Introduction 00 Snakes 000000000000000 Conclusion O

Enumeration of snakes

Matthieu Josuat-Vergès

Universität Wien

65ème Séminaire Lotharingien de Combinatoire

Snakes 000000000000000 Conclusion O

Alternating permutations

Euler numbers are:
$$\tan z + \sec z = \sum_{n=0}^{\infty} E_n \frac{z^n}{n!}$$
.
(1, 1, 1, 2, 5, 16, ...)

 E_n is the number of alternating permutations in \mathfrak{S}_n (such that $\sigma_1 > \sigma_2 < \sigma_3 > \ldots \sigma_n$).

Richard P. Stanley, A survey of alternating permutations.

Snakes 0000000000000000 Conclusion O

Definition

A signed permutation is $\pi = \pi_1 \dots \pi_n$, such that $\{ |\pi_i| \} = \{1 \dots n\}$. Example: 2,-1,-4,3. Also, group of permutations π of $\{-n, \dots, -1, 1, \dots, n\}$ such that $\pi(-i) = -\pi(i)$.

Is there an analog of alternating permutations in the context of signed permutations ?

Vladimir I. Arnold, *The calculus of snakes and the combinatorics of Bernoulli, Euler, and Springer numbers of Coxeter groups.*

Definition

A signed permutation π is a snake of type B if $0 < \pi_1 > \pi_2 < \pi_3 > \dots \pi_n$. (convention: $\pi_0 = 0$).

The number of snakes $\pi_1 \dots \pi_n$ is the "Euler number of the group B_n " [Arnol'd]: we can define a number K(R) for each root system R (Springer number) such that

- $K(A_{n-1}) = \#$ alternating permutations in $\mathfrak{S}_n = E_n$
- $K(B_n) = \#$ snakes in $\mathfrak{S}_n^B = S_n$

Conclusion O

Just as alternating permutations are related with tan and sec, with snakes we need to consider the successive derivatives of tan and sec.

Let $P_n(t)$, $Q_n(t)$, and $R_n(t)$ be polynomials such that:

$$\frac{\mathrm{d}^n}{\mathrm{d}x^n} \tan x = P_n(\tan x),$$

$$\frac{\mathrm{d}^n}{\mathrm{d}x^n} \sec x = Q_n(\tan x) \sec x,$$

$$\frac{\mathrm{d}^n}{\mathrm{d}x^n} \sec^2 x = R_n(\tan x) \sec^2 x.$$

$$\left(ext{note that tan}' = ext{sec}^2 ext{, and it follows } P_{n+1} = (1+t^2) R_n
ight)$$

Introduction 00 Conclusion O

Proposition (Hoffman)

$$P_{2n+1}(0) = E_{2n+1}, \qquad Q_{2n+1}(0) = 0,$$

$$P_{2n}(0) = 0, \qquad Q_{2n}(0) = E_{2n},$$

$$P_{n+1}(1) = 2^{n}E_{n} \qquad Q_{n}(1) = S_{n}.$$

$$\begin{aligned} P_{n+1} &= (1+t^2) P'_n, & P_0(t) = t, \\ Q_{n+1} &= (1+t^2) Q'_n + t Q_n, & Q_0(t) = 1, \\ R_{n+1} &= (1+t^2) R'_n + 2t R_n, & R_0(t) = 1. \end{aligned}$$

There are combinatorial models of $P_n(t)$, $Q_n(t)$, and $R_n(t)$ in terms of

- snakes,
- cycle-alternating permutations,
- increasing trees and forrests,
- weighted Dyck prefixes,
- weighted Motzkin paths...

Introd	uction
00	

Conclusion O

Definition

Let $\pi = \pi_1, \ldots, \pi_n$ be a signed permutation. Then $(\pi_0), \pi_1, \ldots, \pi_n, (\pi_{n+1})$ is a snake when $\pi_0 < \pi_1 > \pi_2 < \ldots \pi_{n+1}$. Different conventions on π_0 and π_{n+1} gives different types of snakes.

•
$$S_n = \{ \text{ snakes } (\pi_0), \pi_1, \dots, \pi_n, (\pi_{n+1}) \text{ with } \pi_0 = -(n+1), \\ \pi_{n+1} = (-1)^n (n+1) \}$$

• $S_n^0 = \{ \dots \text{ with } \pi_0 = 0, \ \pi_{n+1} = (-1)^n (n+1) \}$
• $S_n^{00} = \{ \dots \text{ with } \pi_0 = \pi_{n+1} = 0 \}$

Example

$$(-4), -2, -3, 1, (-4) \in S_n,$$
 (0), 3, -1, 2, (-4) $\in S_n^0$
(0), 4, -1, 3, -2, (0) $\in S_n^{00}$

Conclusion O

Theorem Let $sc(\pi)$ be the number of sign changes through π , i.e. $sc(\pi) = \#\{i \mid 0 \le i \le n, \pi_i \pi_{i+1} < 0\}$. Then

$$P_n(t) = \sum_{\pi \in \mathcal{S}_n} t^{\operatorname{sc}(\pi)}, \qquad Q_n(t) = \sum_{\pi \in \mathcal{S}_n^0} t^{\operatorname{sc}(\pi)}, \qquad R_n(t) = \sum_{\pi \in \mathcal{S}_{n+1}^{00}} t^{\operatorname{sc}(\pi)}.$$

Example

 $Q_2(t) = 2t^2 + 1$, the snakes are (0), 2, -1, (3) and (0), 2, 1, (3) and (0), 1, -2, (3).

 $R_1(t) = 2t$, the snakes are (0), 2, -1, (0) and (0), 1, -2, (0).

Conclusion O

Proof

We can check the recurrence relation, for example:

$$R_n = (1+t^2)R'_{n-1} + 2tR_{n-1}.$$

Let $\pi \in \mathcal{S}_{n+1}^{00}$. We want to obtain $(1 + t^2)R'_{n-1} + 2tR_{n-1}$.

- Case where $\pi_1 = 1$. Let $\pi' = -\pi_2 \dots -\pi_{n+1}$. We relabel $(2 \mapsto 1, 3 \mapsto 2, \text{ etc.})$, then $\pi' \in S_n^{00}$, whence the term tR_{n-1} .
- Case where $\pi_{n+1} = \pm 1$. Let $\pi' = \pi_1 \dots \pi_n$, we relabel, then $\pi' \in S_n^{00}$, whence the term tR_{n-1} .
- Case where $\pi_j = \pm 1$ and $2 \le j \le n$. Then π_{j-1}, π_{j+1} have the same sign. We will obtain R'_{n-1} if π_j has also the same sign as π_{j-1}, π_{j+1} , and $t^2 R'_{n-1}$ otherwise. Let us suppose: $\pi_{j-1}, \pi_j, \pi_{j+1}$ have the same sign. Let $\pi' = \pi_1 \dots \pi_{j-1}, -\pi_{j+1} \dots -\pi_{n+1}$. $\pi \mapsto (\pi', j)$ is bijective, whence the term R'_{n-1} .

Introduction 00 Snakes 000000000000000 Conclusion O

Cycle-alternating permutations

Definition

Let C_n be the set of cycle-alternating signed permutations, i.e. such that $\forall i, \pi^{-1}(i) < i > \pi(i)$ or $\pi^{-1}(i) > i < \pi(i)$. Example: (2,-4,1,-2,4,-1)(3,-5)(-3,5)

Recall that in signed permutations, we have two types of cycles:

- one-orbit cycles $(i_1, \ldots, i_n, -i_1, \ldots, -i_n)$
- two-orbit cycles $(i_1,\ldots,i_n)(-i_1,\ldots,-i_n)$

Lemma

Let $\pi = \pi_1, ..., \pi_n$ be cycle-alternating, with only one cycle. Then π is a one-orbit cycle if and only if n is odd.

Theorem
Let
$$\operatorname{neg}(\pi) = \#\{i > 0 \mid \pi(i) < 0\}$$
, then
 $P_n(t) = \sum_{\substack{\pi \in \mathcal{C}_{n+1} \\ \pi \text{ has only} \\ \text{ one cycle}}} t^{\operatorname{neg}(\pi)}, \quad Q_n(t) = \sum_{\substack{\pi \in \mathcal{C}_n \\ \pi \in \mathcal{C}_n}} t^{\operatorname{neg}(\pi)}, \quad R_n(t) = \sum_{\substack{\pi \in \mathcal{C}_{n+2} \\ \pi \text{ has only} \\ \text{ one cycle}}} t^{\operatorname{neg}(\pi)},$

Proof

Bijections between snakes and cycle-alternating permutations. Example in the case of P_n :

- (-4),3,-1,2,(-4) goes to (3,-1,2,-4)(-3,1,-2,4)
- (-5),1,-3,-2,-4,(5) goes to (1,-3,-2,-4,5,-1,3,2,4,-5)

Conclusion O

Exponential generating functions

Theorem

$$\sum_{n=0}^{\infty} P_n(t) \frac{z^n}{n!} = \frac{\sin z + t \cos z}{\cos z - t \sin z}, \qquad \sum_{n=0}^{\infty} Q_n(t) \frac{z^n}{n!} = \frac{1}{\cos z - t \sin z},$$
$$\sum_{n=0}^{\infty} R_n(t) \frac{z^n}{n!} = \frac{1}{(\cos z - t \sin z)^2}.$$

Proof.

(case of Q_n , following [Hoffman]) Use Taylor expansion formula:

$$\sum_{n=0}^{\infty} Q_n(\tan u) \sec u \frac{z^n}{n!} = \sec(u+z) = \frac{1}{\cos u \cos z - \sin u \sin z} = \frac{\sec u}{\cos z - \tan u \sin z}.$$

13 / 18

Introd	uction
00	

The exponential generating functions can also be obtained combinatorially.

Using snakes, we have:

$$\sum_{n=0}^{\infty} Q_n(t) \frac{z^n}{n!} = \frac{\sec z}{1-t \tan z}.$$

Using cycle-alternating permutations, we have directly:

$$\sum_{n=0}^{\infty} P_n(t) \frac{z^n}{n!} = \frac{\mathrm{d}}{\mathrm{d}z} \log \left(\sum_{n=0}^{\infty} Q_n(t) \frac{z^n}{n!} \right).$$

Using snakes, we have directly:

$$\sum_{n=0}^{\infty} R_n(t) \frac{z^n}{n!} = \left(\sum_{n=0}^{\infty} Q_n(t) \frac{z^n}{n!} \right)^2.$$

Conclusion O

Differential equations

Let
$$f = \sum P_n \frac{z^n}{n!}$$
 and $g = \sum Q_n \frac{z^n}{n!}$. They satisfy:

$$\begin{cases} f' = 1 + f^2 & f(0) = t, \\ g' = fg & g(0) = 1. \end{cases}$$

From Leroux and Viennot's combinatorial theory of differential equations, it follows that P_n and Q_n count increasing trees. Rewrite:

$$\begin{cases} f = t + z + \int f^2, \\ g = 1 + \int fg. \end{cases}$$

Conclusion 0

From $f = t + z + \int f^2$, f(z) counts increasing trees produced by the rules:

a leaf with no label (with "weight" t),

a leaf with integer label,

an internal node.

(f)

Theorem

Let \mathcal{T}_n be the set of complete binary trees, such that

- n nodes are labelled with integers from 1 to n, but some leaves have no label,
- labels are increasing from the root to the leaves.

Then, em(T) being the number of empty leaves in T, we have

$$P_n(t) = \sum_{T \in \mathcal{T}_n} t^{\text{em}(T)}, \qquad Q_n(t) = \sum_{\substack{T \in \mathcal{T}_n \\ \text{the rightmost} \\ \text{leaf is empty}}} t^{\text{em}(T)-1}$$

Snakes 000000000000000

Conclusion

Whenever you know an interesting result about alternating permutations, try to generalize it to snakes.

