Enumeration of snakes

Matthieu Josuat-Vergès

Universität Wien

65ème Séminaire Lotharingien de Combinatoire

Alternating permutations

Euler numbers are: $\tan z+\sec z=\sum_{n=0}^{\infty} E_{n} \frac{z^{n}}{n!}$.
$(1,1,1,2,5,16, \ldots)$
E_{n} is the number of alternating permutations in \mathfrak{S}_{n} (such that $\left.\sigma_{1}>\sigma_{2}<\sigma_{3}>\ldots \sigma_{n}\right)$.

Richard P. Stanley, A survey of alternating permutations.

Definition

A signed permutation is $\pi=\pi_{1} \ldots \pi_{n}$, such that
$\left\{\left|\pi_{i}\right|\right\}=\{1 \ldots n\}$. Example: 2,-1,-4,3.
Also, group of permutations π of $\{-n, \ldots,-1,1, \ldots, n\}$ such that $\pi(-i)=-\pi(i)$.

Is there an analog of alternating permutations in the context of signed permutations ?

Vladimir I. Arnold, The calculus of snakes and the combinatorics of Bernoulli, Euler, and Springer numbers of Coxeter groups.

Definition

A signed permutation π is a snake of type B if
$0<\pi_{1}>\pi_{2}<\pi_{3}>\ldots \pi_{n}$. (convention: $\pi_{0}=0$).

The number of snakes $\pi_{1} \ldots \pi_{n}$ is the "Euler number of the group $B_{n}{ }^{\prime \prime}$ [Arnol'd]: we can define a number $K(R)$ for each root system R (Springer number) such that

- $K\left(A_{n-1}\right)=\#$ alternating permutations in $\mathfrak{S}_{n}=E_{n}$
- $K\left(B_{n}\right)=\#$ snakes in $\mathfrak{S}_{n}^{B}=S_{n}$

Just as alternating permutations are related with tan and sec, with snakes we need to consider the successive derivatives of \tan and sec.

Let $P_{n}(t), Q_{n}(t)$, and $R_{n}(t)$ be polynomials such that:

$$
\begin{aligned}
\frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}} \tan x & =P_{n}(\tan x) \\
\frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}} \sec x & =Q_{n}(\tan x) \sec x, \\
\frac{\mathrm{~d}^{n}}{\mathrm{~d} x^{n}} \sec ^{2} x & =R_{n}(\tan x) \sec ^{2} x .
\end{aligned}
$$

(note that $\tan ^{\prime}=\sec ^{2}$, and it follows $\left.P_{n+1}=\left(1+t^{2}\right) R_{n}\right)$

Proposition (Hoffman)

$$
\begin{array}{cc}
P_{2 n+1}(0)=E_{2 n+1}, & Q_{2 n+1}(0)=0 \\
P_{2 n}(0)=0, & Q_{2 n}(0)=E_{2 n} \\
P_{n+1}(1)=2^{n} E_{n} & Q_{n}(1)=S_{n}
\end{array}
$$

$$
\begin{array}{ll}
P_{n+1}=\left(1+t^{2}\right) P_{n}^{\prime}, & P_{0}(t)=t \\
Q_{n+1}=\left(1+t^{2}\right) Q_{n}^{\prime}+t Q_{n}, & Q_{0}(t)=1, \\
R_{n+1}=\left(1+t^{2}\right) R_{n}^{\prime}+2 t R_{n}, & R_{0}(t)=1
\end{array}
$$

There are combinatorial models of $P_{n}(t), Q_{n}(t)$, and $R_{n}(t)$ in terms of

- snakes,
- cycle-alternating permutations,
- increasing trees and forrests,
- weighted Dyck prefixes,
- weighted Motzkin paths...

Definition

Let $\pi=\pi_{1}, \ldots, \pi_{n}$ be a signed permutation. Then $\left(\pi_{0}\right), \pi_{1}, \ldots, \pi_{n},\left(\pi_{n+1}\right)$ is a snake when $\pi_{0}<\pi_{1}>\pi_{2}<\ldots \pi_{n+1}$. Different conventions on π_{0} and π_{n+1} gives different types of snakes.

- $\mathcal{S}_{n}=\left\{\right.$ snakes $\left(\pi_{0}\right), \pi_{1}, \ldots, \pi_{n},\left(\pi_{n+1}\right)$ with $\pi_{0}=-(n+1)$,

$$
\left.\pi_{n+1}=(-1)^{n}(n+1)\right\}
$$

- $\mathcal{S}_{n}^{0}=\left\{\ldots\right.$ with $\left.\pi_{0}=0, \pi_{n+1}=(-1)^{n}(n+1)\right\}$
- $\mathcal{S}_{n}^{00}=\left\{\ldots\right.$ with $\left.\pi_{0}=\pi_{n+1}=0\right\}$

Example
$(-4),-2,-3,1,(-4) \in \mathcal{S}_{n}$,
(0), 3, -1, 2, (-4) $\in \mathcal{S}_{n}^{0}$
(0), 4, -1, 3, -2, (0) $\in \mathcal{S}_{n}^{00}$

Theorem
Let $\operatorname{sc}(\pi)$ be the number of sign changes through π, i.e.
$\mathrm{sc}(\pi)=\#\left\{i \mid 0 \leq i \leq n, \pi_{i} \pi_{i+1}<0\right\}$. Then
$P_{n}(t)=\sum_{\pi \in \mathcal{S}_{n}} t^{\mathrm{sc}(\pi)}, \quad Q_{n}(t)=\sum_{\pi \in \mathcal{S}_{n}^{0}} t^{\mathrm{sc}(\pi)}, \quad R_{n}(t)=\sum_{\pi \in \mathcal{S}_{n+1}^{00}} t^{\mathrm{sc}(\pi)}$.

Example
$Q_{2}(t)=2 t^{2}+1$,
the snakes are (0), 2, $-1,(3)$ and (0), 2, 1, (3) and (0), 1, -2, (3).
$R_{1}(t)=2 t$,
the snakes are (0), 2, -1, (0) and (0), 1, -2, (0).

Proof

We can check the recurrence relation, for example:

$$
R_{n}=\left(1+t^{2}\right) R_{n-1}^{\prime}+2 t R_{n-1}
$$

Let $\pi \in \mathcal{S}_{n+1}^{00}$. We want to obtain $\left(1+t^{2}\right) R_{n-1}^{\prime}+2 t R_{n-1}$.

- Case where $\pi_{1}=1$. Let $\pi^{\prime}=-\pi_{2} \ldots-\pi_{n+1}$. We relabel ($2 \mapsto 1,3 \mapsto 2$, etc.), then $\pi^{\prime} \in \mathcal{S}_{n}^{00}$, whence the term $t R_{n-1}$.
- Case where $\pi_{n+1}= \pm 1$. Let $\pi^{\prime}=\pi_{1} \ldots \pi_{n}$, we relabel, then $\pi^{\prime} \in \mathcal{S}_{n}^{00}$, whence the term $t R_{n-1}$.
- Case where $\pi_{j}= \pm 1$ and $2 \leq j \leq n$. Then π_{j-1}, π_{j+1} have the same sign. We will obtain R_{n-1}^{\prime} if π_{j} has also the same sign as π_{j-1}, π_{j+1}, and $t^{2} R_{n-1}^{\prime}$ otherwise.
Let us suppose: $\pi_{j-1}, \pi_{j}, \pi_{j+1}$ have the same sign. Let $\pi^{\prime}=\pi_{1} \ldots \pi_{j-1},-\pi_{j+1} \ldots-\pi_{n+1}$.
$\pi \mapsto\left(\pi^{\prime}, j\right)$ is bijective, whence the term R_{n-1}^{\prime}.

Cycle-alternating permutations

Definition

Let \mathcal{C}_{n} be the set of cycle-alternating signed permutations, i.e. such that $\forall i, \pi^{-1}(i)<i>\pi(i)$ or $\pi^{-1}(i)>i<\pi(i)$.
Example: $(2,-4,1,-2,4,-1)(3,-5)(-3,5)$
Recall that in signed permutations, we have two types of cycles:

- one-orbit cycles $\left(i_{1}, \ldots i_{n},-i_{1}, \ldots,-i_{n}\right)$
- two-orbit cycles $\left(i_{1}, \ldots, i_{n}\right)\left(-i_{1}, \ldots,-i_{n}\right)$

Lemma

Let $\pi=\pi_{1}, \ldots, \pi_{n}$ be cycle-alternating, with only one cycle.
Then π is a one-orbit cycle if and only if n is odd.

Theorem
Let $\operatorname{neg}(\pi)=\#\{i>0 \mid \pi(i)<0\}$, then

$$
P_{n}(t)=\sum_{\substack{\pi \in \mathcal{C}_{n+1} \\ \pi \text { has only } \\ \text { one cycle }}} t^{\mathrm{neg}(\pi)}, \quad Q_{n}(t)=\sum_{\pi \in \mathcal{C}_{n}} t^{\operatorname{neg}(\pi)}, \quad R_{n}(t)=\sum_{\substack{\pi \in \mathcal{C}_{n+2} \\ \pi \text { has only } \\ \text { one cycle } \\ \pi_{1}>1}} t^{\mathrm{neg}(\pi)}
$$

Proof

Bijections between snakes and cycle-alternating permutations.
Example in the case of P_{n} :

- (-4), $3,-1,2,(-4)$ goes to $(3,-1,2,-4)(-3,1,-2,4)$
- (-5), $1,-3,-2,-4,(5)$ goes to ($1,-3,-2,-4,5,-1,3,2,4,-5$)

Exponential generating functions

Theorem

$$
\begin{aligned}
& \sum_{n=0}^{\infty} P_{n}(t) \frac{z^{n}}{n!}=\frac{\sin z+t \cos z}{\cos z-t \sin z}, \quad \sum_{n=0}^{\infty} Q_{n}(t) \frac{z^{n}}{n!}=\frac{1}{\cos z-t \sin z} \\
& \sum_{n=0}^{\infty} R_{n}(t) \frac{z^{n}}{n!}=\frac{1}{(\cos z-t \sin z)^{2}}
\end{aligned}
$$

Proof.

(case of Q_{n}, following [Hoffman]) Use Taylor expansion formula:
$\sum_{n=0}^{\infty} Q_{n}(\tan u) \sec u \frac{z^{n}}{n!}=\sec (u+z)=\frac{1}{\cos u \cos z-\sin u \sin z}=\frac{\sec u}{\cos z-\tan u \sin z}$

The exponential generating functions can also be obtained combinatorially.

Using snakes, we have:

$$
\sum_{n=0}^{\infty} Q_{n}(t) \frac{z^{n}}{n!}=\frac{\sec z}{1-t \tan z}
$$

Using cycle-alternating permutations, we have directly:

$$
\sum_{n=0}^{\infty} P_{n}(t) \frac{z^{n}}{n!}=\frac{\mathrm{d}}{\mathrm{~d} z} \log \left(\sum_{n=0}^{\infty} Q_{n}(t) \frac{z^{n}}{n!}\right)
$$

Using snakes, we have directly:

$$
\sum_{n=0}^{\infty} R_{n}(t) \frac{z^{n}}{n!}=\left(\sum_{n=0}^{\infty} Q_{n}(t) \frac{z^{n}}{n!}\right)^{2}
$$

Differential equations

Let $f=\sum P_{n} \frac{z^{n}}{n!}$ and $g=\sum Q_{n} \frac{z^{n}}{n!}$. They satisfy:

$$
\begin{cases}f^{\prime}=1+f^{2} & f(0)=t \\ g^{\prime}=f g & g(0)=1\end{cases}
$$

From Leroux and Viennot's combinatorial theory of differential equations, it follows that P_{n} and Q_{n} count increasing trees.
Rewrite:

$$
\left\{\begin{array}{l}
f=t+z+\int f^{2} \\
g=1+\int f g
\end{array}\right.
$$

From $f=t+z+\int f^{2}, f(z)$ counts increasing trees produced by the rules:
$(f) \longrightarrow \bigcirc$
$(f) \longrightarrow$ (i)
$(f) \longrightarrow \overbrace{(f)}^{i}$

Example

Theorem

Let \mathcal{T}_{n} be the set of complete binary trees, such that

- n nodes are labelled with integers from 1 to n, but some leaves have no label,
- labels are increasing from the root to the leaves.

Then, $\mathrm{em}(T)$ being the number of empty leaves in T, we have

$$
P_{n}(t)=\sum_{T \in \mathcal{T}_{n}} t^{\mathrm{em}(T)}, \quad Q_{n}(t)=\sum_{\substack{T \in \mathcal{T}_{n} \\ \text { the rightmost } \\ \text { leaf is empty }}} t^{\mathrm{em}(T)-1}
$$

Conclusion

Whenever you know an interesting result about alternating permutations, try to generalize it to snakes.

