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Alternating permutations

Euler numbers are: tan z + sec z =
∞
∑

n=0
En

zn

n!
.

(1, 1, 1, 2, 5, 16, . . . )

En is the number of alternating permutations in Sn (such that
σ1 > σ2 < σ3 > . . . σn).

Richard P. Stanley, A survey of alternating permutations.
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Definition
A signed permutation is π = π1 . . . πn, such that
{ |πi | } = {1 . . . n}. Example: 2,-1,-4,3.
Also, group of permutations π of {−n, . . . ,−1, 1, . . . , n} such that
π(−i) = −π(i).

Is there an analog of alternating permutations in the context of
signed permutations ?

Vladimir I. Arnold, The calculus of snakes and the combinatorics of
Bernoulli, Euler, and Springer numbers of Coxeter groups.
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Definition

A signed permutation π is a snake of type B if
0 < π1 > π2 < π3 > . . . πn.
(convention: π0 = 0).

The number of snakes π1 . . . πn is the ”Euler number of the group
Bn” [Arnol’d]: we can define a number K (R) for each root system
R (Springer number) such that

• K (An−1) = # alternating permutations in Sn = En

• K (Bn) = # snakes in S
B
n = Sn
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Just as alternating permutations are related with tan and sec, with
snakes we need to consider the successive derivatives of tan and
sec.

Let Pn(t), Qn(t), and Rn(t) be polynomials such that:

dn

dxn
tan x = Pn(tan x),

dn

dxn
sec x = Qn(tan x) sec x ,

dn

dxn
sec2 x = Rn(tan x) sec

2 x .

(

note that tan′ = sec2, and it follows Pn+1 = (1 + t2)Rn

)
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Proposition (Hoffman)

P2n+1(0) = E2n+1, Q2n+1(0) = 0,

P2n(0) = 0, Q2n(0) = E2n,

Pn+1(1) = 2nEn Qn(1) = Sn.

Pn+1 = (1 + t2)P ′
n, P0(t) = t,

Qn+1 = (1 + t2)Q ′
n + tQn, Q0(t) = 1,

Rn+1 = (1 + t2)R ′
n + 2tRn, R0(t) = 1.

6 / 18



Introduction Snakes Conclusion

There are combinatorial models of Pn(t), Qn(t), and Rn(t) in
terms of

• snakes,

• cycle-alternating permutations,

• increasing trees and forrests,

• weighted Dyck prefixes,

• weighted Motzkin paths...
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Definition
Let π = π1, . . . , πn be a signed permutation. Then
(π0), π1, . . . , πn, (πn+1) is a snake when π0 < π1 > π2 < . . . πn+1.
Different conventions on π0 and πn+1 gives different types of
snakes.

• Sn = { snakes (π0), π1, . . . , πn, (πn+1) with π0 = −(n + 1),

πn+1 = (−1)n(n + 1)}

• S0
n = { ... with π0 = 0, πn+1 = (−1)n(n + 1)}

• S00
n = { ... with π0 = πn+1 = 0}

Example

(−4),−2,−3, 1, (−4) ∈ Sn, (0), 3,−1, 2, (−4) ∈ S0
n

(0), 4,−1, 3,−2, (0) ∈ S00
n
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Theorem
Let sc(π) be the number of sign changes through π, i.e.
sc(π) = #{ i | 0 ≤ i ≤ n, πiπi+1 < 0 }. Then

Pn(t) =
∑

π∈Sn

tsc(π), Qn(t) =
∑

π∈S0
n

tsc(π), Rn(t) =
∑

π∈S00
n+1

tsc(π).

Example

Q2(t) = 2t2 + 1,
the snakes are (0), 2,−1, (3) and (0), 2, 1, (3) and (0), 1,−2, (3).

R1(t) = 2t,
the snakes are (0), 2,−1, (0) and (0), 1,−2, (0).
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Proof
We can check the recurrence relation, for example:

Rn = (1 + t2)R ′
n−1 + 2tRn−1.

Let π ∈ S00
n+1. We want to obtain (1 + t2)R ′

n−1 + 2tRn−1.

• Case where π1 = 1. Let π′ = −π2 . . .−πn+1. We relabel
(2 7→ 1, 3 7→ 2, etc.), then π′ ∈ S00

n , whence the term tRn−1.

• Case where πn+1 = ±1. Let π′ = π1 . . . πn, we relabel, then
π′ ∈ S00

n , whence the term tRn−1.

• Case where πj = ±1 and 2 ≤ j ≤ n. Then πj−1, πj+1 have
the same sign. We will obtain R ′

n−1 if πj has also the same
sign as πj−1, πj+1, and t2R ′

n−1 otherwise.
Let us suppose: πj−1, πj , πj+1 have the same sign. Let
π′ = π1 . . . πj−1,−πj+1 . . .−πn+1.
π 7→ (π′, j) is bijective, whence the term R ′

n−1.
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Cycle-alternating permutations

Definition
Let Cn be the set of cycle-alternating signed permutations, i.e.
such that ∀i , π−1(i) < i > π(i) or π−1(i) > i < π(i).

Example: (2,-4,1,-2,4,-1)(3,-5)(-3,5)

Recall that in signed permutations, we have two types of cycles:

• one-orbit cycles (i1, . . . in,−i1, . . . ,−in)

• two-orbit cycles (i1, . . . , in)(−i1, . . . ,−in)

Lemma
Let π = π1, . . . , πn be cycle-alternating, with only one cycle.
Then π is a one-orbit cycle if and only if n is odd.
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Theorem
Let neg(π) = #{ i > 0 | π(i) < 0 }, then

Pn(t) =
∑

π∈Cn+1

π has only
one cycle

tneg(π), Qn(t) =
∑

π∈Cn

tneg(π), Rn(t) =
∑

π∈Cn+2

π has only
one cycle
π1>1

tneg(π).

Proof
Bijections between snakes and cycle-alternating permutations.
Example in the case of Pn:

• (-4),3,-1,2,(-4) goes to (3,-1,2,-4)(-3,1,-2,4)

• (-5),1,-3,-2,-4,(5) goes to (1,-3,-2,-4,5,-1,3,2,4,-5)
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Exponential generating functions

Theorem

∞
∑

n=0

Pn(t)
zn

n!
=

sin z + t cos z

cos z − t sin z
,

∞
∑

n=0

Qn(t)
zn

n!
=

1

cos z − t sin z
,

∞
∑

n=0

Rn(t)
zn

n!
=

1

(cos z − t sin z)2
.

Proof.
(case of Qn, following [Hoffman]) Use Taylor expansion formula:

∞
∑

n=0

Qn(tan u) sec u
zn

n!
= sec(u+z) = 1

cos u cos z−sinu sin z = sec u
cos z−tan u sin z .
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The exponential generating functions can also be obtained
combinatorially.

Using snakes, we have:

∞
∑

n=0

Qn(t)
zn

n!
=

sec z

1− t tan z
.

Using cycle-alternating permutations, we have directly:

∞
∑

n=0

Pn(t)
zn

n!
=

d

dz
log

(

∞
∑

n=0

Qn(t)
zn

n!

)

.

Using snakes, we have directly:

∞
∑

n=0

Rn(t)
zn

n!
=

(

∞
∑

n=0

Qn(t)
zn

n!

)2

.
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Differential equations

Let f =
∑

Pn
zn

n! and g =
∑

Qn
zn

n! . They satisfy:

{

f ′ = 1 + f 2 f (0) = t,

g ′ = fg g(0) = 1.

From Leroux and Viennot’s combinatorial theory of differential
equations, it follows that Pn and Qn count increasing trees.
Rewrite:

{

f = t + z +
∫

f 2,

g = 1 +
∫

fg .
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From f = t + z +
∫

f 2, f (z) counts increasing trees produced by
the rules:

(f ) −→ a leaf with no label (with “weight” t),

(f ) −→ i a leaf with integer label,

(f ) −→ i

(f ) (f )

an internal node.

Example

(f ) → 1

(f ) (f )

→ 1

(f ) 2

(f ) (f )

→ 1

2

(f ) (f )

→ 1

2

3 (f )

→ 1

2

3 4
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Theorem
Let Tn be the set of complete binary trees, such that

• n nodes are labelled with integers from 1 to n, but some
leaves have no label,

• labels are increasing from the root to the leaves.

Then, em(T ) being the number of empty leaves in T , we have

Pn(t) =
∑

T∈Tn

tem(T )
, Qn(t) =

∑

T∈Tn
the rightmost
leaf is empty

tem(T )−1
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Conclusion

Whenever you know an interesting result about alternating
permutations, try to generalize it to snakes.

T
h
a

nk s
f o r

y ou r
a

t t

e
n
t
io n !
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