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Random turns model of vicious walkers

In general: k walkers on N x N with steps from the set {—, 7, \/}. At
each step exactly one walker makes a step from the set { 7, \/}.
Non-intersecting: At no time any two paths share a vertex.

Figure: Correspondence between a walk in 0 < x; < x2 from (1,2) to (3,6) and
two vicious walkers from (0,0) — (8,2) and (0,1) — (8,5)
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Random turns model of vicious walkers

In general: k walkers on N x N with steps from the set {—, 7, \/}. At
each step exactly one walker makes a step from the set { 7, \ }.
Non-intersecting: At no time any two paths share a vertex.

This corresponds to a walk in 0 < x; < --- < xx with steps of the
form (0,...,0,1,0,...,0).
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Figure: Correspondence between a walk in 0 < x; < x2 from (1,2) to (3,6) and
two vicious walkers from (0,0) — (8,2) and (0,1) — (8,5)
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Lock step model of vicious walkers

In general: k walkers on N x N with steps from the set { 7, \}.
Non-intersecting: At no time any two paths share a vertex.

Figure: Correspondence between a walk in 0 < x; < x2 from (1,2) to (1,7) and
two vicious walkers from (0,0) — (8,0) and (0,1) — (8,6)
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Lock step model of vicious walkers

In general: k walkers on N x N with steps from the set { 7, \}.
Non-intersecting: At no time any two paths share a vertex.

This corresponds to a walk in 0 < x; < --- < xx with steps of the
form (£1,...,£1).
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Figure: Correspondence between a walk in 0 < x; < x2 from (1,2) to (1,7) and
two vicious walkers from (0,0) — (8,0) and (0,1) — (8,6)
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k-non-crossing tangled diagrams

(k + 1)-non-crossing tangled diagrams on the set {1,2,..., n} correspond
to walks of length nin 0 < x; < --- < xx with either steps from the set

{0}uAuUA? (with isolated points)
or with steps from the set

AU A? (without isolated points),

where A4 = {/,\}k.
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The model

We consider lattice walks on a regular lattice £ C R* that are confined
to the region

Woz{(Xl,...,Xk)EL: . 0<X1<"'<Xk}-
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The model

We consider lattice walks on a regular lattice £ C R* that are confined
to the region

Woz{(X]_,...,Xk)EL: . 0<X1<"'<Xk}-

The walks are required to be reflectable. (This restricts £ as well as the
steps the walks may consist of.)
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Introduction

Some notation

WO ={(xt,...,x) ERF 1 0<xq < < x¢}

W = {(x,. F0<x < < xi}

..,Xk)ERk :
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Some notation

WO ={(xt,...,x) ERF 1 0<xq < < x¢}
W= {(x,...,x) ERF 1 0<x < < x}

Let {b(l)7 .. .,b(")} denote the canonical basis in R¥, and set

A= {bU+1>—bU> L1<j< k}u{b(1>}.



Introduction 7/25

Some notation

WO ={(xt,...,x) ERF 1 0<xq < < x¢}
W= {(x,...,x) ERF 1 0<x < < x}

Let {b(l)7 .. .,b(")} denote the canonical basis in R¥, and set

A= {bU+1>—bU> L1<j< k}u{b<1>}.

The set A is a root system of the reflection group of type By generated
by the reflections in the hyperplanes

X1 —Xx =0 forl<j<k and x1 = 0.
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Atomic step sets and composite step sets

Definition
Let A C R¥ be a finite set and denote by £ the Z-lattice spanned by A.
Then the set A is said to be an atomic step set if and only if

> If a € A then r,(a) € A for all a € A.
» fueW’nLandac AthenutacW.
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Atomic step sets and composite step sets

Definition
Let A C R¥ be a finite set and denote by £ the Z-lattice spanned by A.
Then the set A is said to be an atomic step set if and only if

> If a € A then r,(a) € A for all a € A.
» fueW’nLandac AthenutacW.

Definition
A finite set S consisting of finite sequences of elements of an atomic step
set is said to be an composite step set if and only if

@Y, ... ;amMy eSS = (r,(aV),..., r,(a¥),al*V .. aM)e S

forallaoe Aandj=1,..., m
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Statement of the problem

Let u,v € WO N L. We are interested in

» Pt(u— v), the generating function of n-step walks from u to v
confined to W°.
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Statement of the problem

Let u,v € WO N L. We are interested in

» Pt(u— v), the generating function of n-step walks from u to v
confined to W°.

What is the asymptotic behaviour of P (u — v) as n — oo?
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Known results

» Krattenthaler et al.: The number of vicious walkers in the lock step
model starting at (0,0),(0,2),...,(2,2k — 2) and ending in
(2n,0),(2n,2),...,(2n,2k — 2) is asymptotically equal to

k
4kn2k27k7rfk/2nfk27k/2 H(zj — 1)L
j=1

» Chen, Zeilberger et al.: The number of k-noncrossing tangled
diagrams behaves like

const - n~ (KD HED/2 (404 1Y% 4 2(k — 1) +1)".
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Asymptotics for P, (u — v)

Theorem

Let M we denote the set of maximal points of
(15 -y k) — |S(e¥r, ..., e
We have the asymptotics

ONK2 151, 1) \ KR
P (u—v) = IM|S(L,...,1)" (F) (nS((l)l))

<1<4<Hm<k(v’% = v “12)> <Jﬁ1 vjuj
X (Hjlle(zj - 1)!)

as n — oo in the set {n : P (u—v) > 0}.

11 /25



Exact enumeration 12 /25

The reflection principle

Theorem (Gessel, Zeilberger)

Under certain assumptions on the step set, we have

Pf(u—v) = Z(—l)/(r)P,,(r(u)—w).

I’EBk
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The reflection principle

Theorem (Gessel, Zeilberger)

Under certain assumptions on the step set, we have

Pf(u—v) = Z(—l)/(r)P,,(r(u)—w).

I’EBk
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The step generating function

We associate
s=(aY,...,aMes — w(s)z’,

where 6s = a(t) + ... +alk). The step generating function S(zi,...,z)

is defined by
S(z1,y ... z) = Z w(s)z%.
seES
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The step generating function

We associate

s=(aY,...,aMes — w(s)z’,
where s = a® 4 ... + a(k). The step generating function S(z, ..., zk)
is defined by
S(z1,y ... z) = Z w(s)z%.
seS

The generating function for n-step walks u — v is given by

Po(u —v) = [2](2"S(z1, ..., z)") = [ 7" ... 207 %] S(z1, ..., z)"
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The step generating function - Properties

Lemma (Grabiner and Magyar)
For type By, the only reflectable sets are

k
{ib(1)7ib(2),...,ib(k)} and {Zajb(f):sje{il}}
j=1
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The step generating function - Properties

Lemma (Grabiner and Magyar)
For type By, the only reflectable sets are

k
{ib(l)7 +b® .. ib(k)} and Zsjb(j) s gy e {£1}
j=1
Corollary
The composite step generating function S(zy, ..., zx) is either equal to
a 1 a 1
P Z<2j+z> or P H<2j+z>
j=1 J j=1 J

for some polynomial P with non-negative coefficients.
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An exact counting formula

Lemma
For any two lattice points u,v € W° N L we have

1
Prlu—v)= —o—F—
n ( ) (21)2mk k!
X det (z-""’—zf”’") det (zf”"—zf"’")
/ / 1<j,m<k \J J 1<j,m<k \J J
|z1]==|z|=1

k

X 5(21,...,2;()" 1_[ﬁ

1Z;
j=1
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An exact counting formula - Proof

The reflection principle gives us for P} (u — v) the expression

k

Vi—E1lg(1) Vi —EkUo (k) n

E H€j sgn (o) |z Sz S(z1,. oy zi)",
j=1

o€y
€1,..,ek€{~1,+1}
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An exact counting formula - Proof

The reflection principle gives us for P} (u — v) the expression

k
Vi—E€1lg(1) Vk —E€kUg (k) n
E HEJ' sgn (o) |z Sz S(z1,. oy zi)",
=1

o€y
€1,..,ek€{~1,+1}

which, by virtue of Cauchy's formula, turns into

ﬁ // Z sgn (o) : ijua(ﬁ

oeGy j=1

ll==lad=t | ee{ 1,41}

k

dz;

n J

><5(21,...7Zk) Ili\/ﬂrl
Jj=1%j
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An exact counting formula - Proof

The reflection principle gives us for P} (u — v) the expression

k
i Vi—E€1Ug(1) Vk —E€kUg (k) n
E HEJ sgn (o) |z Sz S(z1,. oy zi)",
cE€S j=1

€1,..,ek€{~1,+1}

which, by virtue of Cauchy's formula, turns into

1 um —Umn
(2mi)k // 13?,339(21' ~% )

|z1]=---=[2x|=1

dz:
X S(z1y. .o zi)" H%

=1 %
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Asymptotics

The substitution z; — €%/ gives us

+ i i
Pr(u—v)= i / /1 det  (sin(umpj)) 1<Jd’?7;cgk (sin(vmep;))

<j,m<k

K
x S(et, ..., elPK) H dy;.
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Asymptotics

The substitution z; — €%/ gives us

+
Po (u—v) Tkl / /1<Jd?1;c<k sin um%))lgd,?:gk

K
ei“"k)"Hdgaj.
j=1

x S(er, ...,

We are interested in asymptotics as n — co.

(sin(vim®;))
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Example: 2-noncrossing tangled diagrams

For 2-noncrossing tangled diagrams, the integral derived on the previous
two pages is given by (a = (1))

™

Pf(a—a) = / sin(p)? (1 + 2 cos(y) + 4 cos()?)" dep.

—T

5.x10°
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Saddlepoint asymptotics

Hence, we know that M, the set of maximal points of
(1, k) = [S(e'9, .. €™%)|

is a subset of {0, 7}".
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Saddlepoint asymptotics

Hence, we know that M, the set of maximal points of
(1, k) = [S(e'9, .. €™%)|

is a subset of {0, 7}".
Further, it is seen that

P (u— v) ~ |M|// det  (sin(umep;)) det_ (sin(Vmep;))

1<),m<k 1<j,m<k

x S(e,... 'W)"Hdsa,,

where we choose ¢ = ¢(n) = n~5/12,
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Saddlepoint asymptotics

It remains to asymptotically evaluate

1<j,m<k

k
/ / det  (sin(umej)) 15(;'j$7:c<k (sin(vmi;)) S(e, ..., eiwk)angoj
,m< ey
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Saddlepoint asymptotics

It remains to asymptotically evaluate

1<j,m<k 1<j,m<k

k
/ / det  (sin(umy;)) det (sin(vimp;)) S(e, ..., /%) H dy;j
j=1

Simple calculations show that
S(e, . )" = S(1,..., 1)e ™M B2 (140 (n75)

for max;|p;| < n~5/12

s'(1,...
, where A = SH,0)
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Saddlepoint asymptotics

It remains to asymptotically evaluate

1<j,m<k 1<j,m<k

k
/ / det  (sin(umy;)) det (sin(vimp;)) S(e, ..., /%) H dy;j
j=1

Simple calculations show that
S(e, . )" = S(1,..., 1)e ™M B2 (140 (n75)

for max;|p;| < n~5/12

s'(1,...
, where A = SH,0)

. Y
But how do we expand 1§Slfla%k(sm(um%)).
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Determinants and asymptotics: Technique

Lemma
Let Am(Xj, ym) be analytic for max;|x;| < R. Then we have

det (An(g. ) =

)

H (Xm —x;) | . det = / An(&: Ym)dE
A T T agimsk | 2mi j
1sj<ms lei=r  T1(€—xe)
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Determinants and asymptotics: Technique

Lemma
Let Am(Xj, ym) be analytic for max;|x;| < R. Then we have

det (An(g. ) =

)

_ 1 Am(&, ym)dE
H (xm =) 13?5,}9 %/

' j
1<j<m<k lei=r  T1(€—xe)
Proof.
- 1 Am(g,ym)df
1<dfnt§k(A'"(X”y'")) N 1§?fnt§k 2i / §£—X

[€1=R
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Determinants and asymptotics: Technique

Lemma
Let Am(Xj, ym) be analytic for max;|x;| < R. Then we have

det  (Am(xj,ym)) =

1<j,m<k
1 Am(f,)’m)df
( H (Xm_xj)) 15?%9 27 / i
teemsk gi=r T1(6 —x)
Proof.
[ Aol [ Aalsmoc
|€1=R (§—Xj) |€|=R (& —xt)

~ (% —x A(&, y)dE
= J)/|§R (€ —x)( - xt)’
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Determinants and asymptotics: det(sin(upnyp;))

Lemma
For all uy,...,ux € R we have as (¢1,...,0k) — (0,...,0) the
asymptotics

2 (-1
et (sin(ume) (H%) ( —soj)) (J];[l ((21_)11),)
uj up = u?) | 4+ O | max|g* ) | .
((H ) ( [ )) (m |90|>)
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Determinants and asymptotics: Proof

We have to take into account the symmetry

sin(umypj) = % (sin(umepj) — sin(—ume;j))
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Determinants and asymptotics: Proof

We have to take into account the symmetry

. N1 [ 1 sin(um)d§ 1 sin(—um&)d¢
sin(umei) =5 (27Ti /|§|—R £— o 2mi /§—R -y )
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Determinants and asymptotics: Proof

We have to take into account the symmetry

k2 sin(um&)d¢
I

sin(umypj) = 27 S ey
= i
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Determinants and asymptotics: Proof

We have to take into account the symmetry

- N ©;j sin(Umf)df
sin(ume;j) = 277:, /Iél—R f‘@z

Now, we plug this into the determinant and obtain by the same series of
operations as before

2 2
1<de§3 (sin(umey)) H% I -

P g )

Ini=1 lj (1% — ¢32)
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Determinants and asymptotics: Proof

We have to take into account the symmetry

k2 sin(um&)d¢
I

sin(umypj) = 27 S ey
= i

Now, we plug this into the determinant and obtain by the same series of
operations as before

2 2
1<de§3 (sin(umey)) H% I -

1<j<m<k

(-1 tu? 2
x 13,‘-1,?nt<k< - 9 (Ie5l%)
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Consider again

1<j,m<k 1<j,m<k

k
/ / det  (sin(umyj)) det (sin(vmep;)) S(ei“’l,...,ei“"k)"Hd@j
j=1
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Consider again

k
/ / det  (sin(umyj)) det (sin(vmep;)) S(ei“’l,...,ei“"k)"Hd@j
j=1

1<j,m<k 1<j,m<k

This is asymptotically equal to

1 1<j<m<k
€ € 2 P
X/ / II @—¢))]| ([[ee ™ 2de
e c 1<j<m<k j=1
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Consider again

1<j,m<k 1<j,m<k

k
/ / det  (sin(umyj)) det (sin(vmep;)) S(ei“’l,...,ei“"k)"Hd@j
j=1

This is asymptotically equal to

1 1<j<m<k

2
k
2 2
(nA\)~* ”2/ / 0% — ©7) (||<pfe‘/’f/2d<pj

1S<m<k
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Asymptotics for P, (u — v)

Theorem

Let M we denote the set of maximal points of
(15 -y k) — |S(e¥r, ..., e
We have the asymptotics

ONK2 151, 1) \ KR
P (u—v) = IM|S(L,...,1)" (F) (nS((l)l))

<1<4<Hm<k(v’% = v “12)> <Jﬁ1 vjuj
X (Hjlle(zj - 1)!)

as n — oo in the set {n : P (u—v) > 0}.
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