 27.50 s, sys: 0.09 s, total: 27.59 s

Wall time: 27.77 s

4824 x 4824 sparse matrix over Integer Ring

sage: time M.quiver()

CPU times: user 512.73 s, sys: 2.81 s, total: 515.54 s

Wall time: 517.55 s

Digraph on 4824 vertices

Figure 3 displays the results in the case n = 4.

4. Monoid of order preserving regressive functions on a poset P

In this section, we discuss the monoid OR(P ) of order preserving regressive func-
tions on a poset P . Recall that this is the monoid of functions f on P such that for
any x ≤ y ∈ P , x.f ≤ x and x.f ≤ y.f .

In Section 4.1, we discuss constructions for idempotents in OR(P ) in terms of
the image sets of the idempotents, as well as methods for obtaining lfix(f) and
rfix(f) for any given function f . In Section 4.2, we show that the Cartan matrix for
OR(P ) is upper uni-triangular with respect to the lexicographic order associated
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to any linear extension of P . In Section 4.3, we specialize to OR(L) where L is a
meet semi-lattice, describing a minimal generating set of idempotents. Finally, in
Section 4.4, we describe a simple construction for a set of orthogonal idempotents
in NDPFN , and present a conjectural construction for orthogonal idempotents for
OR(L).

4.1. Combinatorics of idempotents. The goal of this section is to describe the
idempotents in OR(P ) using order considerations. We begin by giving the definition
of joins, even in the setting when the poset P is not a lattice.

Definition 4.1. Let P be a finite poset and S ⊆ P . Then z ∈ P is called a join of
S if x ≤ z holds for any x ∈ S, and z is minimal with that property.

We denote Joins(S) the set of joins of S, and Joins(x, y) for short if S = {x, y}. If
Joins(S) (respectively Joins(x, y)) is a singleton (for example because P is a lattice)
then we denote

∨
S (respectively x∨ y) the unique join. Finally, we define Joins(∅)

to be the set of minimal elements in P .

Lemma 4.2. Let P be some poset, and f ∈ OR(P ). If x and y are fixed points of
f , and z is a join of x and y, then z is a fixed point of f .

Proof. Since x ≤ z and y ≤ z, one has x = x.f ≤ z.f and y = y.f ≤ z.f . Since
furthermore z.f ≤ z, by minimality of z the equality z.f = z must hold. �

Lemma 4.3. Let I be a subset of P which contains all the minimal elements of P
and is stable under joins. Then, for any x ∈ P , the set {y ∈ I | y ≤ x} admits
a unique maximal element which we denote by supI(x) ∈ I. Furthermore, the map
supI : x 7→ supI(x) is an idempotent in OR(P ).

Proof. For the first statement, suppose for some x 6∈ I there are two maximal
elements y1 and y2 in {y ∈ I | y ≤ x}. Then the join y1 ∧ y2 < x, since otherwise
x would be a join of y1 and y2, and thus x ∈ I since I is join-closed. But this
contradicts the maximality of y1 and y2, so the first statement holds.

Using that supI(x) ≤ x and supI(x) ∈ I, e := supI is a regressive idempotent by
construction. Furthermore, it is is order preserving: for x ≤ z, x.e and z.e must be
comparable or else there would be two maximal elements in I under z. Since z.e is
maximal under z, we have z.e ≥ x.e. �

Conversely, all idempotents are of this form:

Lemma 4.4. Let P be some poset, and f ∈ OR(P ) be an idempotent. Then the
image im(f) of f satisfies the following:

(1) All minimal elements of P are contained in im(f).
(2) Each x ∈ im(f) is a fixed point of f .
(3) The set im(f) is stable under joins: if S ⊆ im(f) then Joins(S) ⊆ im(f) .
(4) For any x ∈ P , the image x.f is the upper bound supim(f)(x).

Proof. Statement (4.4) follows from the fact that x.f ≤ x so that minimal elements
must be fixed points and hence in im(f).

For any x = a.f , if x is not a fixed point then x.f = (a.f).f 6= a.f , contradicting
the idempotence of f . Thus, the second statement holds.

Statement (4.4) follows directly from the second statement and Lemma 4.2.
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If y ∈ im(f) and y ≤ x then y = y.f ≤ x.f . Since this holds for every element of
{y ∈ im(f) | y ≤ x} and x.f is itself in this set, statement (4.4) holds. �

Thus, putting together Lemmas 4.3 and 4.4 one obtains a complete description of
the idempotents of OR(P ).

Proposition 4.5. The idempotents of OR(P ) are given by the maps supI , where I
ranges through the subsets of P which contain the minimal elements and are stable
under joins.

For f ∈ OR(P ) and y ∈ P , let f−1(y) be the fiber of y under f , that is, the set
of all x ∈ P such that x.f = y.

Definition 4.6. Given S a subset of a finite poset P , set C0(S) = S and Ci+1(S) =
Ci(S) ∪ {x ∈ P | x is a join of some elements in Ci(S)}. Since P is finite, there
exists some N such that CN(S) = CN+1(S). The join closure is defined as this stable
set, and denoted C(S). A set is join-closed if C(S) = S. Define

F (f) :=
⋃
y∈P

{x ∈ f−1(y) | x minimal in f−1(y)}

to be the collection of minimal points in the fibers of f .

Corollary 4.7. Let X be the join-closure of the set of minimal points of P . Then
X is fixed by every f ∈ OR(P ).

Lemma 4.8 (Description of left and right symbols). For any f ∈ OR(P ), there
exists a minimal idempotent fr whose image set is C(im(f)), and fr = rfix(f). There
also exists a minimal idempotent fl whose image set is C(F (f)), and fl = lfix(f).

Proof. The rfix(f) must fix every element of im(f), and the image of rfix(f) must
be join-closed by Lemma 4.4. fr is the smallest idempotent satisfying these require-
ments, and is thus the rfix(f).

Likewise, lfix(f) must fix the minimal elements of each fiber of f , and so must fix
all of C(F (f)). For any y 6∈ F (f), find x ≤ y such that x.f = y.f and x ∈ F (f).
Then x = x.fl ≤ y.fl ≤ y. For any z with x ≤ z ≤ y, we have x.f ≤ z.f ≤ y.f = x.f ,
so z is in the same fiber as y. Then we have (y.fl).f = y.f , so fl fixes f on the left.
Minimality then ensures that fl = lfix(f). �

Let P be a poset, and P ′ be the poset obtained by removing a maximal element
x of P . Then, the following rule holds:

Proposition 4.9 (Branching of idempotents). Let e = supI be an idempotent in
OR(P ′). If I ⊆ P is still stable under joins in P , then there exist two idempotents
in OR(P ) with respective image sets I and I ∪ {x}. Otherwise, there exists an
idempotent in OR(P ) with image set I ∪ {x}. Every idempotent in OR(P ) is
uniquely obtained by this branching.

Proof. This follows from straightforward reasoning on the subsets I which contain
the minimal elements and are stable under joins, in P and in P ′. �
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4.2. The Cartan matrix for OR(P ) is upper uni-triangular. We have seen
that the left and right fix of an element of OR(P ) can be identified with the subsets
of P closed under joins. We put a total order ≤lex on such subsets by writing them as
bit vectors along a linear extension p1, . . . , pn of P , and comparing those bit vectors
lexicographically.

Proposition 4.10. Let f ∈ OR(P ). Then, im(lfix(f)) ≤lex im(rfix(f)), with equal-
ity if and only if f is an idempotent.

Proof. Let n = |P | and p1, . . . , pn a linear extension of P . For k ∈ {0, . . . , n} set
respectively Lk = im(lfix(f)) ∩ {p1, . . . , pk} and Rk = im(rfix(f)) ∩ {p1, . . . , pk}.

As a first step, we prove the property (Hk): if Lk = Rk then f restricted to
{p1, . . . , pk} is an idempotent with image set Rk. Obviously, (H0) holds. Take now
k > 0 such that Lk = Rk; then Lk−1 = Rk−1 and we may use by induction (Hk−1).

Case 1: pk ∈ F (f), and is thus the smallest point in its fiber. This implies that
pk ∈ Lk, and by assumption, Lk = Rk. By (Hk−1), pk.f <lex pk gives a contradiction:
pk.f ∈ Rk−1, and therefore pk.f is in the same fiber as pk. Hence pk.f = pk.

Case 2: pk ∈ C(F (f)) = im(lfix(f)), but pk 6∈ F (f). Then pk is a join of two
smaller elements x and y of Lk = Rk; in particular, pk ∈ Rk. By induction, x and y
are fixed by f , and therefore pk.f = pk by Lemma 4.2.

Case 3: pk 6∈ C(F (f)) = im(lfix(f)); then pk is not a minimal element in its
fiber; taking pi <lex pk in the same fiber, we have (pk.f).f = (pi.f).f = pi.f = pk.f .
Furthermore, Rk = Rk−1 = {p1, . . . , pk−1}.f = {p1, . . . , pk}.f .

In all three cases above, we deduce that f restricted to {p1, . . . , pk} is an idem-
potent with image set Rk, as desired.

If Ln = Rn, we are done. Otherwise, take k minimal such that Lk 6= Rk. Assume
that pk ∈ Lk but not in Rk. In particular, pk is not a join of two elements x and y
in Lk−1 = Rk−1; hence pk is minimal in its fiber, and by the same argument as in
Case 3 above, we get a contradiction. �

Corollary 4.11. The Cartan matrix of OR(P ) is upper uni-triangular with respect
to the lexicographic order associated to any linear extension of P .

Problem 4.12. Find larger classes of monoids where this property still holds. Note
that this fails for the 0-Hecke monoid which is a submonoid of an OR(B) where B
is Bruhat order.

4.3. Restriction to meet semi-lattices. For the remainder of this section, let L
be a meet semi-lattice and we consider the monoid OR(L). Recall that L is a meet
semi-lattice if every pair of elements x, y ∈ L has a unique meet.

For a ≥ b, define an idempotent ea,b in OR(L) by:

x.ea,b =

{
x ∧ b if x ≤ a,

x otherwise.

Remark 4.13. The function ea,b is the (pointwise) largest element of OR(L) such
that a.f = b.

For a ≥ b ≥ c, ea,beb,c = ea,c. In the case where L is a chain, that is OR(L) =
NDPF|L|, those idempotents further satisfy the following braid-like relation:

eb,cea,beb,c = ea,beb,cea,b = ea,c.
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Proof. The first statement is clear. Take now a ≥ b ≥ c in a meet semi-lattice. For
any x ≤ a, we have x.ea,b = x ∧ b ≤ b, so x.(ea,beb,c) = x ∧ b ∧ c = x ∧ c, since b ≥ c.
On the other hand, x.ea,c = x ∧ c, which proves the desired equality.

Now consider the braid-like relation in NDPF|L|. Using the previous result, one
gets that eb,cea,beb,c = eb,cea,c and ea,beb,cea,b = ea,cea,b. For x > a, x is fixed by ea,c,
ea,b and eb,c, and is thus fixed by the composition. The other cases can be checked
analogously. �

Proposition 4.14. The family (ea,b)a,b, where (a, b) runs through the covers of L,
minimally generates the idempotents of OR(L).

Proof. Given f idempotent in OR(L), we can factorize f as a product of the idem-
potents ea,b. Take a linear extension of L, and recursively assume that f is the
identity on all elements above some least element a of the linear extension. Then
define a function g by:

x.g =

{
a if x = a,

x.f otherwise.

We claim that f = gea,a.f , and g ∈ OR(L). There are a number of cases that must
be checked:

• Suppose x < a. Then x.gea,a.f = (x.f).ea,a.f = x.f ∧ a.f = x.f , since x < a
implies x.f < a.f .
• Suppose x > a. Then x.gea,a.f = (x.f).ea,a.f = x.ea,a.f = x = x.f , since x is

fixed by f by assumption.
• Suppose x not related to a, and x.f ≤ a.f . Then x.gea,a.f = (x.f).ea,a.f =
x.f .
• Suppose x not related to a, and a.f ≤ x.f ≤ a. By the idempotence of f we

have a.f = a.f.f ≤ x.f.f ≤ a.f , so x.f = a.f , which reduces to the previous
case.
• Suppose x not related to a, but x.f ≤ a. Then by idempotence of f we have
x.f = x.f.f ≤ a.f , reducing to a previous case.
• For x not related to a, and x.f not related to a or x.f > a, we have x.f fixed

by ea,a.f , which implies that x.gea,a.f = x.f .
• Finally for x = a we have a.gea,a.f = a.ea,a.f = a ∧ a.f = a.f .

Thus, f = gea,a.f .
For all x ≤ a, we have x.f ≤ a.f ≤ a, so that x.g ≤ a.g = a. For all x > a,

we have x fixed by g by assumption, and for all other x, the OR(L) conditions are
inherited from f . Thus g is in OR(L).

For all x 6= a, we have x.g = x.f = x.f.f . Since all x > a are fixed by f , there is
no y such that y.f = a. Then x.f.f = x.g.g for all x 6= a. Finally, a is fixed by g,
so a = a.g.g. Thus g is idempotent.

Applying this procedure recursively gives a factorization of f into a composition
of functions ea,a.f . We can further refine this factorization using Remark 4.13 on
each ea,a.f by ea,a.f = ea0,a1ea1,a2 · · · eak−1,ak , where a0 = a, ak = a.f , and ai covers
ai−1 for each i. Then we can express f as a product of functions ea,b where a covers
b.
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This set of generators is minimal because ea,b where a covers b is the pointwise
largest function in OR(L) mapping a to b. �

As a byproduct of the proof, we obtain a canonical factorization of any idempotent
f ∈ OR(L).

Example 4.15. The set of functions ea,b do not in general generate OR(L). Let L
be the Boolean lattice on three elements. Label the nodes of L by triples ijk with
i, j, k ∈ {0, 1}, and abc ≥ ijk if a ≤ i, b ≤ j, c ≤ k.

Define f by f(000) = 000, f(100) = 110, f(010) = 011, f(001) = 101, and f(x) =
111 for all other x. Simple inspection shows that f 6= gea,a.f for any choice of g and
a.

4.4. Orthogonal idempotents. For {1, 2, . . . , N} a chain, one can explicitly write
down orthogonal idempotents for NDPFN . Recall that the minimal generators for
NDPFN are the elements πi = ei+1,i and that NDPFN is the quotient of H0(Sn) by
the extra relation πiπi+1πi = πi+1πi, via the quotient map πi 7→ πi. By analogy with
the 0-Hecke algebra, set π+

i = πi and π−i = 1− πi.
We observe the following relations, which can be checked easily.

Lemma 4.16. Let k = i− 1. Then the following relations hold:

(1) π+
i−1π

+
i π

+
i−1 = π+

i π
+
i−1,

(2) π−i−1π
−
i π
−
i−1 = π−i−1π

−
i ,

(3) π+
i π
−
i−1π

+
i = π+

i π
−
i−1,

(4) π−i π
+
i−1π

−
i = π+

i−1π
−
i ,

(5) π+
i−1π

−
i π

+
i−1 = π−i π

+
i−1,

(6) π−i−1π
+
i π
−
i−1 = π−i−1π

+
i .

Definition 4.17. Let D be a signed diagram, that is an assignment of a + or −
to each of the generators of NDPFN . By abuse of notation, we will write i ∈ D if
the generator πi is assigned a + sign. Let P = {P1, P2, . . . , Pk} be the partition of
the generators such that adjacent generators with the same sign are in the same set,
and generators with different signs are in different sets. Set ε(Pi) ∈ {+,−} to be

the sign of the subset Pi. Let π
ε(Pi)
Pi

be the longest element in the generators in Pi,
according to the sign in D. Define:

• LD := π
ε(P1)
P1

π
ε(P2)
P2

· · · πε(Pk)
Pk

,

• RD := π
ε(Pk)
Pk

π
ε(Pk−1)
Pk−1 · · · πε(P1)

P1
,

• and CD := LDRD.

Example 4.18. Let D = ++++−−−++. Then P = {{1, 2, 3, 4}, {5, 6, 7}, {8, 9}},
and the associated long elements are: π+

P1
= π+

4 π
+
3 π

+
2 π

+
1 , π−P2

= π−5 π
−
6 π
−
7 , and π+

P3
=

π+
9 π

+
8 . Then

LD = π+
P1
π−P2

π+
P3

= (π+
4 π

+
3 π

+
2 π

+
1 )(π−5 π

−
6 π
−
7 )(π+

9 π
+
8 ),

RD = π+
P3
π−P2

π+
P1

= (π+
9 π

+
8 )(π−5 π

−
6 π
−
7 )(π+

4 π
+
3 π

+
2 π

+
1 ).

The elements CD are the images, under the natural quotient map from the 0-
Hecke algebra, of the diagram demipotents constructed in [Den10a, Den10b]. An
element x of an algebra is demipotent if there exists some finite integer n such



40 TOM DENTON, FLORENT HIVERT, ANNE SCHILLING, AND NICOLAS M. THIÉRY

that xn = xn+1 is idempotent. It was shown in [Den10a, Den10b] that, in the
0-Hecke algebra, raising the diagram demipotents to the power N yields a set of
primitive orthogonal idempotents for the 0-Hecke algebra. It turns out that, under
the quotient to NDPFN , these elements CD are right away orthogonal idempotents,
which we prove now.

Remark 4.19. Fix i, and assume that f is an element in the monoid generated by
π−i+1, ..., π

−
N and π+

i+1, ..., π
+
N . Then, applying repeatedly Lemma 4.16 yields

π−i fπ
−
i = π−i f and π+

i fπ
+
i = fπ+

i .

The following proposition states that the elements CD are also the images of
Norton’s generators of the projective modules of the 0-Hecke algebra through the
natural quotient map to NDPFN .

Proposition 4.20. Let D be a signed diagram. Then,

CD =
∏

i=1,...,n, i 6∈D

π−i
∏

i=n,...,1, i∈D

π+
i .

In other words CD reduces to one of the following two forms:

• CD = (π−P1
π−P3
· · · π−P2k±1

)(π+
P2
π+
P4
· · · π+

P2k
), or

• CD = (π−P2
π−P4
· · · π−P2k

)(π+
P1
π+
P3
· · · π+

P2k±1
).

Proof. Let D be a signed diagram. If it is of the form −E, where E is a signed
diagram for the generators π2, . . . , πN−1, then using Remark 4.19,

CD = π−1 CEπ
−
1 = π−1 CE .

Similarly, if it is of the form +E, then:

CD = π+
1 CEπ

+
1 = CEπ

+
1 .

Using induction on the isomorphic copy of NDPFN−1 generated by π2, . . . , πN−1

yields the desired formula. �

Proposition 4.21. The collection of all CD forms a complete set of orthogonal
idempotents for NDPFN .

Proof. First note that CD is never zero; for example, it is clear from Proposition 4.20
that the full expansion of CD has coefficient 1 on

∏
i=n,...,1, i∈D π

+
i .

Take now D and D′ two signed diagrams. If they differ in the first position, it
is clear that CDCD′ = 0. Otherwise, write D = εE, and D′ = εE ′. Then, using
Remark 4.19 and induction,

CDC
′
D = πε1CEπ

ε
1π

ε
1CE′π

ε
1 = πε1CEπ

ε
1CE′π

ε
1

= πε1CECE′π
ε
1 = πε1δE,E′CEπ

ε
1 = δD,D′CD .

Therefore, the CD’s form a collection of 2N−1 nonzero orthogonal idempotents, which
has to be complete by cardinality. �

One can interpret the diagram demipotents for NDPFN as branching from the
diagram demipotents for NDPFN−1 in the following way. For any CD = LDRD in
NDPFN−1, the leading term of CD will be the longest element in the generators
marked by plusses in D. This leading idempotent has an image set which we will
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denote im(D) by abuse of notation. Now in NDPFN we can associated two ‘children’
to CD:

CD+ = LDπ
+
NRD and CD− = LDπ

−
NRD.

Then we have CD+ + CD− = CD, im(D+) = im(D) and im(D−) = im(D)
⋃
{N}.

We now generalize this branching construction to any meet semi-lattice to derive
a conjectural recursive formula for a decomposition of the identity into orthogonal
idempotents. This construction relies on the branching rule for the idempotents of
OR(L), and the existence of the maximal idempotents ea,b of Remark 4.13.

Let L be a meet semi-lattice, and fix a linear extension of L. For simplicity,
we assume that the elements of L are labelled 1, . . . , N along this linear extension.
Recall that, by Proposition 4.5, the idempotents are indexed by the subsets of L
which contain the minimal elements of L and are stable under joins. In order to
distinguish subsets of {1, . . . , N} and subsets of, say, {1, . . . , N − 1}, even if they
have the same elements, it is convenient to identify them with +− diagrams as
we did for NDPFN . The valid diagrams are those corresponding to subsets which
contain the minimal elements and are stable under joins. A prefix of length k of a
valid diagram is still a valid diagram (for L restricted to {1, . . . , k}), and they are
therefore naturally organized in a binary prefix tree.

Let D be a valid diagram, e = supD be the corresponding idempotent. If L is
empty, D = {}, and we set L{} = R{} = 1. Otherwise, let L′ be the meet semi-
lattice obtained by restriction of L to {1, . . . , N − 1}, and D′ the restriction of D to
{1, . . . , N − 1}.
Case 1 N is the join of two elements of im(D′) (and in particular, N ∈ im(D)).

Then, set LD = LD′ and RD = RD′ .
Case 2 N ∈ im(D). Then, set LD = LD′πN,N.e and RD = πN,N.eRD′ .
Case 3 N 6∈ im(D). Then, set LD = LD′(1− πN,N.e) and RD = (1− πN,N.e)RD′ .

Finally, set CD = LDRD.

Remark 4.22 (Branching rule). Fix now D′ a valid diagram for L′. If N is the
join of two elements of I ′, then CD′ = CD′+. Otherwise CD′ = CD′− + CD′+.

Hence, in the prefix tree of valid diagrams, the two sums of all CD’s at depth k
and at depth k + 1 respectively coincide. Branching recursively all the way down to
the root of the prefix tree, it follows that the elements CD form a decomposition of
the identity. Namely,

1 =
∑

D valid diagram

CD .

Conjecture 4.23. Let L be a meet semi-lattice. Then, the set

{CD | D valid diagram}
forms a set of demipotent elements for OR(L) which, raised each to a sufficiently
high power, yield a set of primitive orthogonal idempotents.

This conjecture is supported by Proposition 4.21, as well as by computer ex-
ploration on all 1377 meet semi-lattices with at most 8 elements and on a set of
meet semi-lattices of larger size which were considered likely to be problematic by
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the authors. In all cases, the demipotents were directly idempotents, which might
suggest that Conjecture 4.23 could be strengthened to state that the collection
{CD | D valid diagram} forms directly a set of primitive orthogonal idempotents for
OR(L).
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