Inequalities

Manuel Kauers
RISC-Linz

I. What?

II. How?
III. Why?

I. What?

II. How?

III. Why?

THE AMERICAN MATHEMATICAL.		
Andrew Gralvile	Prime Number Races	1
John W. Hagood Slom 5. Thomison	Recovering a Function from a Dini Derivative	14
Marctrantz	Some Graphical Solutions of the Kepler Problem	47
NOTES Heory Com	A Shert Proof of the Simple Continued Fraction Expansion of e	57
Thorma f Oiler	A Proof of the Continued Fraction Expantion of $\mathrm{e}^{\mathrm{t}} \mathrm{m}$	62
Konyping Dy	Continuous Differentiabilicy of Solutions of ODEs weth Respect to Initial Condivions	66
Stephen Boyd fori Duconia junsin In Xian	Fasest Moing Markov Chuin on a Path	70
THE EVOLUTION OF. Power Streced	The Poincare Conjectare?	75
PAOBLEMS AND SOLUTIONS		79
REVIEWS Crates fads	The Pursuit of Perfect Hocking By Tomaso Aste and Denis Weaire. Keplert Canjecture. By George G. Sapiro.	87
Shandele, M. Hernon	Complestiec: Wamen in Mathematic. Edited by Bettye Anne Case and Ame M. Legeste	91

Some Recent Monthly Problems

Some Recent Monthly Problems

11205. Proposed by Wu Wei Chao, Guang Zhou, China. Let a, b, and c be the side-lengths of a triangle, and let $f(x, y, z)=$ $x y(y+z-2 x)(y+z-x)^{2}$. Prove that

$$
f(a, b, c)+f(b, c, a)+f(c, a, b) \geq 0
$$

Some Recent Monthly Problems

11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive a, b, and c, let

$$
E(a, b, c)=\frac{a^{2} b^{2} c^{2}-64}{(a+1)(b+1)(c+1)-27} .
$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2,2,2)$, at which $a b c=$ $a+b+c+2$.

Some Recent Monthly Problems

11397. Proposed by Grahame Bennet, Indiana University, Bloomington, IN. Let a, b, c, x, y, z be positive numbers such that $a+b+c=x+y+z$ and $a b c=x y z$. Show that if $\max \{x, y, z\} \geq \max \{a, b, c\}$ then $\min \{x, y, z\} \geq \min \{a, b, c\}$.

Claims

Claims

- Each of these problems can be solved by just typing one or two commands into a computer algebra system.

Claims

- Each of these problems can be solved by just typing one or two commands into a computer algebra system.
- The computation time is no more than a few seconds per problem (not counting the time for typing the commands).

Claims

- Each of these problems can be solved by just typing one or two commands into a computer algebra system.
- The computation time is no more than a few seconds per problem (not counting the time for typing the commands).
- The algorithm is not easy to program, but easy to apply.

Claims

- Each of these problems can be solved by just typing one or two commands into a computer algebra system.
- The computation time is no more than a few seconds per problem (not counting the time for typing the commands).
- The algorithm is not easy to program, but easy to apply.
- Its applicability extends far beyond Monthly problems.

Claims

- Each of these problems can be solved by just typing one or two commands into a computer algebra system.
- The computation time is no more than a few seconds per problem (not counting the time for typing the commands).
- The algorithm is not easy to program, but easy to apply.
- Its applicability extends far beyond Monthly problems.
- It is not as widely known as it deserves.

Cylindrical Algebraic Decomposition (CAD)

Cylindrical Algebraic Decomposition (CAD)

- invented by George E. Collins in 1975.

Cylindrical Algebraic Decomposition (CAD)

- invented by George E. Collins in 1975.
- improved by H. Hong, C. Brown, S. McCallum, and others.

Cylindrical Algebraic Decomposition (CAD)

- invented by George E. Collins in 1975.
- improved by H. Hong, C. Brown, S. McCallum, and others.
- implemented by A. Strzebonski in Mathematica (e.g.).

Cylindrical Algebraic Decomposition (CAD)

- invented by George E. Collins in 1975.
- improved by H. Hong, C. Brown, S. McCallum, and others.
- implemented by A. Strzebonski in Mathematica (e.g.).
- applied by many different people in many different areas.

Cylindrical Algebraic Decomposition (CAD)

- invented by George E. Collins in 1975.
- improved by H. Hong, C. Brown, S. McCallum, and others.
- implemented by A. Strzebonski in Mathematica (e.g.).
- applied by many different people in many different areas.
- promoted by MK for your consideration.

Cylindrical Algebraic Decomposition (CAD)

Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals

Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals
OUTPUT: a system of polynomial inequalities over the reals, which

Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals
OUTPUT: a system of polynomial inequalities over the reals, which

- is provably equivalent to the system given as input, and

Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals
OUTPUT: a system of polynomial inequalities over the reals, which

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.

Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals
OUTPUT: a system of polynomial inequalities over the reals, which

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.

Cylindrical Algebraic Decomposition (CAD)

OUTPUT: a system of polynomial inequalities over the reals, which

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.

Cylindrical Algebraic Decomposition (CAD)

OUTPUT: a system of polynomial inequalities over the reals, which

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.

Cylindrical Algebraic Decomposition (CAD)

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.

Cylindrical Algebraic Decomposition (CAD)

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.

Cylindrical Algebraic Decomposition (CAD)

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.

Cylindrical Algebraic Decomposition (CAD)

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.
?

Cylindrical Algebraic Decomposition (CAD)

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.

Cylindrical Algebraic Decomposition (CAD)

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.

Cylindrical Algebraic Decomposition (CAD)

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.

Clarifying Some Notions

Clarifying Some Notions

A polynomial inequality is an expression of the form

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \diamond g\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

where
$\checkmark \diamond$ is one of $=, \neq,<,>, \leq, \geq$

- f and g are polynomials in $x_{1}, x_{2}, \ldots, x_{n}$ with coefficients in \mathbb{Q}.

Clarifying Some Notions

A polynomial inequality is an expression of the form

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \diamond g\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

where
$\checkmark \diamond$ is one of $=, \neq,<,>, \leq, \geq$

- f and g are polynomials in $x_{1}, x_{2}, \ldots, x_{n}$ with coefficients in \mathbb{Q}.
- More generally f and g may be algebraic functions in x_{1}, \ldots, x_{n} defined by annihilating polynomials in x_{1}, \ldots, x_{n}, Y with coefficients in \mathbb{Q}.

Clarifying Some Notions

A polynomial inequality is an expression of the form

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \diamond g\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

where
$-\diamond$ is one of $=, \neq,<,>, \leq, \geq$

- f and g are polynomials in $x_{1}, x_{2}, \ldots, x_{n}$ with coefficients in \mathbb{Q}.
- More generally f and g may be algebraic functions in x_{1}, \ldots, x_{n} defined by annihilating polynomials in x_{1}, \ldots, x_{n}, Y with coefficients in \mathbb{Q}.

Examples: $x>0, x^{2}+y^{2}<1, \sqrt{1-x^{2}}<\sqrt[3]{y}$

Clarifying Some Notions

A system is a formula of propositional logic with polynomial inequalities as atoms.

Clarifying Some Notions

A system is a formula of propositional logic with polynomial inequalities as atoms.

Examples:
$(-1 \leq x \wedge y \leq 1) \Rightarrow(x+y)^{2}>\frac{1}{2} \vee x \neq y$,
$(x \geq 0 \wedge y \geq x \wedge z \geq x) \Rightarrow x^{2}+y^{2}+z^{2} \geq 0$.

Clarifying Some Notions

A system is a formula of propositional logic with polynomial inequalities as atoms.

Examples:
$(-1 \leq x \wedge y \leq 1) \Rightarrow(x+y)^{2}>\frac{1}{2} \vee x \neq y$,
$(x \geq 0 \wedge y \geq x \wedge z \geq x) \Rightarrow x^{2}+y^{2}+z^{2} \geq 0$.
Examples involving shorthand notation:
$|x| \leq 1$
$1 \leq \max \{x, y\} \leq x^{2}+y^{2}$

Clarifying Some Notions

A system is a formula of propositional logic with polynomial inequalities as atoms.

Examples:
$(-1 \leq x \wedge y \leq 1) \Rightarrow(x+y)^{2}>\frac{1}{2} \vee x \neq y$,
$(x \geq 0 \wedge y \geq x \wedge z \geq x) \Rightarrow x^{2}+y^{2}+z^{2} \geq 0$.
Examples involving shorthand notation:

$$
\begin{array}{lll}
|x| \leq 1 & \longleftrightarrow & x \geq-1 \wedge x \leq 1 \\
1 \leq \max \{x, y\} \leq x^{2}+y^{2} & \longleftrightarrow & x \geq y \wedge\left(1 \leq x \wedge x \leq x^{2}+y^{2}\right) \\
& \vee x<y \wedge\left(1 \leq y \wedge y \leq x^{2}+y^{2}\right)
\end{array}
$$

Clarifying Some Notions

"over the reals" means that we regard the variables $x_{1}, x_{2}, \ldots, x_{n}$ as variables ranging over \mathbb{R}.

Clarifying Some Notions

"over the reals" means that we regard the variables $x_{1}, x_{2}, \ldots, x_{n}$ as variables ranging over \mathbb{R}.

Examples:
The formula $x^{2}+1=0$ is always false.
The formula $x^{2}-2=0$ may be true or false.
The formula $x^{2} \geq 0$ is always true.

Clarifying Some Notions

Two systems $\Phi\left(x_{1}, \ldots, x_{n}\right)$ and $\Psi\left(x_{1}, \ldots, x_{n}\right)$ are equivalent if

$$
\forall x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}: \Phi\left(x_{1}, \ldots, x_{n}\right) \Longleftrightarrow \Psi\left(x_{1}, \ldots, x_{n}\right)
$$

is true.

Clarifying Some Notions

Two systems $\Phi\left(x_{1}, \ldots, x_{n}\right)$ and $\Psi\left(x_{1}, \ldots, x_{n}\right)$ are equivalent if

$$
\forall x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}: \Phi\left(x_{1}, \ldots, x_{n}\right) \Longleftrightarrow \Psi\left(x_{1}, \ldots, x_{n}\right)
$$

is true.
Examples:
$x^{2}<1$ and $-1<x \wedge x<1$ are equivalent.
$x^{2}+y^{2}+z^{2}<0$ and false are equivalent.
$x^{2}+y^{2}+z^{2} \geq 0$ and true are equivalent.

Geometric Interpretation

At a specific point $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, a system of polynomial inequalities becomes either true or false.

Geometric Interpretation

At a specific point $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, a system of polynomial inequalities becomes either true or false.

To every system of polynomial inequalities, we can associate the set of all points $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ where the system is true.

Geometric Interpretation

At a specific point $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, a system of polynomial inequalities becomes either true or false.

To every system of polynomial inequalities, we can associate the set of all points $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ where the system is true.

Example:
$(x-1)(y-1)>1 \wedge x^{2}+y^{2}<1$

Geometric Interpretation

At a specific point $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, a system of polynomial inequalities becomes either true or false.

To every system of polynomial inequalities, we can associate the set of all points $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ where the system is true.

Example:
$(x-1)(y-1)>1 \wedge x^{2}+y^{2}<1$

Geometric Interpretation

At a specific point $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, a system of polynomial inequalities becomes either true or false.

To every system of polynomial inequalities, we can associate the set of all points $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ where the system is true.

Example:
$(x-1)(y-1)>1 \wedge x^{2}+y^{2}<1$
Sets defined by systems of polynomial inequalities are called semialgebraic sets.

Geometric Interpretation

At a specific point $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, a system of polynomial inequalities becomes either true or false.

To every system of polynomial inequalities, we can associate the set of all points $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ where the system is true.

Example:
$(x-1)(y-1)>1 \wedge x^{2}+y^{2}<1$
Sets defined by systems of polynomial inequalities are called semialgebraic sets.
"Given a semialgebraic set" means
 "given a defining system of polynomial inequalities".

Some Questions that CAD can Answer

Some Questions that CAD can Answer

Using CAD, you (resp. your computer) can:

Some Questions that CAD can Answer

Using CAD, you (resp. your computer) can:

- decide whether or not a given s.alg. set is empty, finite, open, closed, connected, bounded

Some Questions that CAD can Answer

Using CAD, you (resp. your computer) can:

- decide whether or not a given s.alg. set is empty, finite, open, closed, connected, bounded
- decide whether or not a given s.alg. sets is contained in another one

Some Questions that CAD can Answer

Using CAD, you (resp. your computer) can:

- decide whether or not a given s.alg. set is empty, finite, open, closed, connected, bounded
- decide whether or not a given s.alg. sets is contained in another one
- determine the (topologic) dimension of a given s.alg. set

Some Questions that CAD can Answer

Using CAD, you (resp. your computer) can:

- decide whether or not a given s.alg. set is empty, finite, open, closed, connected, bounded
- decide whether or not a given s.alg. sets is contained in another one
- determine the (topologic) dimension of a given s.alg. set
- determine a sample point of a given nonempty s.alg. set

Some Questions that CAD can Answer

Using CAD, you (resp. your computer) can:

- decide whether or not a given s.alg. set is empty, finite, open, closed, connected, bounded
- decide whether or not a given s.alg. sets is contained in another one
- determine the (topologic) dimension of a given s.alg. set
- determine a sample point of a given nonempty s.alg. set
- determine the number of points of a given finite s.alg. set

Some Questions that CAD can Answer

Using CAD, you (resp. your computer) can:

- decide whether or not a given s.alg. set is empty, finite, open, closed, connected, bounded
- decide whether or not a given s.alg. sets is contained in another one
- determine the (topologic) dimension of a given s.alg. set
- determine a sample point of a given nonempty s.alg. set
- determine the number of points of a given finite s.alg. set
- determine a tight bounding box of a given bounded s.alg. set

Some Questions that CAD can Answer

Using CAD, you (resp. your computer) can:

- decide whether or not a given s.alg. set is empty, finite, open, closed, connected, bounded
- decide whether or not a given s.alg. sets is contained in another one
- determine the (topologic) dimension of a given s.alg. set
- determine a sample point of a given nonempty s.alg. set
- determine the number of points of a given finite s.alg. set
- determine a tight bounding box of a given bounded s.alg. set
- determine the connected components of a given s.alg. set

Some Questions that CAD can Answer

Using CAD, you (resp. your computer) can:

- decide whether or not a given s.alg. set is empty, finite, open, closed, connected, bounded
- decide whether or not a given s.alg. sets is contained in another one
- determine the (topologic) dimension of a given s.alg. set
- determine a sample point of a given nonempty s.alg. set
- determine the number of points of a given finite s.alg. set
- determine a tight bounding box of a given bounded s.alg. set
- determine the connected components of a given s.alg. set
- determine the boundary, the closure, or the interior of a given s.alg. set

Some Questions that CAD can Answer

Using CAD, you (resp. your computer) can:

- decide whether a given system of polynomial inequalities is consistent

Some Questions that CAD can Answer

Using CAD, you (resp. your computer) can:

- decide whether a given system of polynomial inequalities is consistent
- decide whether a given system is universal

Some Questions that CAD can Answer

Using CAD, you (resp. your computer) can:

- decide whether a given system of polynomial inequalities is consistent
- decide whether a given system is universal
- decide whether a given system implies another one

Some Questions that CAD can Answer

Using CAD, you (resp. your computer) can:

- decide whether a given system of polynomial inequalities is consistent
- decide whether a given system is universal
- decide whether a given system implies another one
- determine a certificate point for a given satisfiable system

Some Questions that CAD can Answer

Using CAD, you (resp. your computer) can:

- decide whether a given system of polynomial inequalities is consistent
- decide whether a given system is universal
- decide whether a given system implies another one
- determine a certificate point for a given satisfiable system
- determine the s.alg. set of all points $\left(x_{1}, \ldots, x_{n-1}\right) \in \mathbb{R}^{n-1}$ such that there exists a number $x_{n} \in \mathbb{R}$ where a given system is true at $\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)$

Some Questions that CAD can Answer

Using CAD, you (resp. your computer) can:

- decide whether a given system of polynomial inequalities is consistent
- decide whether a given system is universal
- decide whether a given system implies another one
- determine a certificate point for a given satisfiable system
- determine the s.alg. set of all points $\left(x_{1}, \ldots, x_{n-1}\right) \in \mathbb{R}^{n-1}$ such that there exists a number $x_{n} \in \mathbb{R}$ where a given system is true at $\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)$
- determine the s.alg. set of all points $\left(x_{1}, \ldots, x_{n-1}\right) \in \mathbb{R}^{n-1}$ such that for all numbers $x_{n} \in \mathbb{R}$, a given system is true at $\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)$.

Some Questions that CAD can Answer

Using CAD, you (resp. your computer) can:

- decide whether a given system of polynomial inequalities is consistent
- decide whether a given system is universal
- decide whether a given system implies another one
- determine a certificate point for a given satisfiable system
- determine the s.alg. set of all points $\left(x_{1}, \ldots, x_{n-1}\right) \in \mathbb{R}^{n-1}$ such that there exists a number $x_{n} \in \mathbb{R}$ where a given system is true at $\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)$
- determine the s.alg. set of all points $\left(x_{1}, \ldots, x_{n-1}\right) \in \mathbb{R}^{n-1}$ such that for all numbers $x_{n} \in \mathbb{R}$, a given system is true at $\left(x_{1}, \ldots, x_{n-1}, x_{n}\right)$.

Back to the Monthly Problems

Back to the Monthly Problems

11397. Proposed by Grahame Bennet, Indiana University, Bloomington, IN. Let a, b, c, x, y, z be positive numbers such that $a+b+c=x+y+z$ and $a b c=x y z$. Show that if $\max \{x, y, z\} \geq \max \{a, b, c\}$ then $\min \{x, y, z\} \geq \min \{a, b, c\}$.

Back to the Monthly Problems

11397. Proposed by Grahame Bennet, Indiana University, Bloomington, IN. Let a, b, c, x, y, z be positive numbers such that $a+b+c=x+y+z$ and $a b c=x y z$. Show that if $\max \{x, y, z\} \geq \max \{a, b, c\}$ then $\min \{x, y, z\} \geq \min \{a, b, c\}$.

Because of symmetry, we may assume

$$
a \geq b \geq c>0 \text { and } x \geq y \geq z>0
$$

Back to the Monthly Problems

11397. Proposed by Grahame Bennet, Indiana University, Bloomington, IN. Let a, b, c, x, y, z be positive numbers such that $a+b+c=x+y+z$ and $a b c=x y z$. Show that if $\max \{x, y, z\} \geq \max \{a, b, c\}$ then $\min \{x, y, z\} \geq \min \{a, b, c\}$.

Because of symmetry, we may assume

$$
a \geq b \geq c>0 \text { and } x \geq y \geq z>0
$$

Then

$$
\begin{array}{ll}
\max \{x, y, z\}=x, & \max \{a, b, c\}=a \\
\min \{x, y, z\}=z, & \max \{a, b, c\}=c
\end{array}
$$

Back to the Monthly Problems

11397. Proposed by Grahame Bennet, Indiana University, Bloomington, IN. Let a, b, c, x, y, z be positive numbers such that $a+b+c=x+y+z$ and $a b c=x y z$. Show that if $\max \{x, y, z\} \geq \max \{a, b, c\}$ then $\min \{x, y, z\} \geq \min \{a, b, c\}$.

To do: prove

$$
\begin{aligned}
& \forall a, b, c, x, y, z:(a \geq b \geq c>0 \wedge x \geq y \geq z>0 \\
&\wedge a+b+c=x+y+z \wedge a b c=x y z \wedge x \geq a) \\
& \Rightarrow z \geq c
\end{aligned}
$$

Back to the Monthly Problems

11397. Proposed by Grahame Bennet, Indiana University, Bloomington, IN. Let a, b, c, x, y, z be positive numbers such that $a+b+c=x+y+z$ and $a b c=x y z$. Show that if $\max \{x, y, z\} \geq \max \{a, b, c\}$ then $\min \{x, y, z\} \geq \min \{a, b, c\}$.

To do: prove

$$
\begin{aligned}
\forall a, b, c, x, y, z: & (a \geq b \geq c>0 \wedge x \geq y \geq z>0 \\
& \wedge a+b+c=x+y+z \wedge a b c=x y z \wedge x \geq a) \\
\Rightarrow & z \geq c
\end{aligned}
$$

CAD can do that.

Back to the Monthly Problems

11205. Proposed by Wu Wei Chao, Guang Zhou, China. Let a, b, and c be the side-lengths of a triangle, and let $f(x, y, z)=$ $x y(y+z-2 x)(y+z-x)^{2}$. Prove that

$$
f(a, b, c)+f(b, c, a)+f(c, a, b) \geq 0
$$

Back to the Monthly Problems

11205. Proposed by Wu Wei Chao, Guang Zhou, China. Let a, b, and c be the side-lengths of a triangle, and let $f(x, y, z)=$ $x y(y+z-2 x)(y+z-x)^{2}$. Prove that

$$
f(a, b, c)+f(b, c, a)+f(c, a, b) \geq 0
$$

For geometric reasons, we have

$$
\begin{aligned}
& a+b \geq c \geq 0 \\
& a+c \geq b \geq 0 \\
& b+c \geq a \geq 0
\end{aligned}
$$

Back to the Monthly Problems

11205. Proposed by Wu Wei Chao, Guang Zhou, China. Let a, b, and c be the side-lengths of a triangle, and let $f(x, y, z)=$ $x y(y+z-2 x)(y+z-x)^{2}$. Prove that

$$
f(a, b, c)+f(b, c, a)+f(c, a, b) \geq 0
$$

To do: prove

$$
\begin{aligned}
& \forall a, b, c:(a+b \geq c \geq 0 \wedge a+c \geq b \geq 0 \wedge b+c \geq a \geq 0) \\
& \quad \Rightarrow f(a, b, c)+f(b, c, a)+f(c, a, b) \geq 0 .
\end{aligned}
$$

Back to the Monthly Problems

11205. Proposed by Wu Wei Chao, Guang Zhou, China. Let a, b, and c be the side-lengths of a triangle, and let $f(x, y, z)=$ $x y(y+z-2 x)(y+z-x)^{2}$. Prove that

$$
f(a, b, c)+f(b, c, a)+f(c, a, b) \geq 0 .
$$

To do: prove

$$
\begin{aligned}
& \forall a, b, c:(a+b \geq c \geq 0 \wedge a+c \geq b \geq 0 \wedge b+c \geq a \geq 0) \\
& \quad \Rightarrow f(a, b, c)+f(b, c, a)+f(c, a, b) \geq 0 .
\end{aligned}
$$

CAD can do that.

Back to the Monthly Problems

11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive a, b, and c, let

$$
E(a, b, c)=\frac{a^{2} b^{2} c^{2}-64}{(a+1)(b+1)(c+1)-27} .
$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2,2,2)$, at which $a b c=$ $a+b+c+2$.

Back to the Monthly Problems

11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive a, b, and c, let

$$
E(a, b, c)=\frac{a^{2} b^{2} c^{2}-64}{(a+1)(b+1)(c+1)-27} .
$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2,2,2)$, at which $a b c=$ $a+b+c+2$.

Back to the Monthly Problems

11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive a, b, and c, let

$$
E(a, b, c)=\frac{a^{2} b^{2} c^{2}-64}{(a+1)(b+1)(c+1)-27} .
$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2,2,2)$, at which $a b c=$ $a+b+c+2$.

Back to the Monthly Problems

11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive a, b, and c, let

$$
E(a, b, c)=\frac{a^{2} b^{2} c^{2}-64}{(a+1)(b+1)(c+1)-27} .
$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2,2,2)$, at which $a b c=$ $a+b+c+2$.

Back to the Monthly Problems

11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive a, b, and c, let

$$
E(a, b, c)=\frac{a^{2} b^{2} c^{2}-64}{(a+1)(b+1)(c+1)-27} .
$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2,2,2)$, at which $a b c=$ $a+b+c+2$.

Back to the Monthly Problems

11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive a, b, and c, let

$$
E(a, b, c)=\frac{a^{2} b^{2} c^{2}-64}{(a+1)(b+1)(c+1)-27} .
$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2,2,2)$, at which $a b c=$ $a+b+c+2$.

Back to the Monthly Problems

11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive a, b, and c, let

$$
E(a, b, c)=\frac{a^{2} b^{2} c^{2}-64}{(a+1)(b+1)(c+1)-27} .
$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2,2,2)$, at which $a b c=$ $a+b+c+2$.

Back to the Monthly Problems

11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive a, b, and c, let

$$
E(a, b, c)=\frac{a^{2} b^{2} c^{2}-64}{(a+1)(b+1)(c+1)-27} .
$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2,2,2)$, at which $a b c=$ $a+b+c+2$.

Back to the Monthly Problems

11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive a, b, and c, let

$$
E(a, b, c)=\frac{a^{2} b^{2} c^{2}-64}{(a+1)(b+1)(c+1)-27} .
$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2,2,2)$, at which $a b c=$ $a+b+c+2$.

Back to the Monthly Problems

11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive a, b, and c, let

$$
E(a, b, c)=\frac{a^{2} b^{2} c^{2}-64}{(a+1)(b+1)(c+1)-27} .
$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2,2,2)$, at which $a b c=$ $a+b+c+2$.

Back to the Monthly Problems

11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive a, b, and c, let

$$
E(a, b, c)=\frac{a^{2} b^{2} c^{2}-64}{(a+1)(b+1)(c+1)-27} .
$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2,2,2)$, at which $a b c=$ $a+b+c+2$.

Back to the Monthly Problems

11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive a, b, and c, let

$$
E(a, b, c)=\frac{a^{2} b^{2} c^{2}-64}{(a+1)(b+1)(c+1)-27} .
$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2,2,2)$, at which $a b c=$ $a+b+c+2$.

Back to the Monthly Problems

11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive a, b, and c, let

$$
E(a, b, c)=\frac{a^{2} b^{2} c^{2}-64}{(a+1)(b+1)(c+1)-27} .
$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2,2,2)$, at which $a b c=$ $a+b+c+2$.

Back to the Monthly Problems

11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive a, b, and c, let

$$
E(a, b, c)=\frac{a^{2} b^{2} c^{2}-64}{(a+1)(b+1)(c+1)-27} .
$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2,2,2)$, at which $a b c=$ $a+b+c+2$.

Back to the Monthly Problems

11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive a, b, and c, let

$$
E(a, b, c)=\frac{a^{2} b^{2} c^{2}-64}{(a+1)(b+1)(c+1)-27} .
$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2,2,2)$, at which $a b c=$ $a+b+c+2$.

Back to the Monthly Problems

11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive a, b, and c, let

$$
E(a, b, c)=\frac{a^{2} b^{2} c^{2}-64}{(a+1)(b+1)(c+1)-27} .
$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2,2,2)$, at which $a b c=$ $a+b+c+2$.

Back to the Monthly Problems

11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive a, b, and c, let

$$
E(a, b, c)=\frac{a^{2} b^{2} c^{2}-64}{(a+1)(b+1)(c+1)-27} .
$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2,2,2)$, at which $a b c=$ $a+b+c+2$.

Back to the Monthly Problems

11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive a, b, and c, let

$$
E(a, b, c)=\frac{a^{2} b^{2} c^{2}-64}{(a+1)(b+1)(c+1)-27} .
$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2,2,2)$, at which $a b c=$ $a+b+c+2$.

Back to the Monthly Problems

11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive a, b, and c, let

$$
E(a, b, c)=\frac{a^{2} b^{2} c^{2}-64}{(a+1)(b+1)(c+1)-27} .
$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2,2,2)$, at which $a b c=$ $a+b+c+2$.

Back to the Monthly Problems

11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive a, b, and c, let

$$
E(a, b, c)=\frac{a^{2} b^{2} c^{2}-64}{(a+1)(b+1)(c+1)-27} .
$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2,2,2)$, at which $a b c=$ $a+b+c+2$.

Back to the Monthly Problems

11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive a, b, and c, let

$$
E(a, b, c)=\frac{a^{2} b^{2} c^{2}-64}{(a+1)(b+1)(c+1)-27} .
$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2,2,2)$, at which $a b c=$ $a+b+c+2$.

Back to the Monthly Problems

11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive a, b, and c, let

$$
E(a, b, c)=\frac{a^{2} b^{2} c^{2}-64}{(a+1)(b+1)(c+1)-27} .
$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2,2,2)$, at which $a b c=$ $a+b+c+2$.

Back to the Monthly Problems

11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive a, b, and c, let

$$
E(a, b, c)=\frac{a^{2} b^{2} c^{2}-64}{(a+1)(b+1)(c+1)-27} .
$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2,2,2)$, at which $a b c=$ $a+b+c+2$.

Back to the Monthly Problems

11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive a, b, and c, let

$$
E(a, b, c)=\frac{a^{2} b^{2} c^{2}-64}{(a+1)(b+1)(c+1)-27} .
$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2,2,2)$, at which $a b c=$ $a+b+c+2$.

Back to the Monthly Problems

11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive a, b, and c, let

$$
E(a, b, c)=\frac{a^{2} b^{2} c^{2}-64}{(a+1)(b+1)(c+1)-27} .
$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2,2,2)$, at which $a b c=$ $a+b+c+2$.

Todo: find all e with

$$
\begin{aligned}
\exists a, b, c: a & >0 \wedge b>0 \wedge c>0 \wedge a b c=a+b+c+2 \\
& \wedge e=\frac{a^{2} b^{2} c^{2}-64}{(a+1)(b+1)(c+1)-27} .
\end{aligned}
$$

Back to the Monthly Problems

11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive a, b, and c, let

$$
E(a, b, c)=\frac{a^{2} b^{2} c^{2}-64}{(a+1)(b+1)(c+1)-27} .
$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2,2,2)$, at which $a b c=$ $a+b+c+2$.

Todo: find all e with

$$
\begin{aligned}
\exists a, b, c: a & >0 \wedge b>0 \wedge c>0 \wedge a b c=a+b+c+2 \\
& \wedge e=\frac{a^{2} b^{2} c^{2}-64}{(a+1)(b+1)(c+1)-27} .
\end{aligned}
$$

Back to the Monthly Problems

11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive a, b, and c, let

$$
E(a, b, c)=\frac{a^{2} b^{2} c^{2}-64}{(a+1)(b+1)(c+1)-27} .
$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2,2,2)$, at which $a b c=$ $a+b+c+2$.

CAD can do that.

Back to the Monthly Problems

11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive a, b, and c, let

$$
E(a, b, c)=\frac{a^{2} b^{2} c^{2}-64}{(a+1)(b+1)(c+1)-27} .
$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2,2,2)$, at which $a b c=$ $a+b+c+2$.

CAD can do that.
Answer: $e \geq \frac{23+\sqrt{17}}{8}$.

Back to the Monthly Problems

11297. Proposed by Marian Tetiva, Bîrlad, Romania. For positive a, b, and c, let

$$
E(a, b, c)=\frac{a^{2} b^{2} c^{2}-64}{(a+1)(b+1)(c+1)-27} .
$$

Find the minimum value of $E(a, b, c)$ on the set D consisting of all positive triples (a, b, c), other than $(2,2,2)$, at which $a b c=$ $a+b+c+2$.

CAD can do that.
Answer: $e \geq \frac{23+\sqrt{17}}{8}$.
(Lagrange multipliers + Gröbner bases would have worked as well.)

What a mess!

The CAD output in the previous example is somewhat messy.

What a mess!

The CAD output in the previous example is somewhat messy.
But it has a striking structure:

What a mess!

The CAD output in the previous example is somewhat messy.
But it has a striking structure:

$$
\begin{aligned}
& e=\frac{23+\sqrt{17}}{8} \wedge \square \\
& \vee \frac{23+\sqrt{17}}{8}<e<\frac{32}{9} \wedge \square \\
& \vee e=\frac{32}{9} \wedge \square \\
& \vee \frac{32}{9}<e<4 \wedge \square \\
& \vee e \geq 4 \wedge \square
\end{aligned}
$$

What a mess!

The CAD output in the previous example is somewhat messy.
But it has a striking structure:

$$
\begin{aligned}
& e=\frac{23+\sqrt{17}}{8} \wedge \square \\
& \vee \frac{23+\sqrt{17}}{8}<e<\frac{32}{9} \wedge \square \\
& \vee e=\frac{32}{9} \wedge \square \\
& \vee \frac{32}{9}<e<4 \wedge \square \\
& \vee e \geq 4 \wedge \square
\end{aligned}
$$

The boxes represent some formulas involving a, b, c, e which are guaranteed to be satisfiable.

What a mess!

In general, CAD brings a system of polynomial inequalities into the following recursive format:

$$
\cdots \vee \quad \square<x_{1}<\llbracket \wedge \square \vee x_{1}=\llbracket \wedge \square \vee \cdots
$$

What a mess!

In general, CAD brings a system of polynomial inequalities into the following recursive format:

What a mess!

In general, CAD brings a system of polynomial inequalities into the following recursive format:

What a mess!

In general, CAD brings a system of polynomial inequalities into the following recursive format:

What a mess!

In general, CAD brings a system of polynomial inequalities into the following recursive format:

What a mess!

In general, CAD brings a system of polynomial inequalities into the following recursive format:

What a mess!

In general, CAD brings a system of polynomial inequalities into the following recursive format:

What a mess!

In general, CAD brings a system of polynomial inequalities into the following recursive format:

What a mess!

In general, CAD brings a system of polynomial inequalities into the following recursive format:

What a mess!

- The symbols ■ refer to some real algebraic numbers.

What a mess!

- The symbols \quad refer to some real algebraic numbers.
- The symbols \square refer to some algebraic functions in x_{1}.

What a mess!

- The symbols \quad refer to some real algebraic numbers.
- The symbols \square refer to some algebraic functions in x_{1}.
- The symbols $■$ refer to algebraic functions in x_{1} and x_{2}.

What a mess!

- The symbols \quad refer to some real algebraic numbers.
- The symbols \square refer to some algebraic functions in x_{1}.
- The symbols \square refer to algebraic functions in x_{1} and x_{2}.
- The symbols $■$ refer to algebraic functions in x_{1}, x_{2}, and x_{3}.

What a mess!

- The symbols \quad refer to some real algebraic numbers.
- The symbols \square refer to some algebraic functions in x_{1}.
- The symbols $■$ refer to algebraic functions in x_{1} and x_{2}.
- The symbols $■$ refer to algebraic functions in x_{1}, x_{2}, and x_{3}.
- ...

A Formal Definition by Structural Induction

A Formal Definition by Structural Induction

- 1 variable: A system of polynomial inequalities is called a CAD in x if it is of the form

$$
\Phi_{1} \vee \Phi_{2} \vee \cdots \vee \Phi_{m}
$$

where each Φ_{k} is of the form $x<\alpha$ or $\alpha<x<\beta$ or $x>\beta$ or $x=\gamma$ for some real algebraic numbers $\alpha, \beta, \gamma(\alpha<\beta)$ and any two Φ_{k} are mutually inconsistent.

A Formal Definition by Structural Induction

- 1 variable: A system of polynomial inequalities is called a CAD in x if it is of the form

$$
\Phi_{1} \vee \Phi_{2} \vee \cdots \vee \Phi_{m}
$$

where each Φ_{k} is of the form $x<\alpha$ or $\alpha<x<\beta$ or $x>\beta$ or $x=\gamma$ for some real algebraic numbers $\alpha, \beta, \gamma(\alpha<\beta)$ and any two Φ_{k} are mutually inconsistent.

- n variables: A system of polynomial inequalities is called a CAD in x_{1}, \ldots, x_{n} if it is of the form

$$
\left(\Phi_{1} \wedge \Psi_{1}\right) \vee\left(\Phi_{2} \wedge \Psi_{2}\right) \vee \cdots \vee\left(\Phi_{m} \wedge \Psi_{m}\right)
$$

where the Φ_{k} are such that $\Phi_{1} \vee \cdots \vee \Phi_{k}$ is a CAD in x_{1} and the Ψ_{k} are CADs in x_{2}, \ldots, x_{n} whenever x_{1} is replaced by a real algebraic number satisfying Φ_{k}.

Example

Here is a CAD for the unit sphere:

$$
\begin{aligned}
& x=-1 \wedge y=0 \wedge z=0 \\
& \vee-1<x<1 \wedge\left(y=-\sqrt{1-x^{2}} \wedge z=0\right. \\
& \vee-\sqrt{1-x^{2}}<y<\sqrt{1-x^{2}} \wedge \\
& \left(z=-\sqrt{1-x^{2}-y^{2}}\right. \\
& \vee-\sqrt{1-x^{2}-y^{2}}<z<\sqrt{1-x^{2}-y^{2}} \\
& \left.\vee z=\sqrt{1-x^{2}-y^{2}}\right) \\
& \left.\vee y=-\sqrt{1-x^{2}} \wedge z=0\right) \\
& \vee x=1 \wedge y=0 \wedge z=0
\end{aligned}
$$

Example

Here is a CAD for the unit sphere:

$$
\begin{aligned}
& x=-1 \wedge y=0 \wedge z=0 \\
& \vee-1<x<1 \wedge\left(y=-\sqrt{1-x^{2}} \wedge z=0\right. \\
& \vee-\sqrt{1-x^{2}}<y<\sqrt{1-x^{2}} \wedge \\
& \left(z=-\sqrt{1-x^{2}-y^{2}}\right. \\
& \vee-\sqrt{1-x^{2}-y^{2}}<z<\sqrt{1-x^{2}-y^{2}} \\
& \left.\vee z=\sqrt{1-x^{2}-y^{2}}\right) \\
& \left.\vee y=-\sqrt{1-x^{2}} \wedge z=0\right) \\
& \vee x=1 \wedge y=0 \wedge z=0
\end{aligned}
$$

Example

Here is a CAD for the unit sphere:

$$
\begin{aligned}
& x=-1 \wedge y=0 \wedge z=0 \\
& \vee-1<x<1 \wedge\left(y=-\sqrt{1-x^{2}} \wedge z=0\right. \\
& \vee-\sqrt{1-x^{2}}<y<\sqrt{1-x^{2}} \wedge \\
& \left(z=-\sqrt{1-x^{2}-y^{2}}\right. \\
& \vee-\sqrt{1-x^{2}-y^{2}}<z<\sqrt{1-x^{2}-y^{2}} \\
& \left.\vee z=\sqrt{1-x^{2}-y^{2}}\right) \\
& \left.\vee y=-\sqrt{1-x^{2}} \wedge z=0\right) \\
& \vee x=1 \wedge y=0 \wedge z=0
\end{aligned}
$$

Example

Here is a CAD for the unit sphere:

$$
\begin{aligned}
& x=-1 \wedge y=0 \wedge z=0 \\
& \vee-1<x<1 \wedge\left(y=-\sqrt{1-x^{2}} \wedge z=0\right. \\
& \vee-\sqrt{1-x^{2}}<y<\sqrt{1-x^{2}} \wedge \\
& \left(z=-\sqrt{1-x^{2}-y^{2}}\right. \\
& \vee-\sqrt{1-x^{2}-y^{2}}<z<\sqrt{1-x^{2}-y^{2}} \\
& \left.\vee z=\sqrt{1-x^{2}-y^{2}}\right) \\
& \left.\vee y=-\sqrt{1-x^{2}} \wedge z=0\right) \\
& \vee x=1 \wedge y=0 \wedge z=0
\end{aligned}
$$

Example

Here is a CAD for the unit sphere:

$$
\begin{aligned}
& x=-1 \wedge y=0 \wedge z=0 \\
& \vee-1<x<1 \wedge\left(y=-\sqrt{1-x^{2}} \wedge z=0\right. \\
& \vee-\sqrt{1-x^{2}}<y<\sqrt{1-x^{2}} \wedge \\
& \left(z=-\sqrt{1-x^{2}-y^{2}}\right. \\
& \vee-\sqrt{1-x^{2}-y^{2}}<z<\sqrt{1-x^{2}-y^{2}} \\
& \left.\vee z=\sqrt{1-x^{2}-y^{2}}\right) \\
& \left.\vee y=-\sqrt{1-x^{2}} \wedge z=0\right) \\
& \vee x=1 \wedge y=0 \wedge z=0
\end{aligned}
$$

Example

Here is a CAD for the unit sphere:

$$
\begin{aligned}
& x=-1 \wedge y=0 \wedge z=0 \\
& \vee-1<x<1 \wedge\left(y=-\sqrt{1-x^{2}} \wedge z=0\right. \\
& \vee-\sqrt{1-x^{2}}<y<\sqrt{1-x^{2}} \wedge \\
& \left(z=-\sqrt{1-x^{2}-y^{2}}\right. \\
& \vee-\sqrt{1-x^{2}-y^{2}}<z<\sqrt{1-x^{2}-y^{2}} \\
& \left.\vee z=\sqrt{1-x^{2}-y^{2}}\right) \\
& \left.\vee y=-\sqrt{1-x^{2}} \wedge z=0\right) \\
& \vee x=1 \wedge y=0 \wedge z=0
\end{aligned}
$$

Example

Here is a CAD for the unit sphere:

$$
\begin{aligned}
& x=-1 \wedge y=0 \wedge z=0 \\
& \vee-1<x<1 \wedge\left(y=-\sqrt{1-x^{2}} \wedge z=0\right. \\
& \vee-\sqrt{1-x^{2}}<y<\sqrt{1-x^{2}} \wedge \\
& \left(z=-\sqrt{1-x^{2}-y^{2}}\right. \\
& \vee-\sqrt{1-x^{2}-y^{2}}<z<\sqrt{1-x^{2}-y^{2}} \\
& \left.\vee z=\sqrt{1-x^{2}-y^{2}}\right) \\
& \left.\vee y=-\sqrt{1-x^{2}} \wedge z=0\right) \\
& \vee x=1 \wedge y=0 \wedge z=0
\end{aligned}
$$

Example

Here is a CAD for the unit sphere:

$$
\begin{aligned}
& x=-1 \wedge y=0 \wedge z=0 \\
& \vee-1<x<1 \wedge\left(y=-\sqrt{1-x^{2}} \wedge z=0\right. \\
& \vee-\sqrt{1-x^{2}}<y<\sqrt{1-x^{2}} \wedge \\
& \left(z=-\sqrt{1-x^{2}-y^{2}}\right. \\
& \vee-\sqrt{1-x^{2}-y^{2}}<z<\sqrt{1-x^{2}-y^{2}} \\
& \left.\vee z=\sqrt{1-x^{2}-y^{2}}\right) \\
& \left.\vee y=-\sqrt{1-x^{2}} \wedge z=0\right) \\
& \vee x=1 \wedge y=0 \wedge z=0
\end{aligned}
$$

Example

Here is a CAD for the unit sphere:

$$
\begin{aligned}
& x=-1 \wedge y=0 \wedge z=0 \\
& \vee-1<x<1 \wedge\left(y=-\sqrt{1-x^{2}} \wedge z=0\right. \\
& \vee-\sqrt{1-x^{2}}<y<\sqrt{1-x^{2}} \wedge \\
& \left(z=-\sqrt{1-x^{2}-y^{2}}\right. \\
& \vee-\sqrt{1-x^{2}-y^{2}}<z<\sqrt{1-x^{2}-y^{2}} \\
& \left.\vee z=\sqrt{1-x^{2}-y^{2}}\right) \\
& \left.\vee y=-\sqrt{1-x^{2}} \wedge z=0\right) \\
& \vee x=1 \wedge y=0 \wedge z=0
\end{aligned}
$$

Example

Here is a CAD for the unit sphere:

$$
\begin{aligned}
& x=-1 \wedge y=0 \wedge z=0 \\
& \vee-1<x<1 \wedge\left(y=-\sqrt{1-x^{2}} \wedge z=0\right. \\
& \vee-\sqrt{1-x^{2}}<y<\sqrt{1-x^{2}} \wedge \\
& \left(z=-\sqrt{1-x^{2}-y^{2}}\right. \\
& \vee-\sqrt{1-x^{2}-y^{2}}<z<\sqrt{1-x^{2}-y^{2}} \\
& \left.\vee z=\sqrt{1-x^{2}-y^{2}}\right) \\
& \left.\vee y=-\sqrt{1-x^{2}} \wedge z=0\right) \\
& \vee x=1 \wedge y=0 \wedge z=0
\end{aligned}
$$

Example

Here is a CAD for the unit sphere:

$$
\begin{aligned}
& x=-1 \wedge y=0 \wedge z=0 \\
& \vee-1<x<1 \wedge\left(y=-\sqrt{1-x^{2}} \wedge z=0\right. \\
& \vee-\sqrt{1-x^{2}}<y<\sqrt{1-x^{2}} \wedge \\
& \left(z=-\sqrt{1-x^{2}-y^{2}}\right. \\
& \vee-\sqrt{1-x^{2}-y^{2}}<z<\sqrt{1-x^{2}-y^{2}} \\
& \left.\vee z=\sqrt{1-x^{2}-y^{2}}\right) \\
& \left.\vee y=-\sqrt{1-x^{2}} \wedge z=0\right) \\
& \vee x=1 \wedge y=0 \wedge z=0
\end{aligned}
$$

Example

Here is a CAD for the unit sphere:

$$
\begin{aligned}
& x=-1 \wedge y=0 \wedge z=0 \\
& \vee-1<x<1 \wedge\left(y=-\sqrt{1-x^{2}} \wedge z=0\right. \\
& \vee-\sqrt{1-x^{2}}<y<\sqrt{1-x^{2}} \wedge \\
& \left(z=-\sqrt{1-x^{2}-y^{2}}\right. \\
& \vee-\sqrt{1-x^{2}-y^{2}}<z<\sqrt{1-x^{2}-y^{2}} \\
& \left.\vee z=\sqrt{1-x^{2}-y^{2}}\right) \\
& \left.\vee y=-\sqrt{1-x^{2}} \wedge z=0\right) \\
& \vee x=1 \wedge y=0 \wedge z=0
\end{aligned}
$$

Example

Here is a CAD for the unit sphere:

$$
\begin{aligned}
& x=-1 \wedge y=0 \wedge z=0 \\
& \vee-1<x<1 \wedge\left(y=-\sqrt{1-x^{2}} \wedge z=0\right. \\
& \vee-\sqrt{1-x^{2}}<y<\sqrt{1-x^{2}} \wedge \\
& \left(z=-\sqrt{1-x^{2}-y^{2}}\right. \\
& \vee-\sqrt{1-x^{2}-y^{2}}<z<\sqrt{1-x^{2}-y^{2}} \\
& \left.\vee z=\sqrt{1-x^{2}-y^{2}}\right) \\
& \left.\vee y=-\sqrt{1-x^{2}} \wedge z=0\right) \\
& \vee x=1 \wedge y=0 \wedge z=0
\end{aligned}
$$

Example

Here is a CAD for the unit sphere:

$$
\begin{aligned}
& x=-1 \wedge y=0 \wedge z=0 \\
& \vee-1<x<1 \wedge\left(y=-\sqrt{1-x^{2}} \wedge z=0\right. \\
& \vee-\sqrt{1-x^{2}}<y<\sqrt{1-x^{2}} \wedge \\
& \left(z=-\sqrt{1-x^{2}-y^{2}}\right. \\
& \vee-\sqrt{1-x^{2}-y^{2}}<z<\sqrt{1-x^{2}-y^{2}} \\
& \left.\vee z=\sqrt{1-x^{2}-y^{2}}\right) \\
& \left.\vee y=-\sqrt{1-x^{2}} \wedge z=0\right) \\
& \vee x=1 \wedge y=0 \wedge z=0
\end{aligned}
$$

Example

Here is a CAD for the unit sphere:

$$
\begin{aligned}
& x=-1 \wedge y=0 \wedge z=0 \\
& \vee-1<x<1 \wedge\left(y=-\sqrt{1-x^{2}} \wedge z=0\right. \\
& \vee-\sqrt{1-x^{2}}<y<\sqrt{1-x^{2}} \wedge \\
& \left(z=-\sqrt{1-x^{2}-y^{2}}\right. \\
& \vee-\sqrt{1-x^{2}-y^{2}}<z<\sqrt{1-x^{2}-y^{2}} \\
& \left.\vee z=\sqrt{1-x^{2}-y^{2}}\right) \\
& \left.\vee y=-\sqrt{1-x^{2}} \wedge z=0\right) \\
& \vee x=1 \wedge y=0 \wedge z=0
\end{aligned}
$$

Example

Here is a CAD for the unit sphere:

$$
\begin{aligned}
& x=-1 \wedge y=0 \wedge z=0 \\
& \vee-1<x<1 \wedge\left(y=-\sqrt{1-x^{2}} \wedge z=0\right. \\
& \vee-\sqrt{1-x^{2}}<y<\sqrt{1-x^{2}} \wedge \\
& \left(z=-\sqrt{1-x^{2}-y^{2}}\right. \\
& \vee-\sqrt{1-x^{2}-y^{2}}<z<\sqrt{1-x^{2}-y^{2}} \\
& \left.\vee z=\sqrt{1-x^{2}-y^{2}}\right) \\
& \left.\vee y=-\sqrt{1-x^{2}} \wedge z=0\right) \\
& \vee x=1 \wedge y=0 \wedge z=0
\end{aligned}
$$

Why is this a good structure?

Why is this a good structure?

For a system of polynomial inequalities in CAD form, the questions from before can be answered easily.

Why is this a good structure?

For a system of polynomial inequalities in CAD form, the questions from before can be answered easily.

In particular, Quantifier Elimination is easy:

Why is this a good structure?

For a system of polynomial inequalities in CAD form, the questions from before can be answered easily.

In particular, Quantifier Elimination is easy:

$$
\exists z: \Phi(x, y, z) \longrightarrow \Psi(x, y)
$$

Why is this a good structure?

For a system of polynomial inequalities in CAD form, the questions from before can be answered easily.

In particular, Quantifier Elimination is easy:

$$
\exists z: \Phi(x, y, z) \longrightarrow \Psi(x, y)
$$

Why is this a good structure?

For a system of polynomial inequalities in CAD form, the questions from before can be answered easily.

In particular, Quantifier Elimination is easy:

$$
\exists z: \Phi(x, y, z) \longrightarrow \Psi(x, y)
$$

Prune the last level of the CAD tree.

Why is this a good structure?

For a system of polynomial inequalities in CAD form, the questions from before can be answered easily.

In particular, Quantifier Elimination is easy:

$$
\exists z: \Phi(x, y, z) \longrightarrow \Psi(x, y)
$$

Prune the last level of the CAD tree.

Why is this a good structure?

For a system of polynomial inequalities in CAD form, the questions from before can be answered easily.

In particular, Quantifier Elimination is easy:

$$
\exists z: \Phi(x, y, z) \longrightarrow \Psi(x, y)
$$

Prune the last level of the CAD tree.

Why is this a good structure?

For a system of polynomial inequalities in CAD form, the questions from before can be answered easily.

In particular, Quantifier Elimination is easy:

$$
\forall z: \Phi(x, y, z) \longrightarrow \Psi(x, y)
$$

Why is this a good structure?

For a system of polynomial inequalities in CAD form, the questions from before can be answered easily.

In particular, Quantifier Elimination is easy:

$$
\forall z: \Phi(x, y, z) \longrightarrow \Psi(x, y)
$$

Delete all subtrees that do not have "all of \mathbb{R} " at the bottom.

Why is this a good structure?

For a system of polynomial inequalities in CAD form, the questions from before can be answered easily.

In particular, Quantifier Elimination is easy:

$$
\forall z: \Phi(x, y, z) \longrightarrow \Psi(x, y)
$$

Delete all subtrees that do not have "all of \mathbb{R} " at the bottom.

Why is this a good structure?

For a system of polynomial inequalities in CAD form, the questions from before can be answered easily.

In particular, Quantifier Elimination is easy:

$$
\forall z: \Phi(x, y, z) \longrightarrow \Psi(x, y)
$$

Delete all subtrees that do not have "all of \mathbb{R} " at the bottom.
Then prune the last level.

Why is this a good structure?

For a system of polynomial inequalities in CAD form, the questions from before can be answered easily.

In particular, Quantifier Elimination is easy:

$$
\forall z: \Phi(x, y, z) \longrightarrow \Psi(x, y)
$$

Delete all subtrees that do not have "all of \mathbb{R} " at the bottom.
Then prune the last level.

Why is this a good structure?

For a system of polynomial inequalities in CAD form, the questions from before can be answered easily.

In particular, Quantifier Elimination is easy:

$$
\forall z: \Phi(x, y, z) \longrightarrow \Psi(x, y)
$$

Delete all subtrees that do not have "all of \mathbb{R} " at the bottom.
Then prune the last level.

Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals
OUTPUT: a system of polynomial inequalities over the reals, which

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.

Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals OUTPUT: a system of polynomial inequalities over the reals, which

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.

Cylindrical Algebraic Decomposition (CAD)

OUTPUT: a system of polynomial inequalities over the reals, which

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.

Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals
OUTPUT: a system of polynomial inequalities over the reals, which

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.

Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals
OUTPUT: a system of polynomial inequalities over the reals, which

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.

Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals
OUTPUT: a system of polynomial inequalities over the reals, which

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.

Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals
OUTPUT: a system of polynomial inequalities over the reals, which

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.

Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals
OUTPUT: a system of polynomial inequalities over the reals, which

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.

So what?

All this effort just to solve some Monthly Problems?

So what?

All this effort just to solve some Monthly Problems?
No! CAD is strong enough to do actual research...

So what?

All this effort just to solve some Monthly Problems?
No! CAD is strong enough to do actual research...

- ...in control theory

So what?

All this effort just to solve some Monthly Problems?
No! CAD is strong enough to do actual research...

- ... in control theory
- ... in numerical analysis

So what?

All this effort just to solve some Monthly Problems?
No! CAD is strong enough to do actual research...

- ... in control theory
- . . . in numerical analysis
- ...in program verification

So what?

All this effort just to solve some Monthly Problems?
No! CAD is strong enough to do actual research...

- ... in control theory
- . . . in numerical analysis
- ...in program verification
- . . . in symbolic summation

So what?

All this effort just to solve some Monthly Problems?
No! CAD is strong enough to do actual research...

- ... in control theory
-in numerical analysis
- ...in program verification
- . . . in symbolic summation
- ... in computational biology

So what?

All this effort just to solve some Monthly Problems?
No! CAD is strong enough to do actual research...

- ... in control theory
- ... in numerical analysis
- ...in program verification
- . . . in symbolic summation
- . . . in computational biology
- ... and elsewhere.

So what?

All this effort just to solve some Monthly Problems?
No! CAD is strong enough to do actual research...

- ... in control theory
- ... in numerical analysis
- ...in program verification
- . . . in symbolic summation
- . . . in computational biology
- ... and elsewhere.

Often, CAD computations in such applications are feasible only after some appropriate preprocessing.

A nontrivial Example

A nontrivial Example

A triangular norm is a map

$$
T:[0,1]^{2} \rightarrow[0,1]
$$

which is commutative, associative, increasing, and has neutral element 1.

A nontrivial Example

A triangular norm is a map

$$
T:[0,1]^{2} \rightarrow[0,1]
$$

which is commutative, associative, increasing, and has neutral element 1.

Examples:

A nontrivial Example

A triangular norm is a map

$$
T:[0,1]^{2} \rightarrow[0,1]
$$

which is commutative, associative, increasing, and has neutral element 1.

Examples:

- The minimum norm $(u, v) \mapsto \min (u, v)$

A nontrivial Example

A triangular norm is a map

$$
T:[0,1]^{2} \rightarrow[0,1]
$$

which is commutative, associative, increasing, and has neutral element 1.

Examples:

- The minimum norm $(u, v) \mapsto \min (u, v)$
- The product norm $(u, v) \mapsto u v$

A nontrivial Example

A triangular norm is a map

$$
T:[0,1]^{2} \rightarrow[0,1]
$$

which is commutative, associative, increasing, and has neutral element 1.

Examples:

- The minimum norm $(u, v) \mapsto \min (u, v)$
- The product norm $(u, v) \mapsto u v$
- The Łukasiewicz norm $(u, v) \mapsto \max (u+v-1,0)$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

The family of Sugeno-Weber norms is defined for $\lambda \geq 0$

$$
\begin{aligned}
& T_{\lambda}:[0,1]^{2} \rightarrow[0,1] \\
& T_{\lambda}(u, v)=\max (0,(1-\lambda) u v+\lambda(u+v-1))
\end{aligned}
$$

A nontrivial Example

A norm T is said to dominate a norm T^{\prime} if

$$
T\left(T^{\prime}(u, v), T^{\prime}(x, y)\right) \leq T^{\prime}(T(u, x), T(v, y))
$$

for all $x, y, u, v \in[0,1]$.

A nontrivial Example

A norm T is said to dominate a norm T^{\prime} if

$$
T\left(T^{\prime}(u, v), T^{\prime}(x, y)\right) \leq T^{\prime}(T(u, x), T(v, y))
$$

for all $x, y, u, v \in[0,1]$.
Question: What are the $\lambda, \mu \geq 0$ such that the Sugeno-Weber norm T_{λ} dominates the Sugeno-Weber norm T_{μ} ?

A nontrivial Example

A norm T is said to dominate a norm T^{\prime} if

$$
T\left(T^{\prime}(u, v), T^{\prime}(x, y)\right) \leq T^{\prime}(T(u, x), T(v, y))
$$

for all $x, y, u, v \in[0,1]$.
Question: What are the $\lambda, \mu \geq 0$ such that the Sugeno-Weber norm T_{λ} dominates the Sugeno-Weber norm T_{μ} ?
Theorem (Kauers, Pillwein, Saminger-Platz, 2010)
T_{λ} dominates T_{μ} if and only if (a) $\lambda=\mu$ or (b)
$0 \leq \lambda \leq \mu \leq 17+12 \sqrt{2}$ or (c) $\mu<17+12 \sqrt{2}$ and $0 \leq \lambda \leq\left(\frac{1-3 \sqrt{\mu}}{3-\sqrt{\mu}}\right)^{2}$.

A nontrivial Example

Just use CAD to eliminate the quantifiers from the formula

$$
\begin{aligned}
& \forall x, y, u, v \in[0,1]: \\
& \quad \max (0,(1-\lambda) \max (0,(1-\mu) u v+\mu(u+v-1)) \\
& \quad \times \max (0,(1-\mu) x y+\mu(x+y-1)) \\
& \quad+\lambda(\max (0,(1-\mu) u v+\mu(u+v-1)) \\
& \quad+\max (0,(1-\mu) x y+\mu(x+y-1))-1)) \\
& \geq \max (0,(1-\mu) \max (0,(1-\lambda) u x+\lambda(u+x-1)) \\
& \quad \times \max (0,(1-\lambda) v y+\lambda(v+y-1)) \\
& \quad+\mu(\max (0,(1-\lambda) u x+\lambda(u+x-1)) \\
& \quad+\max (0,(1-\lambda) v y+\lambda(v+y-1))-1)) .
\end{aligned}
$$

A nontrivial Example

Just use CAD to eliminate the quantifiers from the formula

$$
\begin{aligned}
& \forall x, y, u, v \in[0,1]: \\
& \quad \max (0,(1-\lambda) \max (0,(1-\mu) u v+\mu(u+v-1)) \\
& \quad \times \max (0,(1-\mu) x y+\mu(x+y-1)) \\
& \quad+\lambda(\max (0,(1-\mu) u v+\mu(u+v-1)) \\
& \quad+\max (0,(1-\mu) x y+\mu(x+y-1))-1)) \\
& \geq \max (0,(1-\mu) \max (0,(1-\lambda) u x+\lambda(u+x-1)) \\
& \quad \times \max (0,(1-\lambda) v y+\lambda(v+y-1)) \\
& \quad+\mu(\max (0,(1-\lambda) u x+\lambda(u+x-1)) \\
& \quad+\max (0,(1-\lambda) v y+\lambda(v+y-1))-1)) .
\end{aligned}
$$

This is possible in principle, but not in practice.

A nontrivial Example

Task: Break the problem into several feasible subproblems.

A nontrivial Example

Task: Break the problem into several feasible subproblems.
We proceeded in several steps:

A nontrivial Example

Task: Break the problem into several feasible subproblems.
We proceeded in several steps:

1. Handle some special cases by hand

A nontrivial Example

Task: Break the problem into several feasible subproblems.
We proceeded in several steps:

1. Handle some special cases by hand
2. Eliminate the outer maxima

A nontrivial Example

Task: Break the problem into several feasible subproblems.
We proceeded in several steps:

1. Handle some special cases by hand
2. Eliminate the outer maxima
3. Eliminate the inner maxima

A nontrivial Example

Task: Break the problem into several feasible subproblems.
We proceeded in several steps:

1. Handle some special cases by hand
2. Eliminate the outer maxima
3. Eliminate the inner maxima
4. Sort out redundant clauses (using CAD)

A nontrivial Example

Task: Break the problem into several feasible subproblems.
We proceeded in several steps:

1. Handle some special cases by hand
2. Eliminate the outer maxima
3. Eliminate the inner maxima
4. Sort out redundant clauses (using CAD)
5. Apply some logical simplifications (using CAD)

A nontrivial Example

Task: Break the problem into several feasible subproblems.
We proceeded in several steps:

1. Handle some special cases by hand
2. Eliminate the outer maxima
3. Eliminate the inner maxima
4. Sort out redundant clauses (using CAD)
5. Apply some logical simplifications (using CAD)
6. Apply some algebraic simplifications

A nontrivial Example

Task: Break the problem into several feasible subproblems.
We proceeded in several steps:

1. Handle some special cases by hand
2. Eliminate the outer maxima
3. Eliminate the inner maxima
4. Sort out redundant clauses (using CAD)
5. Apply some logical simplifications (using CAD)
6. Apply some algebraic simplifications
7. Apply CAD to finish up

A nontrivial Example

1. Handle some special cases by hand.

A nontrivial Example

1. Handle some special cases by hand.

It is "easy to see" that it suffices to consider the cases

$$
0<\lambda<\mu \quad \text { and } \quad x, y, u, v \in(0,1)
$$

instead of

$$
\lambda, \mu \geq 0 \quad \text { and } \quad x, y, u, v \in[0,1] .
$$

A nontrivial Example

1. Handle some special cases by hand.

It is "easy to see" that it suffices to consider the cases

$$
0<\lambda<\mu \quad \text { and } \quad x, y, u, v \in(0,1)
$$

instead of

$$
\lambda, \mu \geq 0 \quad \text { and } \quad x, y, u, v \in[0,1] .
$$

(Homework.)

A nontrivial Example

2. Eliminate the outer maxima.

A nontrivial Example

2. Eliminate the outer maxima.

Apply the general equivalence

$$
\max (0, A) \geq \max (0, B) \Longleftrightarrow B \leq 0 \vee A \geq B>0 \quad(A, B \in \mathbb{R})
$$

to obtain

A nontrivial Example

2. Eliminate the outer maxima.

Apply the general equivalence

$$
\max (0, A) \geq \max (0, B) \Longleftrightarrow B \leq 0 \vee A \geq B>0 \quad(A, B \in \mathbb{R})
$$

to obtain

$$
\begin{aligned}
& \forall x, y, u, v \in \mathbb{R}: 0<\lambda<\mu \wedge 0<x<1 \wedge 0<y<1 \wedge 0<u<1 \wedge 0<v<1 \\
& \Rightarrow((1-\mu) \max (0,(1-\lambda) u x+\lambda(u+x-1)) \max (0,(1-\lambda) v y+\lambda(v+y-1)) \\
& \quad+\mu(\max (0,(1-\lambda) u x+\lambda(u+x-1))+\max (0,(1-\lambda) v y+\lambda(v+y-1))-1) \leq 0 \\
& \quad \vee(1-\lambda) \max (0,(1-\mu) u v+\mu(u+v-1)) \max (0,(1-\mu) x y+\mu(x+y-1)) \\
& \quad+\lambda(\max (0,(1-\mu) u v+\mu(u+v-1))+\max (0,(1-\mu) x y+\mu(x+y-1))-1)) \\
& \quad \geq(1-\mu) \max (0,(1-\lambda) u x+\lambda(u+x-1)) \max (0,(1-\lambda) v y+\lambda(v+y-1)) \\
& \quad+\mu(\max (0,(1-\lambda) u x+\lambda(u+x-1))+\max (0,(1-\lambda) v y+\lambda(v+y-1))-1)>0)
\end{aligned}
$$

A nontrivial Example

3. Eliminate the inner maxima.

A nontrivial Example

3. Eliminate the inner maxima.

If $\Phi(X)$ is any formula depending on a real variable X, then

$$
\Phi(\max (0, X)) \Longleftrightarrow(X \leq 0 \wedge \Phi(0)) \vee(X>0 \wedge \Phi(X))
$$

A nontrivial Example

3. Eliminate the inner maxima.

If $\Phi(X)$ is any formula depending on a real variable X, then

$$
\Phi(\max (0, X)) \Longleftrightarrow(X \leq 0 \wedge \Phi(0)) \vee(X>0 \wedge \Phi(X))
$$

For a formula in several variables, we have

$$
\begin{aligned}
\Phi\left(\max \left(0, X_{1}\right), \max \left(0, X_{2}\right)\right) \Longleftrightarrow & \left(X_{1} \leq 0 \wedge X_{2} \leq 0 \wedge \Phi(0,0)\right. \\
& \vee X_{1}>0 \wedge X_{2} \leq 0 \wedge \Phi\left(X_{1}, 0\right) \\
& \vee X_{1} \leq 0 \wedge X_{2}>0 \wedge \Phi\left(0, X_{2}\right) \\
& \left.\vee X_{1}>0 \wedge X_{2}>0 \wedge \Phi\left(X_{1}, X_{2}\right)\right)
\end{aligned}
$$

A nontrivial Example

3. Eliminate the inner maxima.

Writing

$$
\begin{aligned}
& X_{1}:=(1-\lambda) u x+\lambda(u+x-1), \\
& X_{2}:=(1-\lambda) v y+\lambda(v+y-1), \\
& X_{3}:=(1-\mu) u v+\mu(u+v-1), \\
& X_{4}:=(1-\mu) x y+\mu(x+y-1),
\end{aligned}
$$

this turns the formula into...

A nontrivial Example

3. Eliminate the inner maxima.

$$
\begin{aligned}
& \forall x, y, u, v \in \mathbb{R}: 0<\lambda<\mu \wedge 0<x<1 \wedge 0<y<1 \wedge 0<u<1 \wedge 0<v<1 \\
& \Rightarrow\left(\left(X_{1} \leq 0 \wedge X_{2} \leq 0 \wedge(1-\mu) 00+\mu(0+0-1) \leq 0\right.\right. \\
& \quad \vee X_{1}>0 \wedge X_{2} \leq 0 \wedge(1-\mu) X_{1} 0+\mu\left(X_{1}+0-1\right) \leq 0 \\
& \quad \vee X_{1} \leq 0 \wedge X_{2}>0 \wedge(1-\mu) 0 X_{2}+\mu\left(0+X_{2}-1\right) \leq 0 \\
& \left.\quad \vee X_{1}>0 \wedge X_{2}>0 \wedge(1-\mu) X_{1} X_{2}+\mu\left(X_{1}+X_{2}-1\right) \leq 0\right) \\
& \vee\left(X_{1} \leq 0 \wedge X_{2} \leq 0 \wedge X_{3} \leq 0 \wedge X_{4} \leq 0\right. \\
& \quad \wedge(1-\lambda) 00+\lambda(0+0-1) \geq(1-\mu) 00+\mu(0+0-1)>0 \\
& \vee X_{1}>0 \wedge X_{2} \leq 0 \wedge X_{3} \leq 0 \wedge X_{4} \leq 0 \\
& \quad \wedge(1-\lambda) 00+\lambda(0+0-1) \geq(1-\mu) X_{1} 0+\mu\left(X_{1}+0-1\right)>0 \\
& \quad \vee \\
& \vee X_{1}>0 \wedge X_{2}>0 \wedge X_{3}>0 \wedge X_{4} \leq 0 \\
& \quad \wedge(1-\lambda) X_{3} 0+\lambda\left(X_{3}+0-1\right) \geq(1-\mu) X_{1} X_{2}+\mu\left(X_{1}+X_{2}-1\right)>0 \\
& \quad \vee X_{1}>0 \wedge X_{2}>0 \wedge X_{3}>0 \wedge X_{4}>0 \\
& \left.\left.\quad \wedge(1-\lambda) X_{3} X_{4}+\lambda\left(X_{3}+X_{4}-1\right) \geq(1-\mu) X_{1} X_{2}+\mu\left(X_{1}+X_{2}-1\right)>0\right)\right)
\end{aligned}
$$

A nontrivial Example

4. Discard redundant clauses.

A nontrivial Example

4. Discard redundant clauses.

This formula is of the form

$$
\forall x, y, u, v \in \mathbb{R}: H \Rightarrow\left(C_{1} \vee C_{2} \vee \cdots \vee C_{20}\right)
$$

A nontrivial Example

4. Discard redundant clauses.

This formula is of the form

$$
\forall x, y, u, v \in \mathbb{R}: H \Rightarrow\left(C_{1} \vee C_{2} \vee \cdots \vee C_{20}\right)
$$

For many indices i, we can show by CAD that

$$
H \wedge C_{i}
$$

is inconsistent.

A nontrivial Example

4. Discard redundant clauses.

This formula is of the form

$$
\forall x, y, u, v \in \mathbb{R}: H \Rightarrow\left(C_{1} \vee C_{2} \vee \cdots \vee C_{20}\right)
$$

For many indices i, we can show by CAD that

$$
H \wedge C_{i}
$$

is inconsistent.
These clauses C_{i} can be discarded.

A nontrivial Example

4. Discard redundant clauses.

This formula is of the form

$$
\forall x, y, u, v \in \mathbb{R}: H \Rightarrow\left(C_{1} \vee C_{2} \vee \cdots \vee C_{20}\right)
$$

For many indices i, we can show by CAD that

$$
H \wedge C_{i}
$$

is inconsistent.
These clauses C_{i} can be discarded. This turns the formula into...

A nontrivial Example

4. Discard redundant clauses.

$$
\begin{aligned}
& \forall x, y, u, v \in \mathbb{R}: 0<\lambda<\mu \\
& \qquad \wedge 0<x<1 \wedge 0<y<1 \wedge 0<u<1 \wedge 0<v<1 \\
& \Rightarrow\left(X_{1} \leq 0 \vee X_{2} \leq 0\right. \\
& \vee(1-\mu) X_{1} X_{2}+\mu\left(X_{1}+X_{2}-1\right) \leq 0 \\
& \vee X_{1}>0 \wedge X_{2}>0 \wedge X_{3}>0 \wedge X_{4}>0 \\
& \quad \wedge(1-\lambda) X_{3} X_{4}+\lambda\left(X_{3}+X_{4}-1\right) \\
& \left.\quad \geq(1-\mu) X_{1} X_{2}+\mu\left(X_{1}+X_{2}-1\right)>0\right) .
\end{aligned}
$$

A nontrivial Example

5. Apply some logical simplifications

A nontrivial Example

5. Apply some logical simplifications

This formula is of the form

$$
\forall x, y, u, v \in \mathbb{R}: H \Rightarrow(A \vee B \vee C \vee \neg A \wedge \neg B \wedge \neg C \wedge D)
$$

A nontrivial Example

5. Apply some logical simplifications

This formula is of the form

$$
\forall x, y, u, v \in \mathbb{R}: H \Rightarrow(A \vee B \vee C \vee \neg A \wedge \neg B \wedge \neg C \wedge D)
$$

We clearly can discard $\neg A \wedge \neg B \wedge \neg C$.

A nontrivial Example

5. Apply some logical simplifications

This formula is of the form

$$
\forall x, y, u, v \in \mathbb{R}: H \Rightarrow(A \vee B \vee C \vee \neg A \wedge \neg B \wedge \neg C \wedge D)
$$

We clearly can discard $\neg A \wedge \neg B \wedge \neg C$.
Furthermore, we can prove with CAD the formulas

$$
\begin{aligned}
& \forall x, y, u, v \in \mathbb{R}: H \wedge D \Rightarrow A \\
& \forall x, y, u, v \in \mathbb{R}: H \wedge D \Rightarrow B
\end{aligned}
$$

are true.

A nontrivial Example

5. Apply some logical simplifications

This formula is of the form

$$
\forall x, y, u, v \in \mathbb{R}: H \Rightarrow(A \vee B \vee C \vee \neg A \wedge \neg B \wedge \neg C \wedge D)
$$

We clearly can discard $\neg A \wedge \neg B \wedge \neg C$.
Furthermore, we can prove with CAD the formulas

$$
\begin{aligned}
& \forall x, y, u, v \in \mathbb{R}: H \wedge D \Rightarrow A \\
& \forall x, y, u, v \in \mathbb{R}: H \wedge D \Rightarrow B
\end{aligned}
$$

are true. Dropping also A and B leads us to...

A nontrivial Example

5. Apply some logical simplifications

$$
\begin{aligned}
& \forall x, y, u, v \in \mathbb{R}: 0<\lambda<\mu \\
& \qquad 0<x<1 \wedge 0<y<1 \wedge 0<u<1 \wedge 0<v<1 \\
& \quad \Rightarrow\left((1-\mu) X_{1} X_{2}+\mu\left(X_{1}+X_{2}-1\right) \leq 0\right. \\
& \quad \vee(1-\lambda) X_{3} X_{4}+\lambda\left(X_{3}+X_{4}-1\right) \\
& \left.\quad \geq(1-\mu) X_{1} X_{2}+\mu\left(X_{1}+X_{2}-1\right)\right) .
\end{aligned}
$$

A nontrivial Example

6. Apply some algebraic simplifications

A nontrivial Example

6. Apply some algebraic simplifications

In terms of x, y, u, v, this is still messy.

A nontrivial Example

6. Apply some algebraic simplifications

In terms of x, y, u, v, this is still messy.
The size can be reduced further by substituting

$$
x \mapsto 1-x, y \mapsto 1-y, u \mapsto 1-u, v \mapsto 1-v
$$

A nontrivial Example

6. Apply some algebraic simplifications

In terms of x, y, u, v, this is still messy.
The size can be reduced further by substituting

$$
x \mapsto 1-x, y \mapsto 1-y, u \mapsto 1-u, v \mapsto 1-v
$$

and afterwards $v \mapsto(v-y) /(1+(\lambda-1) y)$.

A nontrivial Example

6. Apply some algebraic simplifications

In terms of x, y, u, v, this is still messy.
The size can be reduced further by substituting

$$
x \mapsto 1-x, y \mapsto 1-y, u \mapsto 1-u, v \mapsto 1-v
$$

and afterwards $v \mapsto(v-y) /(1+(\lambda-1) y)$.
This brings the formula into the form...

A nontrivial Example

6. Apply some algebraic simplifications

$$
\begin{aligned}
& \forall x, y, u, v \in \mathbb{R}: 0<\lambda<\mu \\
& \qquad \begin{array}{l}
\wedge 0<x<1 \wedge 0<y<1 \wedge 0<u<1 \wedge y<v<1+\lambda y \\
\Rightarrow(u((\lambda-1) x+1)((\mu-1) v+1) \\
\quad+(\mu-1) v x+v+x-1 \geq 0 \\
\quad \vee \\
\quad v x(1-(\lambda-1)(\mu-1) u y) \\
\quad+y((\lambda-1) u y((\mu-1) x+1)+u-x) \geq 0) .
\end{array}
\end{aligned}
$$

A nontrivial Example

7. Apply CAD to finish up

A nontrivial Example

7. Apply CAD to finish up

CAD applied to this formula gives the final result.

A nontrivial Example

7. Apply CAD to finish up

CAD applied to this formula gives the final result.

$$
0<\lambda<\mu \leq 17+12 \sqrt{2} \vee \mu<17+12 \sqrt{2} \wedge 0<\lambda \leq\left(\frac{1-3 \sqrt{\mu}}{3-\sqrt{\mu}}\right)^{2}
$$

A nontrivial Example

7. Apply CAD to finish up

CAD applied to this formula gives the final result.

$$
0<\lambda<\mu \leq 17+12 \sqrt{2} \vee \mu<17+12 \sqrt{2} \wedge 0<\lambda \leq\left(\frac{1-3 \sqrt{\mu}}{3-\sqrt{\mu}}\right)^{2}
$$

Summary

Summary

- CAD is able to answer questions on polynomial inequalities.

Summary

- CAD is able to answer questions on polynomial inequalities.
- In particular, it is capable of performing quantifier elimination.

Summary

- CAD is able to answer questions on polynomial inequalities.
- In particular, it is capable of performing quantifier elimination.
- A variety of problems can be rephrased as such problems.

Summary

- CAD is able to answer questions on polynomial inequalities.
- In particular, it is capable of performing quantifier elimination.
- A variety of problems can be rephrased as such problems.
- Efficiency is an issue.

Summary

- CAD is able to answer questions on polynomial inequalities.
- In particular, it is capable of performing quantifier elimination.
- A variety of problems can be rephrased as such problems.
- Efficiency is an issue.
- Where CAD is infeasible out of the box, reformulations of the problem might reduce the computation time significantly.

Summary

- CAD is able to answer questions on polynomial inequalities.
- In particular, it is capable of performing quantifier elimination.
- A variety of problems can be rephrased as such problems.
- Efficiency is an issue.
- Where CAD is infeasible out of the box, reformulations of the problem might reduce the computation time significantly.

Tomorrow: How does the CAD algorithm work.

A Simple Exercise

What is the image of the triangle $(-1,-1),(-1,1),(1,1)$ under the map

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad(x, y) \mapsto\left(x^{2}+y^{2}, x y-1\right) ?
$$

$$
\stackrel{f}{\longmapsto}
$$

$$
?
$$

Inequalities

Manuel Kauers
RISC-Linz

I. What?

II. How?
III. Why?

I. What?

II. How?

III. Why?

Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals
OUTPUT: a system of polynomial inequalities over the reals, which

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.

A Simple Exercise

What is the image of the triangle $(-1,-1),(-1,1),(1,1)$ under the map

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad(x, y) \mapsto\left(x^{2}+y^{2}, x y-1\right) ?
$$

$$
\stackrel{f}{\longmapsto}
$$

$$
?
$$

A Simple Exercise

What is the image of the triangle $(-1,-1),(-1,1),(1,1)$ under the map

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad(x, y) \mapsto\left(x^{2}+y^{2}, x y-1\right) ?
$$

Answer: Eliminate x, y from the formula

$$
\begin{gathered}
\exists x, y:(-1 \leq x \leq 1 \wedge-1 \leq y \leq 1 \wedge x \leq y \wedge \\
\left.X=x^{2}+y^{2} \wedge Y=x y-1\right)
\end{gathered}
$$

A Simple Exercise

What is the image of the triangle $(-1,-1),(-1,1),(1,1)$ under the map

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad(x, y) \mapsto\left(x^{2}+y^{2}, x y-1\right) ?
$$

Result:

$$
\begin{aligned}
f(\Delta)=\left\{(x, y) \in \mathbb{R}^{2}\right. & :\left(0 \leq x \leq 1 \wedge|y+1| \leq \frac{1}{2} x\right) \\
\vee & \left.\left.\left(1<x \leq 2 \wedge \sqrt{x-1} \leq|y+1| \leq \frac{1}{2} x\right)\right\}\right\}
\end{aligned}
$$

Cylindrical Algebraic Decomposition (CAD)

Cylindrical Algebraic Decomposition (CAD)

- 1 variable: A system of polynomial inequalities is called a CAD in x if it is of the form

$$
\Phi_{1} \vee \Phi_{2} \vee \cdots \vee \Phi_{m}
$$

where each Φ_{k} is of the form $x<\alpha$ or $\alpha<x<\beta$ or $x>\beta$ or $x=\gamma$ for some real algebraic numbers $\alpha, \beta, \gamma(\alpha<\beta)$ and any two Φ_{k} are mutually inconsistent.

Cylindrical Algebraic Decomposition (CAD)

- 1 variable: A system of polynomial inequalities is called a CAD in x if it is of the form

$$
\Phi_{1} \vee \Phi_{2} \vee \cdots \vee \Phi_{m}
$$

where each Φ_{k} is of the form $x<\alpha$ or $\alpha<x<\beta$ or $x>\beta$ or $x=\gamma$ for some real algebraic numbers $\alpha, \beta, \gamma(\alpha<\beta)$ and any two Φ_{k} are mutually inconsistent.

- n variables: A system of polynomial inequalities is called a CAD in x_{1}, \ldots, x_{n} if it is of the form

$$
\Phi_{1} \wedge \Psi_{1} \vee \Phi_{2} \wedge \Psi_{2} \vee \cdots \vee \Phi_{m} \wedge \Psi_{m}
$$

where the Φ_{k} are such that $\Phi_{1} \vee \cdots \vee \Phi_{k}$ is a CAD in x_{1} and the Ψ_{k} are CADs in x_{2}, \ldots, x_{n} whenever x_{1} is replaced by a real algebraic number satisfying Φ_{k}.

Example

Here is a CAD for the unit sphere:

$$
\begin{aligned}
& x=-1 \wedge y=0 \wedge z=0 \\
& \vee-1<x<1 \wedge\left(y=-\sqrt{1-x^{2}} \wedge z=0\right. \\
& \vee-\sqrt{1-x^{2}}<y<\sqrt{1-x^{2}} \wedge \\
& \left(z=-\sqrt{1-x^{2}-y^{2}}\right. \\
& \vee-\sqrt{1-x^{2}-y^{2}}<z<\sqrt{1-x^{2}-y^{2}} \\
& \left.\vee z=\sqrt{1-x^{2}-y^{2}}\right) \\
& \left.\vee y=-\sqrt{1-x^{2}} \wedge z=0\right) \\
& \vee x=1 \wedge y=0 \wedge z=0
\end{aligned}
$$

Example

Here is a CAD for the unit sphere:

$$
\begin{aligned}
& x=-1 \wedge y=0 \wedge z=0 \\
& \vee-1<x<1 \wedge\left(y=-\sqrt{1-x^{2}} \wedge z=0\right. \\
& \vee-\sqrt{1-x^{2}}<y<\sqrt{1-x^{2}} \wedge \\
& \left(z=-\sqrt{1-x^{2}-y^{2}}\right. \\
& \vee-\sqrt{1-x^{2}-y^{2}}<z<\sqrt{1-x^{2}-y^{2}} \\
& \left.\vee z=\sqrt{1-x^{2}-y^{2}}\right) \\
& \left.\vee y=-\sqrt{1-x^{2}} \wedge z=0\right) \\
& \vee x=1 \wedge y=0 \wedge z=0
\end{aligned}
$$

Example

Here is a CAD for the unit sphere:

$$
\begin{aligned}
& x=-1 \wedge y=0 \wedge z=0 \\
& \vee-1<x<1 \wedge\left(y=-\sqrt{1-x^{2}} \wedge z=0\right. \\
& \vee-\sqrt{1-x^{2}}<y<\sqrt{1-x^{2}} \wedge \\
& \left(z=-\sqrt{1-x^{2}-y^{2}}\right. \\
& \vee-\sqrt{1-x^{2}-y^{2}}<z<\sqrt{1-x^{2}-y^{2}} \\
& \left.\vee z=\sqrt{1-x^{2}-y^{2}}\right) \\
& \left.\vee y=-\sqrt{1-x^{2}} \wedge z=0\right) \\
& \vee x=1 \wedge y=0 \wedge z=0
\end{aligned}
$$

Example

Here is a CAD for the unit sphere:

$$
\begin{aligned}
& x=-1 \wedge y=0 \wedge z=0 \\
& \vee-1<x<1 \wedge\left(y=-\sqrt{1-x^{2}} \wedge z=0\right. \\
& \vee-\sqrt{1-x^{2}}<y<\sqrt{1-x^{2}} \wedge \\
& \left(z=-\sqrt{1-x^{2}-y^{2}}\right. \\
& \vee-\sqrt{1-x^{2}-y^{2}}<z<\sqrt{1-x^{2}-y^{2}} \\
& \left.\vee z=\sqrt{1-x^{2}-y^{2}}\right) \\
& \left.\vee y=-\sqrt{1-x^{2}} \wedge z=0\right) \\
& \vee x=1 \wedge y=0 \wedge z=0
\end{aligned}
$$

Example

Here is a CAD for the unit sphere:

$$
\begin{aligned}
& x=-1 \wedge y=0 \wedge z=0 \\
& \vee-1<x<1 \wedge\left(y=-\sqrt{1-x^{2}} \wedge z=0\right. \\
& \vee-\sqrt{1-x^{2}}<y<\sqrt{1-x^{2}} \wedge \\
& \left(z=-\sqrt{1-x^{2}-y^{2}}\right. \\
& \vee-\sqrt{1-x^{2}-y^{2}}<z<\sqrt{1-x^{2}-y^{2}} \\
& \left.\vee z=\sqrt{1-x^{2}-y^{2}}\right) \\
& \left.\vee y=-\sqrt{1-x^{2}} \wedge z=0\right) \\
& \vee x=1 \wedge y=0 \wedge z=0
\end{aligned}
$$

Example

Here is a CAD for the unit sphere:

$$
\begin{aligned}
& x=-1 \wedge y=0 \wedge z=0 \\
& \vee-1<x<1 \wedge\left(y=-\sqrt{1-x^{2}} \wedge z=0\right. \\
& \vee-\sqrt{1-x^{2}}<y<\sqrt{1-x^{2}} \wedge \\
& \left(z=-\sqrt{1-x^{2}-y^{2}}\right. \\
& \vee-\sqrt{1-x^{2}-y^{2}}<z<\sqrt{1-x^{2}-y^{2}} \\
& \left.\vee z=\sqrt{1-x^{2}-y^{2}}\right) \\
& \left.\vee y=-\sqrt{1-x^{2}} \wedge z=0\right) \\
& \vee x=1 \wedge y=0 \wedge z=0
\end{aligned}
$$

Example

Here is a CAD for the unit sphere:

$$
\begin{aligned}
& x=-1 \wedge y=0 \wedge z=0 \\
& \vee-1<x<1 \wedge\left(y=-\sqrt{1-x^{2}} \wedge z=0\right. \\
& \vee-\sqrt{1-x^{2}}<y<\sqrt{1-x^{2}} \wedge \\
& \left(z=-\sqrt{1-x^{2}-y^{2}}\right. \\
& \vee-\sqrt{1-x^{2}-y^{2}}<z<\sqrt{1-x^{2}-y^{2}} \\
& \left.\vee z=\sqrt{1-x^{2}-y^{2}}\right) \\
& \left.\vee y=-\sqrt{1-x^{2}} \wedge z=0\right) \\
& \vee x=1 \wedge y=0 \wedge z=0
\end{aligned}
$$

Example

Here is a CAD for the unit sphere:

$$
\begin{aligned}
& x=-1 \wedge y=0 \wedge z=0 \\
& \vee-1<x<1 \wedge\left(y=-\sqrt{1-x^{2}} \wedge z=0\right. \\
& \vee-\sqrt{1-x^{2}}<y<\sqrt{1-x^{2}} \wedge \\
& \left(z=-\sqrt{1-x^{2}-y^{2}}\right. \\
& \vee-\sqrt{1-x^{2}-y^{2}}<z<\sqrt{1-x^{2}-y^{2}} \\
& \left.\vee z=\sqrt{1-x^{2}-y^{2}}\right) \\
& \left.\vee y=-\sqrt{1-x^{2}} \wedge z=0\right) \\
& \vee x=1 \wedge y=0 \wedge z=0
\end{aligned}
$$

Example

Here is a CAD for the unit sphere:

$$
\begin{aligned}
& x=-1 \wedge y=0 \wedge z=0 \\
& \vee-1<x<1 \wedge\left(y=-\sqrt{1-x^{2}} \wedge z=0\right. \\
& \vee-\sqrt{1-x^{2}}<y<\sqrt{1-x^{2}} \wedge \\
& \left(z=-\sqrt{1-x^{2}-y^{2}}\right. \\
& \vee-\sqrt{1-x^{2}-y^{2}}<z<\sqrt{1-x^{2}-y^{2}} \\
& \left.\vee z=\sqrt{1-x^{2}-y^{2}}\right) \\
& \left.\vee y=-\sqrt{1-x^{2}} \wedge z=0\right) \\
& \vee x=1 \wedge y=0 \wedge z=0
\end{aligned}
$$

Example

Here is a CAD for the unit sphere:

$$
\begin{aligned}
& x=-1 \wedge y=0 \wedge z=0 \\
& \vee-1<x<1 \wedge\left(y=-\sqrt{1-x^{2}} \wedge z=0\right. \\
& \vee-\sqrt{1-x^{2}}<y<\sqrt{1-x^{2}} \wedge \\
& \left(z=-\sqrt{1-x^{2}-y^{2}}\right. \\
& \vee-\sqrt{1-x^{2}-y^{2}}<z<\sqrt{1-x^{2}-y^{2}} \\
& \left.\vee z=\sqrt{1-x^{2}-y^{2}}\right) \\
& \left.\vee y=-\sqrt{1-x^{2}} \wedge z=0\right) \\
& \vee x=1 \wedge y=0 \wedge z=0
\end{aligned}
$$

Example

Here is a CAD for the unit sphere:

$$
\begin{aligned}
& x=-1 \wedge y=0 \wedge z=0 \\
& \vee-1<x<1 \wedge\left(y=-\sqrt{1-x^{2}} \wedge z=0\right. \\
& \vee-\sqrt{1-x^{2}}<y<\sqrt{1-x^{2}} \wedge \\
& \left(z=-\sqrt{1-x^{2}-y^{2}}\right. \\
& \vee-\sqrt{1-x^{2}-y^{2}}<z<\sqrt{1-x^{2}-y^{2}} \\
& \left.\vee z=\sqrt{1-x^{2}-y^{2}}\right) \\
& \left.\vee y=-\sqrt{1-x^{2}} \wedge z=0\right) \\
& \vee x=1 \wedge y=0 \wedge z=0
\end{aligned}
$$

Example

Here is a CAD for the unit sphere:

$$
\begin{aligned}
& x=-1 \wedge y=0 \wedge z=0 \\
& \vee-1<x<1 \wedge\left(y=-\sqrt{1-x^{2}} \wedge z=0\right. \\
& \vee-\sqrt{1-x^{2}}<y<\sqrt{1-x^{2}} \wedge \\
& \left(z=-\sqrt{1-x^{2}-y^{2}}\right. \\
& \vee-\sqrt{1-x^{2}-y^{2}}<z<\sqrt{1-x^{2}-y^{2}} \\
& \left.\vee z=\sqrt{1-x^{2}-y^{2}}\right) \\
& \left.\vee y=-\sqrt{1-x^{2}} \wedge z=0\right) \\
& \vee x=1 \wedge y=0 \wedge z=0
\end{aligned}
$$

Example

Here is a CAD for the unit sphere:

$$
\begin{aligned}
& x=-1 \wedge y=0 \wedge z=0 \\
& \vee-1<x<1 \wedge\left(y=-\sqrt{1-x^{2}} \wedge z=0\right. \\
& \vee-\sqrt{1-x^{2}}<y<\sqrt{1-x^{2}} \wedge \\
& \left(z=-\sqrt{1-x^{2}-y^{2}}\right. \\
& \vee-\sqrt{1-x^{2}-y^{2}}<z<\sqrt{1-x^{2}-y^{2}} \\
& \left.\vee z=\sqrt{1-x^{2}-y^{2}}\right) \\
& \left.\vee y=-\sqrt{1-x^{2}} \wedge z=0\right) \\
& \vee x=1 \wedge y=0 \wedge z=0
\end{aligned}
$$

Example

Here is a CAD for the unit sphere:

$$
\begin{aligned}
& x=-1 \wedge y=0 \wedge z=0 \\
& \vee-1<x<1 \wedge\left(y=-\sqrt{1-x^{2}} \wedge z=0\right. \\
& \vee-\sqrt{1-x^{2}}<y<\sqrt{1-x^{2}} \wedge \\
& \left(z=-\sqrt{1-x^{2}-y^{2}}\right. \\
& \vee-\sqrt{1-x^{2}-y^{2}}<z<\sqrt{1-x^{2}-y^{2}} \\
& \left.\vee z=\sqrt{1-x^{2}-y^{2}}\right) \\
& \left.\vee y=-\sqrt{1-x^{2}} \wedge z=0\right) \\
& \vee x=1 \wedge y=0 \wedge z=0
\end{aligned}
$$

Example

Here is a CAD for the unit sphere:

$$
\begin{aligned}
& x=-1 \wedge y=0 \wedge z=0 \\
& \vee-1<x<1 \wedge\left(y=-\sqrt{1-x^{2}} \wedge z=0\right. \\
& \vee-\sqrt{1-x^{2}}<y<\sqrt{1-x^{2}} \wedge \\
& \left(z=-\sqrt{1-x^{2}-y^{2}}\right. \\
& \vee-\sqrt{1-x^{2}-y^{2}}<z<\sqrt{1-x^{2}-y^{2}} \\
& \left.\vee z=\sqrt{1-x^{2}-y^{2}}\right) \\
& \left.\vee y=-\sqrt{1-x^{2}} \wedge z=0\right) \\
& \vee x=1 \wedge y=0 \wedge z=0
\end{aligned}
$$

Example

Here is a CAD for the unit sphere:

$$
\begin{aligned}
& x=-1 \wedge y=0 \wedge z=0 \\
& \vee-1<x<1 \wedge\left(y=-\sqrt{1-x^{2}} \wedge z=0\right. \\
& \vee-\sqrt{1-x^{2}}<y<\sqrt{1-x^{2}} \wedge \\
& \left(z=-\sqrt{1-x^{2}-y^{2}}\right. \\
& \vee-\sqrt{1-x^{2}-y^{2}}<z<\sqrt{1-x^{2}-y^{2}} \\
& \left.\vee z=\sqrt{1-x^{2}-y^{2}}\right) \\
& \left.\vee y=-\sqrt{1-x^{2}} \wedge z=0\right) \\
& \vee x=1 \wedge y=0 \wedge z=0
\end{aligned}
$$

Caution!

The notion "Cylindrical Algebraic Decomposition" is overloaded.

Caution!

The notion "Cylindrical Algebraic Decomposition" is overloaded.

- Formulas of the form described earlier

Caution!

The notion "Cylindrical Algebraic Decomposition" is overloaded.

- Formulas of the form described earlier
- A certain geometric configuration in \mathbb{R}^{n}

Caution!

The notion "Cylindrical Algebraic Decomposition" is overloaded.

- Formulas of the form described earlier
- A certain geometric configuration in \mathbb{R}^{n}
- A certain data structure for representing this configuration

Caution!

The notion "Cylindrical Algebraic Decomposition" is overloaded.

- Formulas of the form described earlier
- A certain geometric configuration in \mathbb{R}^{n}
- A certain data structure for representing this configuration
- Sets of polynomials satisfying certain conditions

Caution!

The notion "Cylindrical Algebraic Decomposition" is overloaded.

- Formulas of the form described earlier
- A certain geometric configuration in \mathbb{R}^{n}
- A certain data structure for representing this configuration
- Sets of polynomials satisfying certain conditions
- The algorithm for computing a CAD (Collins's algorithm)

Caution!

The notion "Cylindrical Algebraic Decomposition" is overloaded.

- Formulas of the form described earlier
- A certain geometric configuration in \mathbb{R}^{n}
- A certain data structure for representing this configuration
- Sets of polynomials satisfying certain conditions
- The algorithm for computing a CAD (Collins's algorithm)

The first four items intuitively refer to "the same thing."

Caution!

The notion "Cylindrical Algebraic Decomposition" is overloaded.

- Formulas of the form described earlier
- A certain geometric configuration in \mathbb{R}^{n}
- A certain data structure for representing this configuration
- Sets of polynomials satisfying certain conditions
- The algorithm for computing a CAD (Collins's algorithm)

The first four items intuitively refer to "the same thing."

Algebraic Decomposition

A finite set of polynomials $\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ induces a decomposition ("partition") of \mathbb{R}^{n} into maximal sign-invariant cells ("regions").

Algebraic Decomposition

A finite set of polynomials $\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ induces a decomposition ("partition") of \mathbb{R}^{n} into maximal sign-invariant cells ("regions").

Example: The polynomials $p_{1}=x^{2}+y^{2}-4$ and $p_{2}=(x-1)(y-1)-1$ induce a decomposition of \mathbb{R}^{2} into 13 cells:

Algebraic Decomposition

A finite set of polynomials $\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ induces a decomposition ("partition") of \mathbb{R}^{n} into maximal sign-invariant cells ("regions").

Example: The polynomials $p_{1}=x^{2}+y^{2}-4$ and $p_{2}=(x-1)(y-1)-1$ induce a decomposition of \mathbb{R}^{2} into 13 cells:

For all points (x, y) in the shaded cell, we have

$$
p_{1}(x, y)>0 \quad \text { and } \quad p_{2}(x, y)<0
$$

Algebraic Decomposition

A finite set of polynomials $\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ induces a decomposition ("partition") of \mathbb{R}^{n} into maximal sign-invariant cells ("regions").

Example: The polynomials $p_{1}=x^{2}+y^{2}-4$ and $p_{2}=(x-1)(y-1)-1$ induce a decomposition of \mathbb{R}^{2} into 13 cells:

For all points (x, y) in the shaded cell, we have

$$
p_{1}(x, y)>0 \quad \text { and } \quad p_{2}(x, y)>0 .
$$

Algebraic Decomposition

A finite set of polynomials $\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ induces a decomposition ("partition") of \mathbb{R}^{n} into maximal sign-invariant cells ("regions").

Example: The polynomials $p_{1}=x^{2}+y^{2}-4$ and $p_{2}=(x-1)(y-1)-1$ induce a decomposition of \mathbb{R}^{2} into 13 cells:

For all points (x, y) in the shaded cell, we have

$$
p_{1}(x, y)<0 \quad \text { and } \quad p_{2}(x, y)>0
$$

Algebraic Decomposition

A finite set of polynomials $\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ induces a decomposition ("partition") of \mathbb{R}^{n} into maximal sign-invariant cells ("regions").

Example: The polynomials $p_{1}=x^{2}+y^{2}-4$ and $p_{2}=(x-1)(y-1)-1$ induce a decomposition of \mathbb{R}^{2} into 13 cells:

For all points (x, y) in the shaded cell, we have

$$
p_{1}(x, y)<0 \quad \text { and } \quad p_{2}(x, y)<0
$$

Algebraic Decomposition

A finite set of polynomials $\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ induces a decomposition ("partition") of \mathbb{R}^{n} into maximal sign-invariant cells ("regions").

Example: The polynomials $p_{1}=x^{2}+y^{2}-4$ and $p_{2}=(x-1)(y-1)-1$ induce a decomposition of \mathbb{R}^{2} into 13 cells:

For all points (x, y) in the shaded cell, we have

$$
p_{1}(x, y)>0 \quad \text { and } \quad p_{2}(x, y)>0
$$

Algebraic Decomposition

A finite set of polynomials $\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ induces a decomposition ("partition") of \mathbb{R}^{n} into maximal sign-invariant cells ("regions").

Example: The polynomials $p_{1}=x^{2}+y^{2}-4$ and $p_{2}=(x-1)(y-1)-1$ induce a decomposition of \mathbb{R}^{2} into 13 cells:

For all points (x, y) in the shaded cell, we have

$$
p_{1}(x, y)=0 \quad \text { and } \quad p_{2}(x, y)>0
$$

Algebraic Decomposition

A finite set of polynomials $\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ induces a decomposition ("partition") of \mathbb{R}^{n} into maximal sign-invariant cells ("regions").

Example: The polynomials $p_{1}=x^{2}+y^{2}-4$ and $p_{2}=(x-1)(y-1)-1$ induce a decomposition of \mathbb{R}^{2} into 13 cells:

For all points (x, y) in the shaded cell, we have

$$
p_{1}(x, y)=0 \quad \text { and } \quad p_{2}(x, y)<0
$$

Algebraic Decomposition

A finite set of polynomials $\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ induces a decomposition ("partition") of \mathbb{R}^{n} into maximal sign-invariant cells ("regions").

Example: The polynomials $p_{1}=x^{2}+y^{2}-4$ and $p_{2}=(x-1)(y-1)-1$ induce a decomposition of \mathbb{R}^{2} into 13 cells:

For all points (x, y) in the shaded cell, we have

$$
p_{1}(x, y)<0 \quad \text { and } \quad p_{2}(x, y)=0
$$

Algebraic Decomposition

A finite set of polynomials $\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ induces a decomposition ("partition") of \mathbb{R}^{n} into maximal sign-invariant cells ("regions").

Example: The polynomials $p_{1}=x^{2}+y^{2}-4$ and $p_{2}=(x-1)(y-1)-1$ induce a decomposition of \mathbb{R}^{2} into 13 cells:

For all points (x, y) in the shaded cell, we have

$$
p_{1}(x, y)>0 \quad \text { and } \quad p_{2}(x, y)=0
$$

Algebraic Decomposition

A finite set of polynomials $\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ induces a decomposition ("partition") of \mathbb{R}^{n} into maximal sign-invariant cells ("regions").

Example: The polynomials $p_{1}=x^{2}+y^{2}-4$ and $p_{2}=(x-1)(y-1)-1$ induce a decomposition of \mathbb{R}^{2} into 13 cells:

For all points (x, y) in the shaded cell, we have

$$
p_{1}(x, y)>0 \quad \text { and } \quad p_{2}(x, y)=0
$$

Algebraic Decomposition

A finite set of polynomials $\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ induces a decomposition ("partition") of \mathbb{R}^{n} into maximal sign-invariant cells ("regions").

Example: The polynomials $p_{1}=x^{2}+y^{2}-4$ and $p_{2}=(x-1)(y-1)-1$ induce a decomposition of \mathbb{R}^{2} into 13 cells:

For all points (x, y) in the shaded cell, we have

$$
p_{1}(x, y)>0 \quad \text { and } \quad p_{2}(x, y)=0
$$

Algebraic Decomposition

A finite set of polynomials $\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ induces a decomposition ("partition") of \mathbb{R}^{n} into maximal sign-invariant cells ("regions").

Example: The polynomials $p_{1}=x^{2}+y^{2}-4$ and $p_{2}=(x-1)(y-1)-1$ induce a decomposition of \mathbb{R}^{2} into 13 cells:

For all points (x, y) in the shaded cell, we have

$$
p_{1}(x, y)=0 \quad \text { and } \quad p_{2}(x, y)=0
$$

Algebraic Decomposition

A finite set of polynomials $\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ induces a decomposition ("partition") of \mathbb{R}^{n} into maximal sign-invariant cells ("regions").

Example: The polynomials $p_{1}=x^{2}+y^{2}-4$ and $p_{2}=(x-1)(y-1)-1$ induce a decomposition of \mathbb{R}^{2} into 13 cells:

For all points (x, y) in the shaded cell, we have

$$
p_{1}(x, y)=0 \quad \text { and } \quad p_{2}(x, y)=0
$$

Algebraic Decomposition

A finite set of polynomials $\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ induces a decomposition ("partition") of \mathbb{R}^{n} into maximal sign-invariant cells ("regions").

Example: The polynomials $p_{1}=x^{2}+y^{2}-4$ and $p_{2}=(x-1)(y-1)-1$ induce a decomposition of \mathbb{R}^{2} into 13 cells:

Precise Definition:
A cell in the algebraic decomposition of

$$
\left\{p_{1}, \ldots, p_{m}\right\} \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]
$$

is a maximal connected subset of \mathbb{R}^{n} on which all the p_{i} are sign invariant.

Algebraic Decomposition and Quantifier Elimination

Truth of a quantified formula can be determined by inspection from the algebraic decomposition of the involved polynomials.

Algebraic Decomposition and Quantifier Elimination

Truth of a quantified formula can be determined by inspection from the algebraic decomposition of the involved polynomials.

Example: $\forall x \exists y: x^{2}+y^{2}>4 \Longleftrightarrow(x-1)(y-1)>1$

Algebraic Decomposition and Quantifier Elimination

Truth of a quantified formula can be determined by inspection from the algebraic decomposition of the involved polynomials.

Example: $\forall x \exists y: x^{2}+y^{2}>4 \Longleftrightarrow(x-1)(y-1)>1$
Consider the cell(s) for which the quantifier free part

$$
x^{2}+y^{2}>4 \Longleftrightarrow(x-1)(y-1)>1
$$

is true.

Algebraic Decomposition and Quantifier Elimination

Truth of a quantified formula can be determined by inspection from the algebraic decomposition of the involved polynomials.

Example: $\forall x \exists y: x^{2}+y^{2}>4 \Longleftrightarrow(x-1)(y-1)>1$
Consider the cell(s) for which the quantifier free part

$$
x^{2}+y^{2}>4 \Longleftrightarrow(x-1)(y-1)>1
$$

is true.
Obviously, each vertical line $x=\alpha$ intersects one of those cells nontrivially. The $\forall x \exists y$ claim follows.

CAD: Geometric Motivation

Observation: It does not hurt if we change from a decomposition for $\left\{p_{1}, \ldots, p_{m}\right\}$ to a decomposition for $\left\{p_{1}, \ldots, p_{m}, q_{1}, \ldots, q_{k}\right\}$ for some polynomials $q_{1}, \ldots, q_{k} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$.

CAD: Geometric Motivation

Observation: It does not hurt if we change from a decomposition for $\left\{p_{1}, \ldots, p_{m}\right\}$ to a decomposition for $\left\{p_{1}, \ldots, p_{m}, q_{1}, \ldots, q_{k}\right\}$ for some polynomials $q_{1}, \ldots, q_{k} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$.
The reasoning of the previous example is not affected.

CAD: Geometric Motivation

Observation: It does not hurt if we change from a decomposition for $\left\{p_{1}, \ldots, p_{m}\right\}$ to a decomposition for $\left\{p_{1}, \ldots, p_{m}, q_{1}, \ldots, q_{k}\right\}$ for some polynomials $q_{1}, \ldots, q_{k} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$.
The reasoning of the previous example is not affected.
Goal: Given p_{1}, \ldots, p_{m}, find polynomials q_{1}, \ldots, q_{k} such that the decomposition of $\left\{p_{1}, \ldots, p_{m}, q_{1}, \ldots, q_{k}\right\}$ is easier to deal with.

CAD: Geometric Motivation

Observation: It does not hurt if we change from a decomposition for $\left\{p_{1}, \ldots, p_{m}\right\}$ to a decomposition for $\left\{p_{1}, \ldots, p_{m}, q_{1}, \ldots, q_{k}\right\}$ for some polynomials $q_{1}, \ldots, q_{k} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$.
The reasoning of the previous example is not affected.
Goal: Given p_{1}, \ldots, p_{m}, find polynomials q_{1}, \ldots, q_{k} such that the decomposition of $\left\{p_{1}, \ldots, p_{m}, q_{1}, \ldots, q_{k}\right\}$ is easier to deal with.

In particular, it should be possible to carry out the reasoning on the previous slide automatically.

CAD: Geometric Motivation

Observation: It does not hurt if we change from a decomposition for $\left\{p_{1}, \ldots, p_{m}\right\}$ to a decomposition for $\left\{p_{1}, \ldots, p_{m}, q_{1}, \ldots, q_{k}\right\}$ for some polynomials $q_{1}, \ldots, q_{k} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$.
The reasoning of the previous example is not affected.
Goal: Given p_{1}, \ldots, p_{m}, find polynomials q_{1}, \ldots, q_{k} such that the decomposition of $\left\{p_{1}, \ldots, p_{m}, q_{1}, \ldots, q_{k}\right\}$ is easier to deal with.

In particular, it should be possible to carry out the reasoning on the previous slide automatically.

This motivates the following definition.

CAD: Geometric Definition

For $n \in \mathbb{N}$, let

$$
\pi_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}, \quad\left(x_{1}, \ldots, x_{n-1}, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{n-1}\right)
$$

denote the canonical projection.

CAD: Geometric Definition

For $n \in \mathbb{N}$, let

$$
\pi_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}, \quad\left(x_{1}, \ldots, x_{n-1}, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{n-1}\right)
$$

denote the canonical projection.
Definition: Let $p_{1}, \ldots, p_{m} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$. The algebraic decomposition of $\left\{p_{1}, \ldots, p_{m}\right\}$ is called cylindrical, if

CAD: Geometric Definition

For $n \in \mathbb{N}$, let

$$
\pi_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}, \quad\left(x_{1}, \ldots, x_{n-1}, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{n-1}\right)
$$

denote the canonical projection.
Definition: Let $p_{1}, \ldots, p_{m} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$. The algebraic decomposition of $\left\{p_{1}, \ldots, p_{m}\right\}$ is called cylindrical, if

- For any two cells C, D of the decomposition, the images $\pi_{n}(C), \pi_{n}(D)$ are either identical or disjoint.

CAD: Geometric Definition

For $n \in \mathbb{N}$, let

$$
\pi_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}, \quad\left(x_{1}, \ldots, x_{n-1}, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{n-1}\right)
$$

denote the canonical projection.
Definition: Let $p_{1}, \ldots, p_{m} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$. The algebraic decomposition of $\left\{p_{1}, \ldots, p_{m}\right\}$ is called cylindrical, if

- For any two cells C, D of the decomposition, the images $\pi_{n}(C), \pi_{n}(D)$ are either identical or disjoint.
- The algebraic decomposition of $\left\{p_{1}, \ldots, p_{m}\right\} \cap \mathbb{Q}\left[x_{1}, \ldots, x_{n-1}\right]$ is cylindrical.

CAD: Geometric Definition

For $n \in \mathbb{N}$, let

$$
\pi_{n}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}, \quad\left(x_{1}, \ldots, x_{n-1}, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{n-1}\right)
$$

denote the canonical projection.
Definition: Let $p_{1}, \ldots, p_{m} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$. The algebraic decomposition of $\left\{p_{1}, \ldots, p_{m}\right\}$ is called cylindrical, if

- For any two cells C, D of the decomposition, the images $\pi_{n}(C), \pi_{n}(D)$ are either identical or disjoint.
- The algebraic decomposition of $\left\{p_{1}, \ldots, p_{m}\right\} \cap \mathbb{Q}\left[x_{1}, \ldots, x_{n-1}\right]$ is cylindrical.
Base case: Any algebraic decomposition of \mathbb{R}^{1} is cylindrical.

Example

Consider again $\left\{x^{2}+y^{2}-4,(x-1)(y-1)-1\right\} \subseteq \mathbb{Q}[x, y]$

This is not a CAD. Why not?

Example

Consider again $\left\{x^{2}+y^{2}-4,(x-1)(y-1)-1\right\} \subseteq \mathbb{Q}[x, y]$

This is not a CAD. Why not?
Consider the two shaded cells.

Example

Consider again $\left\{x^{2}+y^{2}-4,(x-1)(y-1)-1\right\} \subseteq \mathbb{Q}[x, y]$

This is not a CAD. Why not?
Consider the two shaded cells.
Their projection to the real line is neither disjoint nor identical.

Example

Consider again $\left\{x^{2}+y^{2}-4,(x-1)(y-1)-1\right\} \subseteq \mathbb{Q}[x, y]$

This is not a CAD. Why not?
Consider the two shaded cells.
Their projection to the real line is neither disjoint nor identical.

Fix: Insert two vertical lines.

Example

Consider again $\left\{x^{2}+y^{2}-4,(x-1)(y-1)-1\right\} \subseteq \mathbb{Q}[x, y]$

This is not a CAD. Why not?
Consider the two shaded cells.
Their projection to the real line is neither disjoint nor identical.

Fix: Insert two vertical lines.

Example

Consider again $\left\{x^{2}+y^{2}-4,(x-1)(y-1)-1\right\} \subseteq \mathbb{Q}[x, y]$

This is not a CAD. Why not?
Consider the two shaded cells.
Their projection to the real line is neither disjoint nor identical.

Fix: Insert two vertical lines.
Proceed analogously for all other cell pairs. The result is a CAD.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

In a CAD, we can construct a sample point for each cell.

Example

For these, we can determine the truth values of a formula.

Example

For these, we can determine the truth values of a formula.

Example

From these, we can obtain the "region of truth".

Example

From these, we can obtain the "region of truth".

Example

From this, we can extract a solution formula.

The CAD algorithm

The CAD algorithm consists of the following three phases:

The CAD algorithm

The CAD algorithm consists of the following three phases:

1. Projection. If p_{1}, \ldots, p_{m} are the polynomials in the input, find q_{1}, \ldots, q_{k} such that the algebraic decomposition of $\left\{p_{1}, \ldots, p_{m}, q_{1}, \ldots, q_{k}\right\}$ is cylindrical.

The CAD algorithm

The CAD algorithm consists of the following three phases:

1. Projection. If p_{1}, \ldots, p_{m} are the polynomials in the input, find q_{1}, \ldots, q_{k} such that the algebraic decomposition of $\left\{p_{1}, \ldots, p_{m}, q_{1}, \ldots, q_{k}\right\}$ is cylindrical.
2. Lifting. Construct sample points for each cell in this decomposition considering one dimension after the other in a bottom-up fashion.

The CAD algorithm

The CAD algorithm consists of the following three phases:

1. Projection. If p_{1}, \ldots, p_{m} are the polynomials in the input, find q_{1}, \ldots, q_{k} such that the algebraic decomposition of $\left\{p_{1}, \ldots, p_{m}, q_{1}, \ldots, q_{k}\right\}$ is cylindrical.
2. Lifting. Construct sample points for each cell in this decomposition considering one dimension after the other in a bottom-up fashion.
3. Solution. Select the regions of interest [check if some simplification is possible by joining neighboring cells] and construct a solution formula accordingly.

The CAD algorithm

1. Projection.

A finite set $A \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is called a CAD if its induced algebraic decomposition of \mathbb{R}^{n} is cylindrical.

The CAD algorithm

1. Projection.

A finite set $A \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is called a CAD if its induced algebraic decomposition of \mathbb{R}^{n} is cylindrical.

Task: Given $A \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, find $B \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ such that $A \cup B$ is a CAD.

The CAD algorithm

1. Projection.

A finite set $A \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is called a CAD if its induced algebraic decomposition of \mathbb{R}^{n} is cylindrical.

Task: Given $A \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, find $B \subseteq \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ such that $A \cup B$ is a CAD.

Beginning with x_{n}, we handle one variable after the other.

The CAD algorithm

1. Projection.

A projection operator is a function

such that:

The CAD algorithm

1. Projection.

A projection operator is a function

such that:
If B is a CAD of $P_{n}(A)$ in $\mathbb{R}\left[x_{1}, \ldots, x_{n-1}\right]$ then $B \cup A$ is a CAD of A in $\mathbb{R}\left[x_{1}, \ldots, x_{n-1}\right]$.

The CAD algorithm

1. Projection.

Here is one of several known projection operators:

$$
P_{n}(A):=\bigcup_{p \in A} \operatorname{coeffs}_{x_{n}}(p) \cup \bigcup_{p \in A}\left\{\operatorname{disc}_{x_{n}}(p)\right\} \cup \bigcup_{p, q \in A}\left\{\operatorname{res}_{x_{n}}(p, q)\right\}
$$

The CAD algorithm

1. Projection.

Here is one of several known projection operators:

$$
\begin{aligned}
& P_{n}(A):=\bigcup_{p \in A} \operatorname{coeffs}_{x_{n}}(p) \cup \bigcup_{p \in A}\left\{\operatorname{disc}_{x_{n}}(p)\right\} \cup \bigcup_{p, q \in A}\left\{\operatorname{res}_{x_{n}}(p, q)\right\} . \\
& \text { coefficients of } p \\
& \text { with respect to } x_{n}
\end{aligned}
$$

The CAD algorithm

1. Projection.

Here is one of several known projection operators:

The CAD algorithm

1. Projection.

Here is one of several known projection operators:

$$
\begin{aligned}
& P_{n}(A):=\bigcup_{p \in A} \operatorname{coeffs}_{x_{n}}(p) \cup \bigcup_{p \in A}\left\{\operatorname{disc}_{x_{n}}(p)\right\} \cup \bigcup_{p, q \in A}\left\{\operatorname{res}_{x_{n}}(p, q)\right\} . \\
& \begin{array}{l}
\text { coefficients of } p \\
\text { with respect to } x_{n}
\end{array} \quad \begin{array}{l}
\text { discriminant of } p \\
\text { with respect to } x_{n}
\end{array}
\end{aligned}
$$

$$
:=\operatorname{res}_{x_{n}}\left(p, \frac{\partial}{\partial x_{n}} p\right)
$$

The CAD algorithm

1. Projection.

Here is one of several known projection operators:

$$
\begin{aligned}
& P_{n}(A):=\bigcup_{p \in A} \operatorname{coeffs}_{x_{n}}(p) \cup \bigcup_{p \in A}\left\{\operatorname{disc}_{x_{n}}(p)\right\} \cup \bigcup_{p, q \in A}\left\{\operatorname{res}_{x_{n}}(p, q)\right\} . \\
& \text { coefficients of } p \\
& \text { with respect to } x_{n} \\
& \text { discriminant of } p \\
& \text { with respect to } x_{n}
\end{aligned}
$$

$$
:=\operatorname{res}_{x_{n}}\left(p, \frac{\partial}{\partial x_{n}} p\right)
$$

The CAD algorithm

1. Projection.

Here is one of several known projection operators:

$$
\begin{array}{ll}
P_{n}(A):=\bigcup_{p \in A} \operatorname{coeffs}_{x_{n}}(p) \cup \bigcup_{p \in A}\left\{\operatorname{disc}_{x_{n}}(p)\right\} \cup \bigcup_{p, q \in A}\left\{\operatorname{res}_{x_{n}}(p, q)\right\} . \\
\begin{array}{l}
\text { coefficients of } p \\
\text { with respect to } x_{n}
\end{array} & \begin{array}{l}
\text { discriminant of } p \\
\text { with respect to } x_{n}
\end{array} \\
\text { resultant of } p \text { and } q \\
\text { with respect to } x_{n}
\end{array}
$$

$$
:=\operatorname{res}_{x_{n}}\left(p, \frac{\partial}{\partial x_{n}} p\right)
$$

$$
:=\left|\begin{array}{ccc}
* & * \\
* * & * * \\
* * * * * * \\
* * * & * * * \\
* * & * * \\
* & *
\end{array}\right|
$$

The CAD algorithm

1. Projection.

Here is one of several known projection operators:

$$
P_{n}(A):=\bigcup_{p \in A} \operatorname{coeffs}_{x_{n}}(p) \cup \bigcup_{p \in A}\left\{\operatorname{disc}_{x_{n}}(p)\right\} \cup \bigcup_{p, q \in A}\left\{\operatorname{res}_{x_{n}}(p, q)\right\}
$$

The CAD algorithm

1. Projection.

Here is one of several known projection operators:

$$
P_{n}(A):=\bigcup_{p \in A} \operatorname{coeffs}_{x_{n}}(p) \cup \bigcup_{p \in A}\left\{\operatorname{disc}_{x_{n}}(p)\right\} \cup \bigcup_{p, q \in A}\left\{\operatorname{res}_{x_{n}}(p, q)\right\}
$$

The CAD algorithm

1. Projection.

Here is one of several known projection operators:

The CAD algorithm

1. Projection.

The projection algorithm:
INPUT: $A \subseteq \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$
OUTPUT: $C \subseteq \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ such that $A \subseteq C$ and C is a CAD.

1. $C:=A$
2. for $k=n$ down to 2 do
3.

$$
C:=C \cup P_{k}\left(C \cap \mathbb{Q}\left[x_{1}, \ldots, x_{k}\right]\right)
$$

4. return C

The CAD algorithm

2. Lifting.

The CAD algorithm

2. Lifting.

The case of one variable: $p_{1}(x), p_{2}(x), \ldots, p_{m}(x) \in(\overline{\mathbb{Q}} \cap \mathbb{R})[x]$.

The CAD algorithm

2. Lifting.

The case of one variable: $p_{1}(x), p_{2}(x), \ldots, p_{m}(x) \in(\overline{\mathbb{Q}} \cap \mathbb{R})[x]$.

The CAD algorithm

2. Lifting.

The case of one variable: $p_{1}(x), p_{2}(x), \ldots, p_{m}(x) \in(\overline{\mathbb{Q}} \cap \mathbb{R})[x]$.

- Determine the real roots $\xi_{1}, \ldots, \xi_{k} \in(\overline{\mathbb{Q}} \cap \mathbb{R})$ of the $p_{i}(x)$.

The CAD algorithm

2. Lifting.

The case of one variable: $p_{1}(x), p_{2}(x), \ldots, p_{m}(x) \in(\overline{\mathbb{Q}} \cap \mathbb{R})[x]$.

- Determine the real roots $\xi_{1}, \ldots, \xi_{k} \in(\overline{\mathbb{Q}} \cap \mathbb{R})$ of the $p_{i}(x)$.
- Choose $\rho_{0}, \ldots, \rho_{k} \in \mathbb{Q}$ such that

$$
\rho_{0}<\xi_{1}, \quad \xi_{i}<\rho_{i}<\xi_{i+1}, \quad \rho_{k}>\xi_{k}
$$

The CAD algorithm

2. Lifting.

The case of one variable: $p_{1}(x), p_{2}(x), \ldots, p_{m}(x) \in(\overline{\mathbb{Q}} \cap \mathbb{R})[x]$.

- Determine the real roots $\xi_{1}, \ldots, \xi_{k} \in(\overline{\mathbb{Q}} \cap \mathbb{R})$ of the $p_{i}(x)$.
- Choose $\rho_{0}, \ldots, \rho_{k} \in \mathbb{Q}$ such that

$$
\rho_{0}<\xi_{1}, \quad \xi_{i}<\rho_{i}<\xi_{i+1}, \quad \rho_{k}>\xi_{k}
$$

- The sample points are $\rho_{0}, \xi_{1}, \rho_{1}, \xi_{2}, \ldots, \rho_{k-1}, \xi_{k}, \rho_{k}$.

The CAD algorithm

2. Lifting.

The case of two variables: $p_{1}(x, y), \ldots, p_{m}(x, y) \in(\overline{\mathbb{Q}} \cap \mathbb{R})[x, y]$.

The CAD algorithm

2. Lifting.

The case of two variables: $p_{1}(x, y), \ldots, p_{m}(x, y) \in(\overline{\mathbb{Q}} \cap \mathbb{R})[x, y]$.

- Determine sample points $\sigma_{0}, \ldots, \sigma_{2 k+1}$ for those $p_{i}(x, y)$ which are free of y.

The CAD algorithm

2. Lifting.

The case of two variables: $p_{1}(x, y), \ldots, p_{m}(x, y) \in(\overline{\mathbb{Q}} \cap \mathbb{R})[x, y]$.

- Determine sample points $\sigma_{0}, \ldots, \sigma_{2 k+1}$ for those $p_{i}(x, y)$ which are free of y.
- For each σ_{i}, determine sample points $\sigma_{i, 1}, \ldots, \sigma_{i, \ell}$ for the polynomials $p_{i}\left(\sigma_{i}, y\right) \in(\overline{\mathbb{Q}} \cap \mathbb{R})[y]$.

The CAD algorithm

2. Lifting.

The case of two variables: $p_{1}(x, y), \ldots, p_{m}(x, y) \in(\overline{\mathbb{Q}} \cap \mathbb{R})[x, y]$.

- Determine sample points $\sigma_{0}, \ldots, \sigma_{2 k+1}$ for those $p_{i}(x, y)$ which are free of y.
- For each σ_{i}, determine sample points $\sigma_{i, 1}, \ldots, \sigma_{i, \ell}$ for the polynomials $p_{i}\left(\sigma_{i}, y\right) \in(\overline{\mathbb{Q}} \cap \mathbb{R})[y]$.
- The sample points are then $\left(\sigma_{i}, \sigma_{i, j}\right) \in(\overline{\mathbb{Q}} \cap \mathbb{R})^{2}$.

The CAD algorithm

2. Lifting.

The lifting algorithm:
INPUT: a CAD $C \subseteq \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$
OUTPUT: a set of sample points $\sigma \in(\overline{\mathbb{Q}} \cap \mathbb{R})^{n}$ for C

1. $S_{1}:=$ sample points for $C \cap \mathbb{Q}\left[x_{1}\right]$
2. for $k=2$ to n do
3.

$$
C_{k}:=C \cap \mathbb{Q}\left[x_{1}, \ldots, x_{k}\right]
$$

4. $S_{k}=\bigcup_{\sigma \in S_{k-1}}\{\sigma\} \times$ sample points for $\left.C_{k}\right|_{\left(x_{1}, \ldots, x_{k}\right)=\sigma}$
5. return S_{n}

The CAD algorithm

2. Lifting.

Technical requirements:

The CAD algorithm

2. Lifting.

Technical requirements:

- Exact arithmetic $(+,-, \times, /, \stackrel{?}{=} 0)$ in $\overline{\mathbb{Q}} \cap \mathbb{R}$.

The CAD algorithm

2. Lifting.

Technical requirements:

- Exact arithmetic $(+,-, \times, /, \stackrel{?}{=} 0)$ in $\overline{\mathbb{Q}} \cap \mathbb{R}$.
- Exact real root isolation in $(\overline{\mathbb{Q}} \cap \mathbb{R})[x]$.

The CAD algorithm

2. Lifting.

Technical requirements:

- Exact arithmetic $(+,-, \times, /, \stackrel{?}{=} 0)$ in $\overline{\mathbb{Q}} \cap \mathbb{R}$.
- Exact real root isolation in $(\overline{\mathbb{Q}} \cap \mathbb{R})[x]$.

Given $p \in(\overline{\mathbb{Q}} \cap \mathbb{R})[x] ; \varepsilon>0$
Find $\xi_{1}^{-}<\xi_{1}^{+}<\cdots<\xi_{k}^{-}<\xi_{k}^{+} \in \mathbb{Q}$
such that
$\triangleright \xi_{i}^{+}-\xi_{i}^{-}<\varepsilon(i=1, \ldots, k)$
\triangleright every real root of p is contained in exactly one interval $\left(\xi_{i}^{-}, \xi_{i}^{+}\right)$

The CAD algorithm

2. Lifting.

Technical requirements:

- Exact arithmetic $(+,-, \times, /, \stackrel{?}{=} 0)$ in $\overline{\mathbb{Q}} \cap \mathbb{R}$.
- Exact real root isolation in $(\overline{\mathbb{Q}} \cap \mathbb{R})[x]$.

Such algorithms are known.

The CAD algorithm

2. Lifting.

Technical requirements:

- Exact arithmetic $(+,-, \times, /, \stackrel{?}{=} 0)$ in $\overline{\mathbb{Q}} \cap \mathbb{R}$.
- Exact real root isolation in $(\overline{\mathbb{Q}} \cap \mathbb{R})[x]$.

Such algorithms are known.
They are not trivial.

The CAD algorithm

2. Lifting.

Technical requirements:

- Exact arithmetic $(+,-, \times, /, \stackrel{?}{=} 0)$ in $\overline{\mathbb{Q}} \cap \mathbb{R}$.
- Exact real root isolation in $(\overline{\mathbb{Q}} \cap \mathbb{R})[x]$.

Such algorithms are known.
They are not trivial.
We don't explain them here.

The CAD algorithm

3. Solution.

The CAD algorithm

3. Solution.

- Assigning truth values to cells amounts to determining the sign of polynomials at the sample point

The CAD algorithm

3. Solution.

- Assigning truth values to cells amounts to determining the sign of polynomials at the sample point
- Quantifier elimination:
$\forall x \in \mathbb{R}$ becomes "for all sample points"
$\exists x \in \mathbb{R}$ becomes "for at least one sample point"

The CAD algorithm

3. Solution.

- Assigning truth values to cells amounts to determining the sign of polynomials at the sample point
- Quantifier elimination:
$\forall x \in \mathbb{R}$ becomes "for all sample points"
$\exists x \in \mathbb{R}$ becomes "for at least one sample point"
- Formula construction is easy. (At least in principle.)

The CAD algorithm

3. Solution.

- Assigning truth values to cells amounts to determining the sign of polynomials at the sample point
- Quantifier elimination:
$\forall x \in \mathbb{R}$ becomes "for all sample points"
$\exists x \in \mathbb{R}$ becomes "for at least one sample point"
- Formula construction is easy. (At least in principle.)
- Simplification is a software engineering challenge, but not problematic in theory.

The CAD algorithm

The CAD algorithm consists of the following three phases:

1. Projection. If p_{1}, \ldots, p_{m} are the polynomials in the input, find q_{1}, \ldots, q_{k} such that the algebraic decomposition of $\left\{p_{1}, \ldots, p_{m}, q_{1}, \ldots, q_{k}\right\}$ is cylindrical.
2. Lifting. Construct sample points for each cell in this decomposition considering one dimension after the other in a bottom-up fashion.
3. Solution. Select the regions of interest [check if some simplification is possible by joining neighboring cells] and construct a solution formula accordingly.

The CAD algorithm

The CAD algorithm consists of the following three phases:

1. Projection. If p_{1}, \ldots, p_{m} are the polynomials in the input, find q_{1}, \ldots, q_{k} such that the algebraic decomposition of $\left\{p_{1}, \ldots, p_{m}, q_{1}, \ldots, q_{k}\right\}$ is cylindrical.
2. Lifting. Construct sample points for each cell in this decomposition considering one dimension after the other in a bottom-up fashion.
3. Solution. Select the regions of interest [check if some simplification is possible by joining neighboring cells] and construct a solution formula accordingly.

The CAD algorithm

The CAD algorithm consists of the following three phases:

1. Projection. If p_{1}, \ldots, p_{m} are the polynomials in the input, find q_{1}, \ldots, q_{k} such that the algebraic decomposition of $\left\{p_{1}, \ldots, p_{m}, q_{1}, \ldots, q_{k}\right\}$ is cylindrical.
2. Lifting. Construct sample points for each cell in this decomposition considerigg one dimension after the other in a bottom-up fashion.
3. Solution. Select the regions of interest [check if some simplification is possible by joining neighboring cells] and construct a solution formula accordingly.

The CAD algorithm

The CAD algorithm consists of the following three phases:

1. Projection. If p_{1}, \ldots, p_{m} are the polynomials in the input, find q_{1}, \ldots, q_{k} such that the algebraic decomposition of $\left\{p_{1}, \ldots, p_{m}, q_{1}, \ldots, q_{k}\right\}$ is cylindrical.
2. Lifting. Construct sample points for each cell in this decomposition considerigg one dimension after the other in a bottom-up fashion.
3. Solution. Select the regions of interest [check if some simplification is possible by joining neighboripg cells] and construct a solution formula accordingly.

Further Reading

Implementations

Implementations of CAD:

Implementations

Implementations of CAD:

- Qepcad: by Hoon Hong, Chris Brown, et. al.; Standalone program; http://www.cs.usna.edu/~qepcad/B/QEPCAD.html

Implementations

Implementations of CAD:

- Qepcad: by Hoon Hong, Chris Brown, et. al.; Standalone program; http://www.cs.usna.edu/~qepcad/B/QEPCAD.html
- Redlog: by Andreas Dolzmann, Andreas Seidl, et. al.; Package for the CA-system Reduce; http://www.fmi.uni-passau.de/~redlog/

Implementations

Implementations of CAD:

- Qepcad: by Hoon Hong, Chris Brown, et. al.; Standalone program; http://www.cs.usna.edu/~qepcad/B/QEPCAD.html
- Redlog: by Andreas Dolzmann, Andreas Seidl, et. al.; Package for the CA-system Reduce; http://www.fmi.uni-passau.de/~redlog/
- Mathematica: part of the standard distribution from Version 5 on. Command names:
- CylindricalDecomposition (raw CAD) and
- Resolve (quantifier elimination)

Warning!

Warning!

CADable in theory $\nRightarrow \quad$ CADable in practice

Warning!

CADable in theory $\nRightarrow \quad$ CADable in practice

Calculating a CAD is a damned expensive computational effort.

Warning!

CADable in theory $\nRightarrow \quad$ CADable in practice

Calculating a CAD is a damned expensive computational effort.

- because a CAD typically consists of a huge number of cells,

Warning!

CADable in theory $\nRightarrow \quad$ CADable in practice

Calculating a CAD is a damned expensive computational effort.

- because a CAD typically consists of a huge number of cells,
- because a nontrivial computation is done for each of them.

Warning!

CADable in theory $\nRightarrow \quad$ CADable in practice

Calculating a CAD is a damned expensive computational effort.

- because a CAD typically consists of a huge number of cells,
- because a nontrivial computation is done for each of them.

Worst case bit complexity: $(2 d)^{2^{2 n+8}} m^{2^{n+6}} b^{3}$, where

Warning!

CADable in theory $\Rightarrow \quad$ CADable in practice

Calculating a CAD is a damned expensive computational effort.

- because a CAD typically consists of a huge number of cells,
- because a nontrivial computation is done for each of them.

Worst case bit complexity: $(2 d)^{2^{2 n+8}} m^{2^{n+6}} b^{3}$, where

- $n \ldots$ number of variables (hyper critical!)

Warning!

CADable in theory \nRightarrow
 CADable in practice

Calculating a CAD is a damned expensive computational effort.

- because a CAD typically consists of a huge number of cells,
- because a nontrivial computation is done for each of them.

Worst case bit complexity: $(2 d)^{2^{2 n+8}} m^{2^{n+6}} b^{3}$, where

- n... number of variables (hyper critical!)
- $d \ldots$... maximum degree of input polynomials
- m... number of input polynomials
- b... maximum bitsize of the rational numbers in the input

Warning!

To some extent, the computational complexity is unavoidable.

Warning!

To some extent, the computational complexity is unavoidable.
Theorem (Davenport/Heinz, 1988). There is a formula in $n+2$ variables with n quantifiers so that any equivalent quantifier free formula (in two variables) has length $\Omega\left(2^{2^{n / 2}}\right)$.

Warning!

To some extent, the computational complexity is unavoidable.
Theorem (Davenport/Heinz, 1988). There is a formula in $n+2$ variables with n quantifiers so that any equivalent quantifier free formula (in two variables) has length $\Omega\left(2^{2^{n / 2}}\right)$.

What to do?

Warning!

To some extent, the computational complexity is unavoidable.
Theorem (Davenport/Heinz, 1988). There is a formula in $n+2$ variables with n quantifiers so that any equivalent quantifier free formula (in two variables) has length $\Omega\left(2^{2^{n / 2}}\right)$.

What to do?

- internal improvements (for the programmer of CAD)

Warning!

To some extent, the computational complexity is unavoidable.
Theorem (Davenport/Heinz, 1988). There is a formula in $n+2$ variables with n quantifiers so that any equivalent quantifier free formula (in two variables) has length $\Omega\left(2^{2^{n / 2}}\right)$.

What to do?

- internal improvements (for the programmer of CAD)
- external improvements (for the user of CAD)

Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.

Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.
- Apply lazy projection operators which produce fewer cells but may fail (and which backtrack when they fail).

Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.
- Apply lazy projection operators which produce fewer cells but may fail (and which backtrack when they fail).
- Compute only a partial CAD when this is sufficient.

Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.
- Apply lazy projection operators which produce fewer cells but may fail (and which backtrack when they fail).
- Compute only a partial CAD when this is sufficient.

Example:
Consider a $\forall x \exists y: \Phi(x, y)$ formula.
Under favorable circumstances, only a small part of the expensive lifting phase has to be carried out in order to decide whether this formula is true or false.

Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.
- Apply lazy projection operators which produce fewer cells but may fail (and which backtrack when they fail).
- Compute only a partial CAD when this is sufficient.

Example:
Consider a $\forall x \exists y: \Phi(x, y)$ formula.
Under favorable circumstances, only a small part of the expensive lifting phase has to be carried out in order to decide whether this formula is true or false.

Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.
- Apply lazy projection operators which produce fewer cells but may fail (and which backtrack when they fail).
- Compute only a partial CAD when this is sufficient.

Example:
Consider a $\forall x \exists y: \Phi(x, y)$ formula.
Under favorable circumstances, only a small part of the expensive lifting phase has to be carried out in order to decide whether this formula is true or false.

Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.
- Apply lazy projection operators which produce fewer cells but may fail (and which backtrack when they fail).
- Compute only a partial CAD when this is sufficient.

Example:
Consider a $\forall x \exists y: \Phi(x, y)$ formula.
Under favorable circumstances, only a small part of the expensive lifting phase has to be carried out in order to decide whether this formula is true or false.

Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.
- Apply lazy projection operators which produce fewer cells but may fail (and which backtrack when they fail).
- Compute only a partial CAD when this is sufficient.

Example:
Consider a $\forall x \exists y: \Phi(x, y)$ formula.
Under favorable circumstances, only a small part of the expensive lifting phase has to be carried out in order to decide whether this formula is true or false.

Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.
- Apply lazy projection operators which produce fewer cells but may fail (and which backtrack when they fail).
- Compute only a partial CAD when this is sufficient.

Example:
Consider a $\forall x \exists y: \Phi(x, y)$ formula.
Under favorable circumstances, only a small part of the expensive lifting phase has to be carried out in order to decide whether this formula is true or false.

Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.
- Apply lazy projection operators which produce fewer cells but may fail (and which backtrack when they fail).
- Compute only a partial CAD when this is sufficient.

Example:
Consider a $\forall x \exists y: \Phi(x, y)$ formula.
Under favorable circumstances, only a small part of the expensive lifting phase has to be carried out in order to decide whether this formula is true or false.

Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.
- Apply lazy projection operators which produce fewer cells but may fail (and which backtrack when they fail).
- Compute only a partial CAD when this is sufficient.

Example:
Consider a $\forall x \exists y: \Phi(x, y)$ formula.
Under favorable circumstances, only a small part of the expensive lifting phase has to be carried out in order to decide whether this formula is true or false.

Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.
- Apply lazy projection operators which produce fewer cells but may fail (and which backtrack when they fail).
- Compute only a partial CAD when this is sufficient.

Example:
Consider a $\forall x \exists y: \Phi(x, y)$ formula.
Under favorable circumstances, only a small part of the expensive lifting phase has to be carried out in order to decide whether this formula is true or false.

Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.
- Apply lazy projection operators which produce fewer cells but may fail (and which backtrack when they fail).
- Compute only a partial CAD when this is sufficient.

Example:
Consider a $\forall x \exists y: \Phi(x, y)$ formula.
Under favorable circumstances, only a small part of the expensive lifting phase has to be carried out in order to decide whether this formula is true or false.

Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.
- Apply lazy projection operators which produce fewer cells but may fail (and which backtrack when they fail).
- Compute only a partial CAD when this is sufficient.

Example:
Consider a $\forall x \exists y: \Phi(x, y)$ formula.
Under favorable circumstances, only a small part of the expensive lifting phase has to be carried out in order to decide whether this formula is true or false.

Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.
- Apply lazy projection operators which produce fewer cells but may fail (and which backtrack when they fail).
- Compute only a partial CAD when this is sufficient.

Example:
Consider a $\forall x \exists y: \Phi(x, y)$ formula.
Under favorable circumstances, only a small part of the expensive lifting phase has to be carried out in order to decide whether this formula is true or false.

Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.
- Apply lazy projection operators which produce fewer cells but may fail (and which backtrack when they fail).
- Compute only a partial CAD when this is sufficient.

Example:
Consider a $\forall x \exists y: \Phi(x, y)$ formula.
Under favorable circumstances, only a small part of the expensive lifting phase has to be carried out in order to decide whether this formula is true or false.

Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.
- Apply lazy projection operators which produce fewer cells but may fail (and which backtrack when they fail).
- Compute only a partial CAD when this is sufficient.

Example:
Consider a $\forall x \exists y: \Phi(x, y)$ formula.
Under favorable circumstances, only a small part of the expensive lifting phase has to be carried out in order to decide whether this formula is true or false.

Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.
- Apply lazy projection operators which produce fewer cells but may fail (and which backtrack when they fail).
- Compute only a partial CAD when this is sufficient.

Example:
Consider a $\forall x \exists y: \Phi(x, y)$ formula.
Under favorable circumstances, only a small part of the expensive lifting phase has to be carried out in order to decide whether this formula is true or false.

Internal Improvements

- Use the most efficient algorithms for computing with real algebraic numbers.
- Apply lazy projection operators which produce fewer cells but may fail (and which backtrack when they fail).
- Compute only a partial CAD when this is sufficient.

Example:
Consider a $\forall x \exists y: \Phi(x, y)$ formula.
Under favorable circumstances, only a small part of the expensive lifting phase has to be carried out in order to decide whether this formula is true or false.

External Improvements

- Try different variable orders.

External Improvements

- Try different variable orders.
- Decompose the problem into several smaller ones.

External Improvements

- Try different variable orders.
- Decompose the problem into several smaller ones.
- Where possible, only consider full dimensional cells.

External Improvements

- Try different variable orders.
- Decompose the problem into several smaller ones.
- Where possible, only consider full dimensional cells.

Example: The CAD of the unit sphere has 25 cells.

Only 7 of them are full dimensional.
Only arithmetic in \mathbb{Q} is needed to find them.

Summary

Summary

- CADs can be computed.

Summary

- CADs can be computed.
- CAD is based on a nice geometric intuition.

Summary

- CADs can be computed.
- CAD is based on a nice geometric intuition.
- The algorithm consists of projection/lifting/solution.

Summary

- CADs can be computed.
- CAD is based on a nice geometric intuition.
- The algorithm consists of projection/lifting/solution.
- Efficiency is an issue.

Summary

- CADs can be computed.
- CAD is based on a nice geometric intuition.
- The algorithm consists of projection/lifting/solution.
- Efficiency is an issue.
- Optimized implementations from specialists are freely available.

Summary

- CADs can be computed.
- CAD is based on a nice geometric intuition.
- The algorithm consists of projection/lifting/solution.
- Efficiency is an issue.
- Optimized implementations from specialists are freely available.

Tomorrow: Applications of CAD to special function inequalities.

A Simple Exercise

What is (pictorially) the CAD of the tacnode polynomial

$$
p(x, y)=2 x^{4}-3 x^{2} y+y^{4}-2 y^{3}+y^{2}
$$

- with respect to x, y ?
- with respect to y, x ?

Inequalities

Manuel Kauers
RISC-Linz

I. What?

II. How?
III. Why?

I. What?

II. How?

III. Why?

Cylindrical Algebraic Decomposition (CAD)

INPUT: a system of polynomial inequalities over the reals
OUTPUT: a system of polynomial inequalities over the reals, which

- is provably equivalent to the system given as input, and
- has a nice structural property which allows for answering a variety of otherwise nontrivial questions merely by inspection.

A Simple Exercise

What is (pictorially) the CAD of the tacnode polynomial

$$
p(x, y)=2 x^{4}-3 x^{2} y+y^{4}-2 y^{3}+y^{2}
$$

- with respect to x, y ?
- with respect to y, x ?

A Simple Exercise

What is (pictorially) the CAD of the tacnode polynomial

$$
p(x, y)=2 x^{4}-3 x^{2} y+y^{4}-2 y^{3}+y^{2}
$$

- with respect to x, y ?
- with respect to y, x ?

Discriminant of $p(x, y)$ wrt. y :

$$
x^{6}\left(2048 x^{6}-4608 x^{4}+37 x^{2}+12\right)
$$

A Simple Exercise

What is (pictorially) the CAD of the tacnode polynomial

$$
p(x, y)=2 x^{4}-3 x^{2} y+y^{4}-2 y^{3}+y^{2}
$$

- with respect to x, y ?
- with respect to y, x ?

Discriminant of $p(x, y)$ wrt. x :

$$
64 y^{6}(y-1)^{2}\left(8 y^{2}-16 y-1\right)^{2}
$$

A Simple Exercise

What is (pictorially) the CAD of the tacnode polynomial

$$
p(x, y)=2 x^{4}-3 x^{2} y+y^{4}-2 y^{3}+y^{2}
$$

- with respect to x, y ?
- with respect to y, x ?

Discriminant of $p(x, y)$ wrt. x :

$$
64 y^{6}(y-1)^{2}\left(8 y^{2}-16 y-1\right)^{2}
$$

The quadratic factor introduces an unnecessary case distinction.

THE AMERICAN MATHEMATICAL.		
Andrew Gralvile	Prime Number Races	1
John W. Hagood Slom 5. Thomison	Recovering a Function from a Dini Derivative	14
Marctrantz	Some Graphical Solutions of the Kepler Problem	47
NOTES Heory Com	A Shert Proof of the Simple Continued Fraction Expansion of e	57
Thorma f Oiler	A Proof of the Continued Fraction Expantion of $\mathrm{e}^{\mathrm{t}} \mathrm{m}$	62
Konyping Dy	Continuous Differentiabilicy of Solutions of ODEs weth Respect to Initial Condivions	66
Stephen Boyd fori Duconia junsin In Xian	Fasest Moing Markov Chuin on a Path	70
THE EVOLUTION OF. Power Streced	The Poincare Conjectare?	75
PAOBLEMS AND SOLUTIONS		79
REVIEWS Crates fads	The Pursuit of Perfect Hocking By Tomaso Aste and Denis Weaire. Keplert Canjecture. By George G. Sapiro.	87
Shandele, M. Hernon	Complestiec: Wamen in Mathematic. Edited by Bettye Anne Case and Ame M. Legeste	91

Some Recent Monthly Problems

Some Recent Monthly Problems

11033. Proposed by M. N. Deshpande and R. M. Welukar, Institute of Science, Nagpur, India. Let

$$
P(m, n, r)=\sum_{k=0}^{r}(-1)^{k}\binom{m+n-2(k+1)}{n}\binom{r}{k} .
$$

Let m, n, and r be integers such that $0 \leq r \leq n \leq m-2$. Show that $P(m, n, r)$ is positive and that $\sum_{r=0}^{n} P(m, n, r)=\binom{m+n}{n}$.

Some Recent Monthly Problems

11442. Proposed by José Díaz-Barrero and José Gibergans-Báguena, Universidad Politécnica de Cataluña, Barcelona, Spain. Let $\left\langle a_{k}\right\rangle$ be a sequence of positive numbers defined by $a_{n}=$ $\frac{1}{2}\left(a_{n-1}^{2}+1\right)$ for $n>1$, with $a_{1}=3$. Show that

$$
\left[\left(\sum_{k=1}^{n} \frac{a_{k}}{1+a_{k}}\right)\left(\sum_{k=1}^{n} \frac{1}{a_{k}\left(1+a_{k}\right)}\right)\right]^{1 / 2} \leq \frac{1}{4}\left(\frac{a_{1}+a_{n}}{\sqrt{a_{1} a_{n}}}\right)
$$

Some Recent Monthly Problems

11445. Proposed by H. A. ShahAli, Tehran, Iran. Given $a, b, c>$ 0 with $b^{2}>4 a c$, let $\left\langle\lambda_{n}\right\rangle$ be a sequence of real numbers, with $\lambda_{0}>0$ and $c \lambda_{1}>b \lambda_{0}$. Let $u_{0}=c \lambda_{0}, u_{1}=c \lambda_{1}-b \lambda_{0}$, and for $n \geq 2$ let $u_{n}=a \lambda_{n-2}-b \lambda_{n-1}+c \lambda_{n}$. Show that if $u_{n}>0$ for all $n \geq 0$, then $\lambda_{n}>0$ for all $n \geq 0$.

What's that?

These problems have in common that they

What's that?

These problems have in common that they

- involve one or more discrete variables.

What's that?

These problems have in common that they

- involve one or more discrete variables.
- are not polynomial.

What's that?

These problems have in common that they

- involve one or more discrete variables.
- are not polynomial.

Today's topic:

What's that?

These problems have in common that they

- involve one or more discrete variables.
- are not polynomial.

Today's topic:

- How can CAD be helpful for such problems.

A Simple Example

Bernoulli's inequality:

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n} \geq 1+n x .
$$

A Simple Example

Bernoulli's inequality:

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

A Simple Example

Bernoulli's inequality:

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

Problem: $(x+1)^{n}-(1+n x) \notin \mathbb{Q}[n, x]$

A Simple Example

Bernoulli's inequality:

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

Problem: $(x+1)^{n}-(1+n x) \notin \mathbb{Q}[n, x]$

- But for any specific integer n, it is a polynomial in x.

A Simple Example

Bernoulli's inequality:

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

Problem: $(x+1)^{n}-(1+n x) \notin \mathbb{Q}[n, x]$

- But for any specific integer n, it is a polynomial in x.
- View $(x+1)^{n}-(1+n x)$ as a sequence of polynomials.

A Simple Example

Bernoulli's inequality:

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

Problem: $(x+1)^{n}-(1+n x) \notin \mathbb{Q}[n, x]$

- But for any specific integer n, it is a polynomial in x.
- View $(x+1)^{n}-(1+n x)$ as a sequence of polynomials.
- View Bernoulli's inequality as a sequence of polynomial inequalities.

A Simple Example

Bernoulli's inequality:

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

A Simple Example

Bernoulli's inequality:

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

A Simple Example

Bernoulli's inequality:

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

A Simple Example

Bernoulli's inequality:

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

A Simple Example

Bernoulli's inequality:

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

A Simple Example

Bernoulli's inequality:

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

A Simple Example

Bernoulli's inequality:

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

A Simple Example

Bernoulli's inequality:

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

A Simple Example

Bernoulli's inequality:

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

A Simple Example

Bernoulli's inequality:

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

A Simple Example

Bernoulli's inequality:

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

A Simple Example

Bernoulli's inequality:

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

- Idea: Combine induction on n and CAD.

A Simple Example

Bernoulli's inequality:

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

- Idea: Combine induction on n and CAD.
- Let $f_{n}(x):=(x+1)^{n}-(1+n x)$.

A Simple Example

Bernoulli's inequality:

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

- Idea: Combine induction on n and CAD.
- Let $f_{n}(x):=(x+1)^{n}-(1+n x)$.
- Induction step:

$$
\forall n \in \mathbb{N} \forall x \geq-1: f_{n}(x) \geq 0 \Rightarrow f_{n+1}(x) \geq 0
$$

A Simple Example

Bernoulli's inequality:

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

- Idea: Combine induction on n and CAD.
- Let $f_{n}(x):=(x+1)^{n}-(1+n x)$.
- Induction step:

$$
\forall n \in \mathbb{N} \forall x \geq-1: f_{n}(x) \geq 0 \Rightarrow f_{n+1}(x) \geq 0
$$

- Exploit the recurrence $f_{n+1}(x)=(x+1) f_{n}(x)+n x^{2}$

A Simple Example

Bernoulli's inequality:

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

- Idea: Combine induction on n and CAD.
- Let $f_{n}(x):=(x+1)^{n}-(1+n x)$.
- Induction step:

$$
\forall n \in \mathbb{N} \forall x \geq-1: f_{n}(x) \geq 0 \Rightarrow(x+1) f_{n}(x)+n x^{2} \geq 0
$$

- Exploit the recurrence $f_{n+1}(x)=(x+1) f_{n}(x)+n x^{2}$

A Simple Example

Bernoulli's inequality:

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

- Idea: Combine induction on n and CAD.
- Let $f_{n}(x):=(x+1)^{n}-(1+n x)$.
- Induction step:

$$
\forall n \in \mathbb{N} \forall x \geq-1: f_{n}(x) \geq 0 \Rightarrow(x+1) f_{n}(x)+n x^{2} \geq 0
$$

- Exploit the recurrence $f_{n+1}(x)=(x+1) f_{n}(x)+n x^{2}$
- Generalize $f_{n}(x)$ to y and $n \in \mathbb{N}$ to $n \geq 0$

A Simple Example

Bernoulli's inequality:

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

- Idea: Combine induction on n and CAD.
- Let $f_{n}(x):=(x+1)^{n}-(1+n x)$.
- Induction step:

$$
\forall n \geq 0 \forall y \forall x \geq-1: y \geq 0 \Rightarrow(x+1) y+n x^{2} \geq 0
$$

- Exploit the recurrence $f_{n+1}(x)=(x+1) f_{n}(x)+n x^{2}$
- Generalize $f_{n}(x)$ to y and $n \in \mathbb{N}$ to $n \geq 0$

A Simple Example

Bernoulli's inequality:

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

- Idea: Combine induction on n and CAD.
- Let $f_{n}(x):=(x+1)^{n}-(1+n x)$.
- Induction step:

$$
\forall n \geq 0 \forall y \forall x \geq-1: y \geq 0 \Rightarrow(x+1) y+n x^{2} \geq 0
$$

- Exploit the recurrence $f_{n+1}(x)=(x+1) f_{n}(x)+n x^{2}$
- Generalize $f_{n}(x)$ to y and $n \in \mathbb{N}$ to $n \geq 0$
- The resulting formula is indeed true.

A Simple Example

Bernoulli's inequality:

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

- Idea: Combine induction on n and CAD.
- Let $f_{n}(x):=(x+1)^{n}-(1+n x)$.
- Induction step:

$$
\forall n \in \mathbb{N} \forall x \geq-1: f_{n}(x) \geq 0 \Rightarrow f_{n+1}(x) \geq 0
$$

- This proves the induction step.

A Simple Example

Bernoulli's inequality:

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

- Idea: Combine induction on n and CAD.
- Let $f_{n}(x):=(x+1)^{n}-(1+n x)$.
- Induction step:

$$
\forall n \in \mathbb{N} \forall x \geq-1: f_{n}(x) \geq 0 \Rightarrow f_{n+1}(x) \geq 0
$$

- This proves the induction step.
- The induction base $0 \geq 0$ is trivial.

A Simple Example

Bernoulli's inequality:

$$
\forall n \in \mathbb{N} \forall x \geq-1:(x+1)^{n}-(1+n x) \geq 0
$$

- Idea: Combine induction on n and CAD.
- Let $f_{n}(x):=(x+1)^{n}-(1+n x)$.
- Induction step:

$$
\forall n \in \mathbb{N} \forall x \geq-1: f_{n}(x) \geq 0 \Rightarrow f_{n+1}(x) \geq 0
$$

- This proves the induction step.
- The induction base $0 \geq 0$ is trivial.
- This completes the proof.

The General Principle

In order to prove a statement $\forall n \in \mathbb{N}: \Phi(n)$,

The General Principle

In order to prove a statement $\forall n \in \mathbb{N}: \Phi(n)$,

- Consider $\forall n \in \mathbb{N}: \Phi(n) \Rightarrow \Phi(n+1)$.

The General Principle

In order to prove a statement $\forall n \in \mathbb{N}: \Phi(n)$,

- Consider $\forall n \in \mathbb{N}: \Phi(n) \Rightarrow \Phi(n+1)$.
- Replace the nonpolynomial quantities in $\Phi(n)$ and $\Phi(n+1)$ by as few as possible new real variables y_{1}, \ldots, y_{k}.

The General Principle

In order to prove a statement $\forall n \in \mathbb{N}: \Phi(n)$,

- Consider $\forall n \in \mathbb{N}: \Phi(n) \Rightarrow \Phi(n+1)$.
- Replace the nonpolynomial quantities in $\Phi(n)$ and $\Phi(n+1)$ by as few as possible new real variables y_{1}, \ldots, y_{k}.
- Use CAD to prove the formula

$$
\forall n \geq 0 \forall y_{1}, \ldots, y_{k}: \Phi^{\prime}\left(n, y_{1}, \ldots, y_{k}\right) \Rightarrow \Phi^{\prime \prime}\left(n, y_{1}, \ldots, y_{k}\right) .
$$

The General Principle

In order to prove a statement $\forall n \in \mathbb{N}: \Phi(n)$,

- Consider $\forall n \in \mathbb{N}: \Phi(n) \Rightarrow \Phi(n+1)$.
- Replace the nonpolynomial quantities in $\Phi(n)$ and $\Phi(n+1)$ by as few as possible new real variables y_{1}, \ldots, y_{k}.
- Use CAD to prove the formula

$$
\forall n \geq 0 \forall y_{1}, \ldots, y_{k}: \Phi^{\prime}\left(n, y_{1}, \ldots, y_{k}\right) \Rightarrow \Phi^{\prime \prime}\left(n, y_{1}, \ldots, y_{k}\right) .
$$

- Use CAD to prove $\Phi(0)$.

The General Principle

In order to prove a statement $\forall n \in \mathbb{N}: \Phi(n)$,

- Consider $\forall n \in \mathbb{N}: \Phi(n) \Rightarrow \Phi(n+1)$.
- Replace the nonpolynomial quantities in $\Phi(n)$ and $\Phi(n+1)$ by as few as possible new real variables y_{1}, \ldots, y_{k}.
- Use CAD to prove the formula

$$
\forall n \geq 0 \forall y_{1}, \ldots, y_{k}: \Phi^{\prime}\left(n, y_{1}, \ldots, y_{k}\right) \Rightarrow \Phi^{\prime \prime}\left(n, y_{1}, \ldots, y_{k}\right) .
$$

- Use CAD to prove $\Phi(0)$.
- Done.

The General Principle

In order to prove a statemont $\forall n \subset \mathbb{N} \cdot \sigma(n)$

- Consider $\forall n \in \mathbb{N}$: This condition is suf-
- Replace the nonpoit by as few as possibl
- Use CAD to prove t What if it is not true?

$$
\forall n \geq 0 \forall y_{1}, \ldots, y_{k}: \Phi^{\prime}\left(n, y_{1}, \ldots, y_{k}\right) \Rightarrow \Phi^{\prime \prime}\left(n, y_{1}, \ldots, y_{k}\right)
$$

- Use CAD to prove $\Phi(0)$.
- Done.

A Slightly Less Simple Example

Bernoulli's inequality reloaded:

$$
\forall n \in \mathbb{N} \forall x \geq-2:(x+1)^{n}-(1+n x) \geq 0
$$

A Slightly Less Simple Example

Bernoulli's inequality reloaded:

$$
\forall n \in \mathbb{N} \forall x \geq-2:(x+1)^{n}-(1+n x) \geq 0
$$

A Slightly Less Simple Example

Bernoulli's inequality reloaded:

$$
\forall n \in \mathbb{N} \forall x \geq-2:(x+1)^{n}-(1+n x) \geq 0
$$

The induction step formula:

$$
\forall n \geq 0 \forall y \forall x \geq-2: y \geq 0 \Rightarrow(x+1) y+n x^{2} \geq 0
$$

is false. :

A Slightly Less Simple Example

Bernoulli's inequality reloaded:

$$
\forall n \in \mathbb{N} \forall x \geq-2:(x+1)^{n}-(1+n x) \geq 0
$$

The induction step formula:

$$
\forall n \geq 0 \forall y \forall x \geq-2: y \geq 0 \Rightarrow(x+1) y+n x^{2} \geq 0
$$

is false.
New idea: Instead of $\Phi(n) \Rightarrow \Phi(n+1)$, try

$$
\Phi(n) \wedge \Phi(n+1) \Rightarrow \Phi(n+2)
$$

A Slightly Less Simple Example

Bernoulli's inequality reloaded:

$$
\forall n \in \mathbb{N} \forall x \geq-2:(x+1)^{n}-(1+n x) \geq 0
$$

The extended induction step formula:

$$
\begin{aligned}
& \forall n \geq 0 \forall y \forall x \geq-2: y \geq 1+n x \wedge(x+1) y \geq 1+(n+1) x \\
& \quad \Rightarrow(x+1)^{2} y \geq 1+(n+2) x
\end{aligned}
$$

is true.

A Slightly Less Simple Example

Bernoulli's inequality reloaded:

$$
\forall n \in \mathbb{N} \forall x \geq-2:(x+1)^{n}-(1+n x) \geq 0
$$

Check two initial values:

$$
\begin{array}{ll}
n=1: & x \geq-2 \Rightarrow(x+1) \geq 1+1 x \\
n=2: & x \geq-2 \Rightarrow(x+1)^{2} \geq 1+2 x
\end{array}
$$

A Slightly Less Simple Example

Bernoulli's inequality reloaded:

$$
\forall n \in \mathbb{N} \forall x \geq-2:(x+1)^{n}-(1+n x) \geq 0
$$

Check two initial values:

$$
\begin{array}{ll}
n=1: & x \geq-2 \Rightarrow(x+1) \geq 1+1 x \\
n=2: & x \geq-2 \Rightarrow(x+1)^{2} \geq 1+2 x
\end{array}
$$

The truth of the inequality follows.

A Slightly Less Simple Example

Observations:

- There are various possibilities to polynomialify an inequality.

A Slightly Less Simple Example

Observations:

- There are various possibilities to polynomialify an inequality.
- If one fails, another one might still work.

A Slightly Less Simple Example

Observations:

- There are various possibilities to polynomialify an inequality.
- If one fails, another one might still work.
- The "Gerhold-Kauers-method": For $r=1,2,3, \ldots$, try

$$
\Phi(n) \wedge \Phi(n+1) \wedge \cdots \wedge \Phi(n+r) \Rightarrow \Phi(n+r+1)
$$

A Slightly Less Simple Example

Observations:

- There are various possibilities to polynomialify an inequality.
- If one fails, another one might still work.
- The "Gerhold-Kauers-method": For $r=1,2,3, \ldots$, try

$$
\Phi(n) \wedge \Phi(n+1) \wedge \cdots \wedge \Phi(n+r) \Rightarrow \Phi(n+r+1)
$$

- Also this does not work for every inequality.

A Slightly Less Simple Example

Observations:

- There are various possibilities to polynomialify an inequality.
- If one fails, another one might still work.
- The "Gerhold-Kauers-method": For $r=1,2,3, \ldots$, try

$$
\Phi(n) \wedge \Phi(n+1) \wedge \cdots \wedge \Phi(n+r) \Rightarrow \Phi(n+r+1)
$$

- Also this does not work for every inequality.
- In general, you have to experiment!

A Slightly Less Simple Example

Observations:

- There are various possibilities to polynomialify an inequality.
- If one fails, another one might still work.
- The "Gerhold-Kauers-method": For $r=1,2,3, \ldots$, try

$$
\Phi(n) \wedge \Phi(n+1) \wedge \cdots \wedge \Phi(n+r) \Rightarrow \Phi(n+r+1)
$$

- Also this does not work for every inequality.
- In general, you have to experiment!
- Claim: Finding a CADable reformulation of a conjectured inequality can be much easier than finding a CAD-free proof.

Back to the Monthly Problems

Back to the Monthly Problems

11033. Proposed by M. N. Deshpande and R. M. Welukar, Institute of Science, Nagpur, India. Let

$$
P(m, n, r)=\sum_{k=0}^{r}(-1)^{k}\binom{m+n-2(k+1)}{n}\binom{r}{k} .
$$

Let m, n, and r be integers such that $0 \leq r \leq n \leq m-2$. Show that $P(m, n, r)$ is positive and that $\sum_{r=0}^{n} P(m, n, r)=\binom{m+n}{n}$.

Back to the Monthly Problems

11033. Proposed by M. N. Deshpande and R. M. Welukar, Institute of Science, Nagpur, India. Let

$$
P(m, n, r)=\sum_{k=0}^{r}(-1)^{k}\binom{m+n-2(k+1)}{n}\binom{r}{k} .
$$

Let m, n, and r be integers such that $0 \leq r \leq n \leq m-2$. Show that $P(m, n, r)$ is positive and that $\sum_{r=0}^{n} P(m, n, r)=\binom{m+n}{n}$.
Summation software finds the recurrence

$$
P(m+2, n, r)=\frac{n+1}{m} P(m+1, n, r)+\frac{n+m-2 r-1}{m} P(m, n, r)
$$

Back to the Monthly Problems

11033. Proposed by M. N. Deshpande and R. M. Welukar, Institute of Science, Nagpur, India. Let

$$
P(m, n, r)=\sum_{k=0}^{r}(-1)^{k}\binom{m+n-2(k+1)}{n}\binom{r}{k} .
$$

Let m, n, and r be integers such that $0 \leq r \leq n \leq m-2$. Show that $P(m, n, r)$ is positive and that $\sum_{r=0}^{n} P(m, n, r)=\binom{m+n}{n}$.
Summation software finds the recurrence

$$
P(m+2, n, r)=\underbrace{\frac{n+1}{m}}_{\geq 0} P(m+1, n, r)+\underbrace{\frac{n+m-2 r-1}{m}}_{\geq 0} P(m, n, r)
$$

Back to the Monthly Problems

11033. Proposed by M. N. Deshpande and R. M. Welukar, Institute of Science, Nagpur, India. Let

$$
P(m, n, r)=\sum_{k=0}^{r}(-1)^{k}\binom{m+n-2(k+1)}{n}\binom{r}{k} .
$$

Let m, n, and r be integers such that $0 \leq r \leq n \leq m-2$. Show that $P(m, n, r)$ is positive and that $\sum_{r=0}^{n} P(m, n, r)=\binom{m+n}{n}$.
Summation software finds the recurrence

$$
P(m+2, n, r)=\underbrace{\frac{n+1}{m}}_{\geq 0} P(m+1, n, r)+\underbrace{\frac{n+m-2 r-1}{m}}_{\geq 0} P(m, n, r)
$$

Sometimes you have got to be lucky...

Back to the Monthly Problems

11033. Proposed by M. N. Deshpande and R. M. Welukar, Institute of Science, Nagpur, India. Let

$$
P(m, n, r)=\sum_{k=0}^{r}(-1)^{k}\binom{m+n-2(k+1)}{n}\binom{r}{k} .
$$

Let m, n, and r be integers such that $0 \leq r \leq n \leq m-2$. Show that $P(m, n, r)$ is positive and that $\sum_{r=0}^{n} P(m, n, r)=\binom{m+n}{n}$.
(Side remark: The identity can of course also be done by computer algebra.)

Back to the Monthly Problems

11442. Proposed by José Díaz-Barrero and José Gibergans-Báguena, Universidad Politécnica de Cataluña, Barcelona, Spain. Let $\left\langle a_{k}\right\rangle$ be a sequence of positive numbers defined by $a_{n}=$ $\frac{1}{2}\left(a_{n-1}^{2}+1\right)$ for $n>1$, with $a_{1}=3$. Show that

$$
\left[\left(\sum_{k=1}^{n} \frac{a_{k}}{1+a_{k}}\right)\left(\sum_{k=1}^{n} \frac{1}{a_{k}\left(1+a_{k}\right)}\right)\right]^{1 / 2} \leq \frac{1}{4}\left(\frac{a_{1}+a_{n}}{\sqrt{a_{1} a_{n}}}\right)
$$

Back to the Monthly Problems

11442. Proposed by José Díaz-Barrero and José Gibergans-Báguena, Universidad Politécnica de Cataluña, Barcelona, Spain. Let $\left\langle a_{k}\right\rangle$ be a sequence of positive numbers defined by $a_{n}=$ $\frac{1}{2}\left(a_{n-1}^{2}+1\right)$ for $n>1$, with $a_{1}=3$. Show that

$$
\left[\left(\sum_{k=1}^{n} \frac{a_{k}}{1+a_{k}}\right)\left(\sum_{k=1}^{n} \frac{1}{a_{k}\left(1+a_{k}\right)}\right)\right]^{1 / 2} \leq \frac{1}{4}\left(\frac{a_{1}+a_{n}}{\sqrt{a_{1} a_{n}}}\right)
$$

Because of

$$
\forall a>1: \frac{1}{2}\left(a^{2}+1\right)>a,
$$

the sequence a_{n} is increasing.

Back to the Monthly Problems

11442. Proposed by José Díaz-Barrero and José Gibergans-Báguena, Universidad Politécnica de Cataluña, Barcelona, Spain. Let $\left\langle a_{k}\right\rangle$ be a sequence of positive numbers defined by $a_{n}=$ $\frac{1}{2}\left(a_{n-1}^{2}+1\right)$ for $n>1$, with $a_{1}=3$. Show that

$$
\left[\left(\sum_{k=1}^{n} \frac{a_{k}}{1+a_{k}}\right)\left(\sum_{k=1}^{n} \frac{1}{a_{k}\left(1+a_{k}\right)}\right)\right]^{1 / 2} \leq \frac{1}{4}\left(\frac{a_{1}+a_{n}}{\sqrt{a_{1} a_{n}}}\right)
$$

Square the claim to get $s_{1}(n) s_{2}(n) \leq \frac{\left(3+a_{n}\right)^{2}}{48 a_{n}}$ where $s_{1}(n)$ and $s_{2}(n)$ are the first and the second sum, respectively.

Back to the Monthly Problems

11442. Proposed by José Díaz-Barrero and José Gibergans-Báguena, Universidad Politécnica de Cataluña, Barcelona, Spain. Let $\left\langle a_{k}\right\rangle$ be a sequence of positive numbers defined by $a_{n}=$ $\frac{1}{2}\left(a_{n-1}^{2}+1\right)$ for $n>1$, with $a_{1}=3$. Show that

$$
\left[\left(\sum_{k=1}^{n} \frac{a_{k}}{1+a_{k}}\right)\left(\sum_{k=1}^{n} \frac{1}{a_{k}\left(1+a_{k}\right)}\right)\right]^{1 / 2} \leq \frac{1}{4}\left(\frac{a_{1}+a_{n}}{\sqrt{a_{1} a_{n}}}\right)
$$

Square the claim to get $s_{1}(n) s_{2}(n) \leq \frac{\left(3+a_{n}\right)^{2}}{48 a_{n}}$ where $s_{1}(n)$ and $s_{2}(n)$ are the first and the second sum, respectively.

Besides the defining recurrence of a_{n}, we have

$$
s_{1}(n)=s_{1}(n-1)+\frac{a_{n}}{1+a_{n}}, \quad s_{2}(n)=s_{2}(n-1)+\frac{1}{a_{n}\left(1+a_{n}\right)} .
$$

Back to the Monthly Problems

11442. Proposed by José Díaz-Barrero and José Gibergans-Báguena, Universidad Politécnica de Cataluña, Barcelona, Spain. Let $\left\langle a_{k}\right\rangle$ be a sequence of positive numbers defined by $a_{n}=$ $\frac{1}{2}\left(a_{n-1}^{2}+1\right)$ for $n>1$, with $a_{1}=3$. Show that

$$
\left[\left(\sum_{k=1}^{n} \frac{a_{k}}{1+a_{k}}\right)\left(\sum_{k=1}^{n} \frac{1}{a_{k}\left(1+a_{k}\right)}\right)\right]^{1 / 2} \leq \frac{1}{4}\left(\frac{a_{1}+a_{n}}{\sqrt{a_{1} a_{n}}}\right)
$$

Since a_{n} is positive and increasing, so are $s_{1}(n)$ and $s_{2}(n)$, hence

$$
a_{n} \geq a_{1}=3, \quad s_{1}(n) \geq s_{1}(1)=\frac{3}{4}, \quad s_{2}(n) \geq s_{2}(1)=\frac{1}{15} .
$$

Back to the Monthly Problems

11442. Proposed by José Díaz-Barrero and José Gibergans-Báguena, Universidad Politécnica de Cataluña, Barcelona, Spain. Let $\left\langle a_{k}\right\rangle$ be a sequence of positive numbers defined by $a_{n}=$ $\frac{1}{2}\left(a_{n-1}^{2}+1\right)$ for $n>1$, with $a_{1}=3$. Show that

$$
\left[\left(\sum_{k=1}^{n} \frac{a_{k}}{1+a_{k}}\right)\left(\sum_{k=1}^{n} \frac{1}{a_{k}\left(1+a_{k}\right)}\right)\right]^{1 / 2} \leq \frac{1}{4}\left(\frac{a_{1}+a_{n}}{\sqrt{a_{1} a_{n}}}\right)
$$

Since a_{n} is positive and increasing, so are $s_{1}(n)$ and $s_{2}(n)$, hence

$$
a_{n} \geq a_{1}=3, \quad s_{1}(n) \geq s_{1}(1)=\frac{3}{4}, \quad s_{2}(n) \geq s_{2}(1)=\frac{1}{15} .
$$

For $n \geq 3$, we can even assume

$$
a_{n} \geq 13, \quad s_{1}(n) \geq \frac{211}{84}, \quad s_{2}(n) \geq \frac{667}{5460}
$$

Back to the Monthly Problems

11442. Proposed by José Díaz-Barrero and José Gibergans-Báguena, Universidad Politécnica de Cataluña, Barcelona, Spain. Let $\left\langle a_{k}\right\rangle$ be a sequence of positive numbers defined by $a_{n}=$ $\frac{1}{2}\left(a_{n-1}^{2}+1\right)$ for $n>1$, with $a_{1}=3$. Show that

$$
\left[\left(\sum_{k=1}^{n} \frac{a_{k}}{1+a_{k}}\right)\left(\sum_{k=1}^{n} \frac{1}{a_{k}\left(1+a_{k}\right)}\right)\right]^{1 / 2} \leq \frac{1}{4}\left(\frac{a_{1}+a_{n}}{\sqrt{a_{1} a_{n}}}\right)
$$

CAD proves the induction step formula

$$
\forall a, s_{1}, s_{2}:\left(a \geq 13 \wedge s_{1} \geq \frac{211}{84} \wedge s_{2} \geq \frac{667}{5460} \wedge s_{1} s_{2} \leq \frac{(a+3)^{2}}{48 a}\right)
$$

$$
\Rightarrow \frac{\left(a^{2}\left(s_{1}+1\right)+3 s_{1}+1\right)\left(\left(a^{4}+4 a^{2}+3\right) s_{2}+4\right)}{\left(a^{2}+1\right)\left(a^{2}+3\right)^{2}} \leq \frac{\left(a^{2}+7\right)^{2}}{96\left(a^{2}+1\right)}
$$

Back to the Monthly Problems

11442. Proposed by José Díaz-Barrero and José Gibergans-Báguena, Universidad Politécnica de Cataluña, Barcelona, Spain. Let $\left\langle a_{k}\right\rangle$ be a sequence of positive numbers defined by $a_{n}=$ $\frac{1}{2}\left(a_{n-1}^{2}+1\right)$ for $n>1$, with $a_{1}=3$. Show that

$$
\left[\left(\sum_{k=1}^{n} \frac{a_{k}}{1+a_{k}}\right)\left(\sum_{k=1}^{n} \frac{1}{a_{k}\left(1+a_{k}\right)}\right)\right]^{1 / 2} \leq \frac{1}{4}\left(\frac{a_{1}+a_{n}}{\sqrt{a_{1} a_{n}}}\right)
$$

Now the problem is solved by checking the inequality for $n=1,2,3$.

Back to the Monthly Problems

11445. Proposed by H. A. ShahAli, Tehran, Iran. Given $a, b, c>$ 0 with $b^{2}>4 a c$, let $\left\langle\lambda_{n}\right\rangle$ be a sequence of real numbers, with $\lambda_{0}>0$ and $c \lambda_{1}>b \lambda_{0}$. Let $u_{0}=c \lambda_{0}, u_{1}=c \lambda_{1}-b \lambda_{0}$, and for $n \geq 2$ let $u_{n}=a \lambda_{n-2}-b \lambda_{n-1}+c \lambda_{n}$. Show that if $u_{n}>0$ for all $n \geq 0$, then $\lambda_{n}>0$ for all $n \geq 0$.

Back to the Monthly Problems

11445. Proposed by H. A. ShahAli, Tehran, Iran. Given $a, b, c>$ 0 with $b^{2}>4 a c$, let $\left\langle\lambda_{n}\right\rangle$ be a sequence of real numbers, with $\lambda_{0}>0$ and $c \lambda_{1}>b \lambda_{0}$. Let $u_{0}=c \lambda_{0}, u_{1}=c \lambda_{1}-b \lambda_{0}$, and for $n \geq 2$ let $u_{n}=a \lambda_{n-2}-b \lambda_{n-1}+c \lambda_{n}$. Show that if $u_{n}>0$ for all $n \geq 0$, then $\lambda_{n}>0$ for all $n \geq 0$.
We show more: $\lambda_{n}>\left(\frac{b}{2 c}\right)^{n} \lambda_{0}>0$.

Back to the Monthly Problems

11445. Proposed by H. A. ShahAli, Tehran, Iran. Given $a, b, c>$ 0 with $b^{2}>4 a c$, let $\left\langle\lambda_{n}\right\rangle$ be a sequence of real numbers, with $\lambda_{0}>0$ and $c \lambda_{1}>b \lambda_{0}$. Let $u_{0}=c \lambda_{0}, u_{1}=c \lambda_{1}-b \lambda_{0}$, and for $n \geq 2$ let $u_{n}=a \lambda_{n-2}-b \lambda_{n-1}+c \lambda_{n}$. Show that if $u_{n}>0$ for all $n \geq 0$, then $\lambda_{n}>0$ for all $n \geq 0$.
We show more: $\lambda_{n}>\left(\frac{b}{2 c}\right)^{n} \lambda_{0}>0$.
For $n=1$ this is part of the assumption.

Back to the Monthly Problems

11445. Proposed by H. A. ShahAli, Tehran, Iran. Given $a, b, c>$ 0 with $b^{2}>4 a c$, let $\left\langle\lambda_{n}\right\rangle$ be a sequence of real numbers, with $\lambda_{0}>0$ and $c \lambda_{1}>b \lambda_{0}$. Let $u_{0}=c \lambda_{0}, u_{1}=c \lambda_{1}-b \lambda_{0}$, and for $n \geq 2$ let $u_{n}=a \lambda_{n-2}-b \lambda_{n-1}+c \lambda_{n}$. Show that if $u_{n}>0$ for all $n \geq 0$, then $\lambda_{n}>0$ for all $n \geq 0$.
We show more: $\lambda_{n}>\left(\frac{b}{2 c}\right)^{n} \lambda_{0}>0$.
For $n=1$ this is part of the assumption.
For $n \mapsto n+1$, we use CAD:

$$
\begin{aligned}
& \forall a, b, c, \lambda, \lambda^{\prime}, \lambda^{\prime \prime}:\left(a>0 \wedge b>0 \wedge c>0 \wedge b^{2}>4 a c\right. \\
& \left.\qquad \wedge a \lambda-b \lambda^{\prime}+c \lambda^{\prime \prime}>0 \wedge \lambda^{\prime}>\frac{b}{2 c} \lambda>0\right) \Rightarrow \lambda^{\prime \prime}>\frac{b}{2 c} \lambda^{\prime}
\end{aligned}
$$

So what?

Just a crazy way to solve some more Monthly Problem?

So what?

Just a crazy way to solve some more Monthly Problem?
No! This is strong enough to prove open conjectures

So what?

Just a crazy way to solve some more Monthly Problem?
No! This is strong enough to prove open conjectures

1. Moll's log-concavity conjecture (Kauers, Paule, 2007)

So what?

Just a crazy way to solve some more Monthly Problem?
No! This is strong enough to prove open conjectures

1. Moll's log-concavity conjecture (Kauers, Paule, 2007)
2. Alzer's conjecture (Alzer, Gerhold, Kauers, Lupas, 2007)

So what?

Just a crazy way to solve some more Monthly Problem?
No! This is strong enough to prove open conjectures

1. Moll's log-concavity conjecture (Kauers, Paule, 2007)
2. Alzer's conjecture (Alzer, Gerhold, Kauers, Lupas, 2007)
3. Schöberl's conjecture (Pillwein, 2008)

So what?

Just a crazy way to solve some more Monthly Problem?
No! This is strong enough to prove open conjectures

1. Moll's log-concavity conjecture (Kauers, Paule, 2007)
2. Alzer's conjecture (Alzer, Gerhold, Kauers, Lupas, 2007)
3. Schöberl's conjecture (Pillwein, 2008)

All three proofs depend heavily on CAD computations.

So what?

Just a crazy way to solve some more Monthly Problem?
No! This is strong enough to prove open conjectures

1. Moll's log-concavity conjecture (Kauers, Paule, 2007)
2. Alzer's conjecture (Alzer, Gerhold, Kauers, Lupas, 2007)
3. Schöberl's conjecture (Pillwein, 2008)

All three proofs depend heavily on CAD computations.
All three proofs depend on a specific twist to the method.

So what?

Just a crazy way to solve some more Monthly Problem?
No! This is strong enough to prove open conjectures

1. Moll's log-concavity conjecture (Kauers, Paule, 2007)
2. Alzer's conjecture (Alzer, Gerhold, Kauers, Lupas, 2007)
3. Schöberl's conjecture (Pillwein, 2008)

All three proofs depend heavily on CAD computations.
All three proofs depend on a specific twist to the method.

Moll's Conjecture

Moll's Conjecture

Name: Victor H. Moll

Moll's Conjecture

Name: Victor H. Moll

Affiliation: Tulane, New Orleans

Moll's Conjecture

Name: Victor H. Moll
Affiliation: Tulane, New Orleans
Passion: Experimental Mathematics

Moll's Conjecture

Name: Victor H. Moll
Affiliation: Tulane, New Orleans
Passion: Experimental Mathematics
Obsession: Integrals

Moll's Conjecture

Name: Victor H. Moll
Affiliation: Tulane, New Orleans
Passion: Experimental Mathematics
Obsession: Integrals

IRRESISTIBLE INTEGRALS

Moll's Conjecture

Name: Victor H. Moll
Affiliation: Tulane, New Orleans
Passion: Experimental Mathematics
Obsession: Integrals

IRRESISTIBLE
INTEGRALS
Symbolics, Analysis and
Experiments in the Evaluation of Integrals
GEORGE BOROS - VICTOR H. MOLL

One of his absolute favorites:

$$
\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}} d x
$$

where $a>-1$ is real and $m \geq 0$ is an integer.

Moll's Conjecture

$-\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{\mathrm{I}}} d x=\frac{\pi}{2 \sqrt{2} \sqrt{a+1}}$

Moll's Conjecture

- $\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{\mathrm{I}}} d x=\frac{\pi}{2 \sqrt{2} \sqrt{a+1}}$
$-\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{2}} d x=\frac{(a+3) \pi}{8 \sqrt{2}(a+1)^{3 / 2}}$

Moll's Conjecture

- $\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{\mathrm{I}}} d x=\frac{\pi}{2 \sqrt{2} \sqrt{a+1}}$
- $\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{2}} d x=\frac{(2 a+3) \pi}{8 \sqrt{2}(a+1)^{3 / 2}}$
- $\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{3}} d x=\frac{\left(12 a^{2}+30 a+21\right) \pi}{64 \sqrt{2}(a+1)^{5 / 2}}$

Moll's Conjecture

- $\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{\mathrm{I}}} d x=\frac{\pi}{2 \sqrt{2} \sqrt{a+1}}$
- $\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{2}} d x=\frac{(2 a+3) \pi}{8 \sqrt{2}(a+1)^{3 / 2}}$
- $\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{3}} d x=\frac{\left(12 a^{2}+30 a+21\right) \pi}{64 \sqrt{2}(a+1)^{5 / 2}}$
- $\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{4}} d x=\frac{\left(40 a^{3}+140 a^{2}+172 a+77\right) \pi}{256 \sqrt{2}(a+1)^{7 / 2}}$

Moll's Conjecture

- $\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{\mathrm{I}}} d x=\frac{\pi}{2 \sqrt{2} \sqrt{a+1}}$
- $\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{2}} d x=\frac{(2 a+3) \pi}{8 \sqrt{2}(a+1)^{3 / 2}}$
- $\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{3}} d x=\frac{\left(12 a^{2}+30 a+21\right) \pi}{64 \sqrt{2}(a+1)^{5 / 2}}$
- $\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{4}} d x=\frac{\left(40 a^{3}+140 a^{2}+172 a+77\right) \pi}{256 \sqrt{2}(a+1)^{7 / 2}}$
- $\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{5}} d x=\frac{\left(560 a^{4}+2520 a^{3}+4380 a^{2}+3525 a+1155\right) \pi}{4096 \sqrt{2}(a+1)^{9 / 2}}$

Moll's Conjecture

- $\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{1}} d x=\frac{\pi}{2 \sqrt{2} \sqrt{a+1}}$
- $\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{2}} d x=\frac{(2 a+3) \pi}{8 \sqrt{2}(a+1)^{3 / 2}}$
- $\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{3}} d x=\frac{\left(12 a^{2}+30 a+21\right) \pi}{64 \sqrt{2}(a+1)^{5 / 2}}$
- $\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{4}} d x=\frac{\left(40 a^{3}+140 a^{2}+172 a+77\right) \pi}{256 \sqrt{2}(a+1)^{7 / 2}}$
- $\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{5}} d x=\frac{\left(560 a^{4}+2520 a^{3}+4380 a^{2}+3525 a+1155\right) \pi}{4096 \sqrt{2}(a+1)^{9 / 2}}$
$-\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{6}} d x=\frac{\left(2016 a^{5}+11088 a^{4}+24864 a^{3}+28644 a^{2}+17178 a+4389\right) \pi}{16384 \sqrt{2}(a+1)^{11 / 2}}$

Moll's Conjecture

- $\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{1}} d x=\frac{\pi}{2 \sqrt{2} \sqrt{a+1}}$
- $\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{2}} d x=\frac{(2 a+3) \pi}{8 \sqrt{2}(a+1)^{3 / 2}}$
- $\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{3}} d x=\frac{\left(12 a^{2}+30 a+21\right) \pi}{64 \sqrt{2}(a+1)^{5 / 2}}$
- $\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{4}} d x=\frac{\left(40 a^{3}+140 a^{2}+172 a+77\right) \pi}{256 \sqrt{2}(a+1)^{7 / 2}}$
- $\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{5}} d x=\frac{\left(560 a^{4}+2520 a^{3}+4380 a^{2}+3525 a+1155\right) \pi}{4096 \sqrt{2}(a+1)^{9 / 2}}$
$-\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{6}} d x=\frac{\left(2016 a^{5}+11088 a^{4}+24864 a^{3}+28644 a^{2}+17178 a+4389\right) \pi}{16384 \sqrt{2}(a+1)^{11 / 2}}$

Moll's Conjecture

General formula:

$$
\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}}=\frac{\pi P_{m}(a)}{2^{m+3 / 2}(a+1)^{m+1 / 2}}
$$

Moll's Conjecture

General formula:

$$
\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}}=\frac{\pi P_{m}(a)}{2^{m+3 / 2}(a+1)^{m+1 / 2}}
$$

where

$$
P_{m}(a)=\sum_{j, k}\binom{2 m+1}{2 j}\binom{m-j}{k}\binom{2 k+2 j}{k+j} \frac{(a+1)^{j}(a-1)^{k}}{2^{3(k+j)}}
$$

Moll's Conjecture

General formula:

$$
\int_{0}^{\infty} \frac{1}{\left(x^{4}+2 a x^{2}+1\right)^{m+1}}=\frac{\pi P_{m}(a)}{2^{m+3 / 2}(a+1)^{m+1 / 2}}
$$

where

$$
P_{m}(a)=\underbrace{\sum_{j, k}\binom{2 m+1}{2 j}\binom{m-j}{k}\binom{2 k+2 j}{k+j} \frac{(a+1)^{j}(a-1)^{k}}{2^{3(k+j)}}}_{\begin{array}{c}
\text { polynomial in } a \\
\text { of degree } m \\
\text { with coefficients in } \mathbb{Z}
\end{array}}
$$

Moll's Conjecture

Object of interest: The coefficients of $P_{m}(a)$.

Moll's Conjecture

Object of interest: The coefficients of $P_{m}(a)$.
Call them $d_{k}(m)$:

$$
P_{m}(a)=\sum_{l=0}^{m} d_{k}(m) a^{k}
$$

Moll's Conjecture

Object of interest: The coefficients of $P_{m}(a)$.
Call them $d_{k}(m)$:

$$
P_{m}(a)=\sum_{l=0}^{m} d_{k}(m) a^{k}
$$

For fixed m, view $d_{k}(m)$ as a (finite) sequence in k :

Moll's Conjecture

Object of interest: The coefficients of $P_{m}(a)$.
Call them $d_{k}(m)$:

$$
P_{m}(a)=\sum_{l=0}^{m} d_{k}(m) a^{k}
$$

For fixed m, view $d_{k}(m)$ as a (finite) sequence in k :

$m=15$

$m=30$

$m=60$

Moll's Conjecture

Object of interest: The coefficients of $P_{m}(a)$.
Call them $d_{k}(m)$:

$$
P_{m}(a)=\sum_{l=0}^{m} d_{k}(m) a^{k}
$$

We have the formula

$$
\begin{aligned}
d_{k}(m)=\sum_{j=0}^{k} & \sum_{s=0}^{m-j} \sum_{i=s+k}^{m} \frac{(-1)^{i-k-s}}{2^{3 i}}\binom{2 i}{i}\binom{2 m+1}{2 s+2 j} \\
& \times\binom{ m-s-j}{m-i}\binom{s+j}{j}\binom{i-s-j}{k-j} .
\end{aligned}
$$

Moll's Conjecture

Object of interest: The coefficients of $P_{m}(a)$.
Call them $d_{k}(m)$:

$$
P_{m}(a)=\sum_{l=0}^{m} d_{k}(m) a^{k}
$$

We have the formula

$$
\begin{aligned}
d_{k}(m)=\sum_{j=0}^{k} & \sum_{s=0}^{m-j} \sum_{i=s+k}^{m} \frac{(-1)^{i-k-s}}{2^{3 i}}\binom{2 i}{i}\binom{2 m+1}{2 s+2 j} \\
& \times\binom{ m-s-j}{m-i}\binom{s+j}{j}\binom{i-s-j}{k-j} .
\end{aligned}
$$

What else can we say about the $d_{k}(m)$?

Moll's Conjecture

Moll's Conjecture

Moll's Conjecture

Proof (Paule) Easy observations:
- $d_{m}(m)=2^{-2 m}\binom{2 m}{m}>0$

Moll's Conjecture

Theorem (Moll) $d_{k}(m)>0$
Proof (Paule) Easy observations:

- $d_{m}(m)=2^{-2 m}\binom{2 m}{m}>0$
- $d_{-1}(m)=0 \geq 0$

Moll's Conjecture

Proof (Paule) Easy observations:

- $d_{m}(m)=2^{-2 m}\binom{2 m}{m}>0$
- $d_{-1}(m)=0 \geq 0$

Summation software delivers:

$$
2(m+1) d_{k}(m+1)=2(k+m) d_{k-1}(m)+(2 l+4 m+3) d_{k}(m)
$$

Moll's Conjecture

Proof (Paule) Easy observations:

- $d_{m}(m)=2^{-2 m}\binom{2 m}{m}>0$
- $d_{-1}(m)=0 \geq 0$

Summation software delivers:

$$
\underbrace{2(m+1)}_{+} d_{k}(m+1)=\underbrace{2(k+m)}_{+} d_{k-1}(m)+\underbrace{(2 l+4 m+3)}_{+} d_{k}(m)
$$

Moll's Conjecture

Proof (Paule) Easy observations:

- $d_{m}(m)=2^{-2 m}\binom{2 m}{m}>0$
- $d_{-1}(m)=0 \geq 0$

Summation software delivers:

$$
\underbrace{2(m+1)}_{+} d_{k}(m+1)=\underbrace{2(k+m)}_{+} d_{k-1}(m)+\underbrace{(2 l+4 m+3)}_{+} d_{k}(m)
$$

Moll's Conjecture

$$
\text { Theorem (Moll) } d_{k}(m)>0
$$

Proof (Paule) Easy observations:

- $d_{m}(m)=2^{-2 m}\binom{2 m}{m}>0$
- $d_{-1}(m)=0 \geq 0$

Summation software delivers:

$$
\underbrace{2(m+1)}_{+} d_{k}(m+1)=\underbrace{2(k+m)}_{+} d_{k-1}(m)+\underbrace{(2 l+4 m+3)}_{+} d_{k}(m)
$$

Theorem follows by induction.

Moll's Conjecture

$$
\begin{aligned}
& \text { Theorem (Moll) } d_{k}(m)>0 \\
& \text { Proof (Paule) Easy observations: } \\
& \text { - } d_{m}(m)=2^{-2 m}\binom{2 m}{m}>0 \\
& \text { - } d_{-1}(m)=0 \geq 0
\end{aligned}
$$

Summation software delivers:

$$
\underbrace{2(m+1)}_{+} d_{k}(m+1)=\underbrace{2(k+m)}_{+} d_{k-1}(m)+\underbrace{(2 l+4 m+3)}_{+} d_{k}(m)
$$

Theorem follows by induction. (No CAD needed here.)

Moll's Conjecture

Moll's Conjecture

Moll's Conjecture

Moll's Conjecture

Moll's Conjecture: $d_{k}(m)$ is log-concave.

Moll's Conjecture

Moll's Conjecture: $d_{k}(m)$ is log-concave. meaning $\log d_{k}(m)$ is concave.

Moll's Conjecture

Moll's Conjecture: $d_{k}(m)$ is log-concave. meaning $\log d_{k}(m)$ is concave. meaning $\log d_{k-1}(m)+\log d_{k+1}(m) \leq 2 \log d_{k}(m)$.

Moll's Conjecture

Moll's Conjecture: $d_{k}(m)$ is log-concave.
meaning $\log d_{k}(m)$ is concave.
meaning $\log d_{k-1}(m)+\log d_{k+1}(m) \leq 2 \log d_{k}(m)$.
meaning $d_{k-1}(m) d_{k+1}(m) \leq d_{k}(m)^{2}$.

Moll's Conjecture

Moll's Conjecture: $d_{k}(m)$ is log-concave.
meaning $\log d_{k}(m)$ is concave.
meaning $\log d_{k-1}(m)+\log d_{k+1}(m) \leq 2 \log d_{k}(m)$.
meaning $d_{k-1}(m) d_{k+1}(m) \leq d_{k}(m)^{2}$.
Theorem (Kauers/Paule, 2007): That's true.

Moll's Conjecture

Proof Outline:

Moll's Conjecture

Proof Outline:

1. Use summation software to find short recurrences for $d_{k}(m)$.

Moll's Conjecture

Proof Outline:

1. Use summation software to find short recurrences for $d_{k}(m)$.
2. Set up an induction on m.

Moll's Conjecture

Proof Outline:

1. Use summation software to find short recurrences for $d_{k}(m)$.
2. Set up an induction on m.
3. Find all (m, k) where the induction step formula is false.

Moll's Conjecture

Proof Outline:

1. Use summation software to find short recurrences for $d_{k}(m)$.
2. Set up an induction on m.
3. Find all (m, k) where the induction step formula is false.
4. For these (m, k), switch to a nicer but stronger statement.

Moll's Conjecture

Proof Outline:

1. Use summation software to find short recurrences for $d_{k}(m)$.
2. Set up an induction on m.
3. Find all (m, k) where the induction step formula is false.
4. For these (m, k), switch to a nicer but stronger statement.
5. Prove this stronger statement by induction on m.

Moll's Conjecture

1. Find short recurrences for $d_{k}(m)$.

Moll's Conjecture

1. Find short recurrences for $d_{k}(m)$.

Relations between:

Moll's Conjecture

1. Find short recurrences for $d_{k}(m)$.

Moll's Conjecture

1. Find short recurrences for $d_{k}(m)$.

Relations between:
(a) $d_{k-1}(m), d_{k}(m+1), d_{k}(m)$.
(b) $d_{k+1}(m), d_{k}(m+1), d_{k}(m)$.

Moll's Conjecture

1. Find short recurrences for $d_{k}(m)$.

Relations between:
(a) $d_{k-1}(m), d_{k}(m+1), d_{k}(m)$.
(b) $d_{k+1}(m), d_{k}(m+1), d_{k}(m)$.
(c) $d_{k}(m+2), d_{k}(m+1), d_{k}(m)$.

Moll's Conjecture

2. Set up an induction on m.

Moll's Conjecture

2. Set up an induction on m.

Goal: $d_{k-1}(m) d_{k+1}(m) \leq d_{k}(m)^{2}$.

Moll's Conjecture

2. Set up an induction on m.

Goal: $d_{k-1}(m) d_{k+1}(m) \leq d_{k}(m)^{2}$.
Rewrite $d_{k-1}(m)$ and $d_{k+1}(m)$ in terms of $d_{k}(m)$ and $d_{k}(m+1)$.

Moll's Conjecture

2. Set up an induction on m.

Goal: $d_{k-1}(m) d_{k+1}(m) \leq d_{k}(m)^{2}$.
Rewrite $d_{k-1}(m)$ and $d_{k+1}(m)$ in terms of $d_{k}(m)$ and $d_{k}(m+1)$.
To show:

$$
\begin{aligned}
& \left(16 k m^{2}+28 k m+9 k+16 m^{3}+40 m^{2}+33 m+9\right) d_{k}(m)^{2} \\
& 4(m+1)\left(2 k^{2}-4 m^{2}-7 m-3\right) d_{k}(m+1) d_{k}(m) \\
& \quad-4(m+1)^{2}(k-m-1) d_{k}(m+1)^{2} \geq 0
\end{aligned}
$$

Moll's Conjecture

2. Set up an induction on m.

Induction step formula:

$$
\begin{aligned}
& \forall m \forall k \forall D_{0} \forall D_{1}:\left(0<k<m \wedge D_{0}>0 \wedge D_{1}>0\right. \\
& \left.\quad \wedge(\ldots) D_{0}^{2}+(\ldots) D_{0} D_{1}+(\ldots) D_{1}^{2} \geq 0\right) \\
& \quad \Rightarrow(\ldots) D_{0}^{2}+(\ldots) D_{0} D_{1}+(\ldots) D_{1}^{2} \geq 0
\end{aligned}
$$

Moll's Conjecture

2. Set up an induction on m.

Induction step formula:

$$
\begin{aligned}
& \forall m \forall k \forall D_{0} \forall D_{1}:\left(0<k<m \wedge D_{0}>0 \wedge D_{1}>0\right. \\
& \left.\quad \wedge(\ldots) D_{0}^{2}+(\ldots) D_{0} D_{1}+(\ldots) D_{1}^{2} \geq 0\right) \\
& \quad \Rightarrow(\ldots) D_{0}^{2}+(\ldots) D_{0} D_{1}+(\ldots) D_{1}^{2} \geq 0
\end{aligned}
$$

This is false.

Moll's Conjecture

3. Find all (m, k) where the induction step formula is false.

Induction step formula:

$$
\begin{aligned}
& \forall m \forall k \forall D_{0} \forall D_{1}:\left(0<k<m \wedge D_{0}>0 \wedge D_{1}>0\right. \\
& \left.\quad \wedge(\ldots) D_{0}^{2}+(\ldots) D_{0} D_{1}+(\ldots) D_{1}^{2} \geq 0\right) \\
& \quad \Rightarrow(\ldots) D_{0}^{2}+(\ldots) D_{0} D_{1}+(\ldots) D_{1}^{2} \geq 0
\end{aligned}
$$

Moll＇s Conjecture

3．Find all (m, k) where the induction step formula is false．
Induction step formula：

$$
\begin{aligned}
& \forall \text { 为 } 上 \text { K } \forall D_{0} \forall D_{1}:\left(0<k<m \wedge D_{0}>0 \wedge D_{1}>0\right. \\
& \left.\wedge(\ldots) D_{0}^{2}+(\ldots) D_{0} D_{1}+(\ldots) D_{1}^{2} \geq 0\right) \\
& \Rightarrow(\ldots) D_{0}^{2}+(\ldots) D_{0} D_{1}+(\ldots) D_{1}^{2} \geq 0 \text {. }
\end{aligned}
$$

Moll＇s Conjecture

3．Find all (m, k) where the induction step formula is false．
Induction step formula：

$$
\begin{aligned}
& \forall \text { 为 } 上 \text { K } \forall D_{0} \forall D_{1}:\left(0<k<m \wedge D_{0}>0 \wedge D_{1}>0\right. \\
& \left.\wedge(\ldots) D_{0}^{2}+(\ldots) D_{0} D_{1}+(\ldots) D_{1}^{2} \geq 0\right) \\
& \Rightarrow(\ldots) D_{0}^{2}+(\ldots) D_{0} D_{1}+(\ldots) D_{1}^{2} \geq 0 \text {. }
\end{aligned}
$$

In the range of interest，this is equivalent to

$$
0<m \leq \frac{1}{2}+\sqrt{2} \vee 0<k \leq \operatorname{algfun}(m)
$$

for some cubic algebraic function algfun．

Moll's Conjecture

3. Find all (m, k) where the induction step formula is false.

This algebraic function splits the region into two parts.

Moll's Conjecture

3. Find all (m, k) where the induction step formula is false.

Moll's Conjecture

3. Find all (m, k) where the induction step formula is false.

This algebraic function splits the region into two parts.

In the part below, the induction step is proven.

In the part above, we don't know yet.

Moll's Conjecture

3. Find all (m, k) where the induction step formula is false.

This algebraic function splits the region into two parts.

In the part below, the induction step is proven.

In the part above, we don't know yet.
What's going wrong there?

Moll's Conjecture

4. For these (m, k), switch to a nicer but stronger statement.

Back to the induction step formula:

$$
\begin{aligned}
& \forall \text { 哌妆 } \forall D_{0} \forall D_{1}:\left(0<k<m \wedge D_{0}>0 \wedge D_{1}>0\right. \\
& \left.\qquad \wedge(\ldots) D_{0}^{2}+(\ldots) D_{0} D_{1}+(\ldots) D_{1}^{2} \geq 0\right) \\
& \Rightarrow(\ldots) D_{0}^{2}+(\ldots) D_{0} D_{1}+(\ldots) D_{1}^{2} \geq 0 .
\end{aligned}
$$

Moll's Conjecture

4. For these (m, k), switch to a nicer but stronger statement.

Back to the induction step formula:

$$
\begin{aligned}
& \forall \text { 哌此 } \forall D_{2} \forall \nmid K_{1}:\left(0<k<m \wedge D_{0}>0 \wedge D_{1}>0\right. \\
& \left.\quad \wedge(\ldots) D_{0}^{2}+(\ldots) D_{0} D_{1}+(\ldots) D_{1}^{2} \geq 0\right) \\
& \Rightarrow(\ldots) D_{0}^{2}+(\ldots) D_{0} D_{1}+(\ldots) D_{1}^{2} \geq 0 .
\end{aligned}
$$

Moll's Conjecture

4. For these (m, k), switch to a nicer but stronger statement.

Back to the induction step formula:

$$
\begin{aligned}
& \forall \text { 哌此 } \forall D_{2} \forall \nmid K_{1}:\left(0<k<m \wedge D_{0}>0 \wedge D_{1}>0\right. \\
& \left.\quad \wedge(\ldots) D_{0}^{2}+(\ldots) D_{0} D_{1}+(\ldots) D_{1}^{2} \geq 0\right) \\
& \Rightarrow(\ldots) D_{0}^{2}+(\ldots) D_{0} D_{1}+(\ldots) D_{1}^{2} \geq 0 .
\end{aligned}
$$

In the range of interest, this is equivalent to...

Moll's Conjecture

4. For these (m, k), switch to a nicer but stronger statement.

$$
\begin{aligned}
0 & <m \leq \frac{1}{2}+\sqrt{2} \vee 0<k \leq \operatorname{algfun}(m) \wedge D_{0}>0 \\
& \wedge \frac{p_{1}(m, k)-\sqrt{p_{2}(m, k)}}{p_{3}(m, k)} D_{0}<D_{1}<\frac{p_{1}(m, k)+\sqrt{p_{2}(m, k)}}{p_{3}(m, k)} D_{0}
\end{aligned}
$$

for some polynomials $p_{1}(m, k), p_{2}(m, k), p_{3}(m, k)$.

Moll's Conjecture

4. For these (m, k), switch to a nicer but stronger statement.

$$
\begin{aligned}
& 0<m \leq \frac{1}{2}+\sqrt{2} \vee 0<k \leq \operatorname{algfun}(m) \wedge D_{0}>0 \\
& \quad \wedge \frac{p_{1}(m, k)-\sqrt{p_{2}(m, k)}}{p_{3}(m, k)} D_{0}<D_{1}<\frac{p_{1}(m, k)+\sqrt{p_{2}(m, k)}}{p_{3}(m, k)} D_{0}
\end{aligned}
$$

for some polynomials $p_{1}(m, k), p_{2}(m, k), p_{3}(m, k)$.
Meaning: if some (m, k) in the gray area is really a counterexample, then for this (m, k) we must have

$$
d_{k}(m+1)<\frac{p_{1}(m, k)+\sqrt{p_{2}(m, k)}}{p_{3}(m, k)} d_{k}(m) .
$$

Moll's Conjecture

4. For these (m, k), switch to a nicer but stronger statement.

We are done if we can prove

$$
d_{k}(m+1) \geq \frac{p_{1}(m, k)+\sqrt{p_{2}(m, k)}}{p_{3}(m, k)} d_{k}(m)
$$

Moll's Conjecture

4. For these (m, k), switch to a nicer but stronger statement.

We are done if we can prove

$$
d_{k}(m+1) \geq \frac{p_{1}(m, k)+\sqrt{p_{2}(m, k)}}{p_{3}(m, k)} d_{k}(m)
$$

This is better and worse than the original statement.

Moll's Conjecture

4. For these (m, k), switch to a nicer but stronger statement.

We are done if we can prove

$$
d_{k}(m+1) \geq \frac{p_{1}(m, k)+\sqrt{p_{2}(m, k)}}{p_{3}(m, k)} d_{k}(m)
$$

This is better and worse than the original statement.

- Better, because $d_{k}(m+1)$ and $d_{k}(m)$ appear only linearly.

Moll's Conjecture

4. For these (m, k), switch to a nicer but stronger statement.

We are done if we can prove

$$
d_{k}(m+1) \geq \frac{p_{1}(m, k)+\sqrt{p_{2}(m, k)}}{p_{3}(m, k)} d_{k}(m)
$$

This is better and worse than the original statement.

- Better, because $d_{k}(m+1)$ and $d_{k}(m)$ appear only linearly.
- Worse, because there is a radical.

Moll's Conjecture

4. For these (m, k), switch to a nicer but stronger statement.

We are done if we can prove

$$
d_{k}(m+1) \geq \frac{p_{1}(m, k)+\sqrt{p_{2}(m, k)+u(m, k)}}{p_{3}(m, k)} d_{k}(m)
$$

Idea: Introduce under the root a (small) positive polynomial $u(m, k)$ that turns $p_{2}(m, k)+u(m, k)$ into a square.

Moll's Conjecture

4. For these (m, k), switch to a nicer but stronger statement.

We are done if we can prove

$$
d_{k}(m+1) \geq \frac{p_{1}(m, k)+\sqrt{p_{2}(m, k)+u(m, k)}}{p_{3}(m, k)} d_{k}(m)
$$

Idea: Introduce under the root a (small) positive polynomial $u(m, k)$ that turns $p_{2}(m, k)+u(m, k)$ into a square.

Suitable polynomials $u(m, k)$ are easy to find.

Moll's Conjecture

5. Prove this stronger statement by induction on m.

Moll's Conjecture

5. Prove this stronger statement by induction on m.

For our choice of $u(m, k)$, the new claim is:

$$
d_{k}(m+1) \geq \frac{4 m^{2}+7 m+k+3}{2(m+1-k)(m+1)} d_{k}(m)
$$

Moll's Conjecture

5. Prove this stronger statement by induction on m.

For our choice of $u(m, k)$, the new claim is:

$$
d_{k}(m+1) \geq \frac{4 m^{2}+7 m+k+3}{2(m+1-k)(m+1)} d_{k}(m)
$$

Using CAD and the recurrence equations, this can be proven just as explained before for Bernoulli's inequality.

Moll's Conjecture

5. Prove this stronger statement by induction on m.

For our choice of $u(m, k)$, the new claim is:

$$
d_{k}(m+1) \geq \frac{4 m^{2}+7 m+k+3}{2(m+1-k)(m+1)} d_{k}(m)
$$

Using CAD and the recurrence equations, this can be proven just as explained before for Bernoulli's inequality.

This completes the proof.

So what?

Just a crazy way to solve some more Monthly Problem?
No! This is strong enough to prove open conjectures

1. Moll's log-concavity conjecture (Kauers, Paule, 2007)
2. Alzer's conjecture (Alzer, Gerhold, Kauers, Lupas, 2007)
3. Schöberl's conjecture (Pillwein, 2008)

All three proofs depend heavily on CAD computations.
All three proofs depend on a specific twist to the method.

So what?

Just a crazy way to solve some more Monthly Problem?
No! This is strong enough to prove open conjectures

1. Moll's log-concavity conjecture (Kauers, Paule, 2007)
2. Alzer's conjecture (Alzer, Gerhold, Kauers, Lupas, 2007)
3. Schöberl's conjecture (Pillwein, 2008)

All three proofs depend heavily on CAD computations.
All three proofs depend on a specific twist to the method.

So what?

Just a crazy way to solve some more Monthly Problem?
No! This is strong enough to prove open conjectures

1. Moll's log-concavity conjecture (Kauers, Paule, 2007)
2. Alzer's conjecture (Alzer, Gerhold, Kauers, Lupas, 2007)
3. Schöberl's conjecture (Pillwein, 2008)

All three proofs depend heavily on CAD computations.
All three proofs depend on a specific twist to the method.

Alzer's Conjecture

Alzer's Conjecture

This is about Legendre Polynomials $P_{n}(x)$.

Alzer's Conjecture

This is about Legendre Polynomials $P_{n}(x)$.

- $P_{0}(x)=1$

Alzer's Conjecture

This is about Legendre Polynomials $P_{n}(x)$.

- $P_{0}(x)=1$
- $P_{1}(x)=x$

Alzer's Conjecture

This is about Legendre Polynomials $P_{n}(x)$.

- $P_{0}(x)=1$
- $P_{1}(x)=x$
- $P_{2}(x)=\frac{3}{2} x^{2}-\frac{1}{2}$

Alzer's Conjecture

This is about Legendre Polynomials $P_{n}(x)$.

- $P_{0}(x)=1$
- $P_{1}(x)=x$
- $P_{2}(x)=\frac{3}{2} x^{2}-\frac{1}{2}$
- $P_{3}(x)=\frac{5}{2} x^{3}-\frac{3}{2} x$

Alzer's Conjecture

This is about Legendre Polynomials $P_{n}(x)$.

- $P_{0}(x)=1$
- $P_{1}(x)=x$
- $P_{2}(x)=\frac{3}{2} x^{2}-\frac{1}{2}$
- $P_{3}(x)=\frac{5}{2} x^{3}-\frac{3}{2} x$
- $P_{4}(x)=\frac{35}{8} x^{4}-\frac{15}{4} x^{2}+\frac{3}{8}$

Alzer's Conjecture

This is about Legendre Polynomials $P_{n}(x)$.

- $P_{0}(x)=1$
- $P_{1}(x)=x$
- $P_{2}(x)=\frac{3}{2} x^{2}-\frac{1}{2}$
- $P_{3}(x)=\frac{5}{2} x^{3}-\frac{3}{2} x$
- $P_{4}(x)=\frac{35}{8} x^{4}-\frac{15}{4} x^{2}+\frac{3}{8}$
- $P_{5}(x)=\frac{63}{8} x^{5}-\frac{35}{4} x^{3}+\frac{15}{8} x$

Alzer's Conjecture

This is about Legendre Polynomials $P_{n}(x)$.

- $P_{0}(x)=1$
- $P_{1}(x)=x$
- $P_{2}(x)=\frac{3}{2} x^{2}-\frac{1}{2}$
- $P_{3}(x)=\frac{5}{2} x^{3}-\frac{3}{2} x$
- $P_{4}(x)=\frac{35}{8} x^{4}-\frac{15}{4} x^{2}+\frac{3}{8}$
- $P_{5}(x)=\frac{63}{8} x^{5}-\frac{35}{4} x^{3}+\frac{15}{8} x$
- $P_{6}(x)=\frac{231}{16} x^{6}-\frac{315}{16} x^{4}+\frac{105}{16} x^{2}-\frac{5}{16}$

Alzer's Conjecture

This is about Legendre Polynomials $P_{n}(x)$.

- $P_{0}(x)=1$
- $P_{1}(x)=x$
- $P_{2}(x)=\frac{3}{2} x^{2}-\frac{1}{2}$
- $P_{3}(x)=\frac{5}{2} x^{3}-\frac{3}{2} x$
- $P_{4}(x)=\frac{35}{8} x^{4}-\frac{15}{4} x^{2}+\frac{3}{8}$
- $P_{5}(x)=\frac{63}{8} x^{5}-\frac{35}{4} x^{3}+\frac{15}{8} x$
- $P_{6}(x)=\frac{231}{16} x^{6}-\frac{315}{16} x^{4}+\frac{105}{16} x^{2}-\frac{5}{16}$
- $P_{7}(x)=\frac{429}{16} x^{7}-\frac{693}{16} x^{5}+\frac{315}{16} x^{3}-\frac{35}{16} x$

Alzer's Conjecture

This is about Legendre Polynomials $P_{n}(x)$.

- $P_{0}(x)=1$
- $P_{1}(x)=x$
- $P_{2}(x)=\frac{3}{2} x^{2}-\frac{1}{2}$
- $P_{3}(x)=\frac{5}{2} x^{3}-\frac{3}{2} x$
- $P_{4}(x)=\frac{35}{8} x^{4}-\frac{15}{4} x^{2}+\frac{3}{8}$
- $P_{5}(x)=\frac{63}{8} x^{5}-\frac{35}{4} x^{3}+\frac{15}{8} x$
- $P_{6}(x)=\frac{231}{16} x^{6}-\frac{315}{16} x^{4}+\frac{105}{16} x^{2}-\frac{5}{16}$
- $P_{7}(x)=\frac{429}{16} x^{7}-\frac{693}{16} x^{5}+\frac{315}{16} x^{3}-\frac{35}{16} x$
- $P_{8}(x)=\frac{6435}{128} x^{8}-\frac{3003}{32} x^{6}+\frac{3465}{64} x^{4}-\frac{315}{32} x^{2}+\frac{35}{128}$

Alzer's Conjecture

This is about Legendre Polynomials $P_{n}(x)$. These polynomials form one of the classical families of orthogonal polynomials.

Alzer's Conjecture

This is about Legendre Polynomials $P_{n}(x)$. These polynomials form one of the classical families of orthogonal polynomials.
As such, they satisfy lots of useful identities,
 including

$$
\begin{aligned}
(n+2) P_{n+2}(x) & =(2 n+3) x P_{n+1}(x)-(n+1) P_{n}(x) \\
\left(x^{2}-1\right) \frac{d}{d x} P_{n}(x) & =(n+1) P_{n+1}(x)-(n+1) x P_{n}(x)
\end{aligned}
$$

Alzer's Conjecture

This is about Legendre Polynomials $P_{n}(x)$. These polynomials form one of the classical families of orthogonal polynomials.
As such, they satisfy lots of useful identities,
 including

$$
\begin{aligned}
(n+2) P_{n+2}(x) & =(2 n+3) x P_{n+1}(x)-(n+1) P_{n}(x) \\
\left(x^{2}-1\right) \frac{d}{d x} P_{n}(x) & =(n+1) P_{n+1}(x)-(n+1) x P_{n}(x)
\end{aligned}
$$

There are also some interesting inequalities, including

$$
\forall n \in \mathbb{N} \forall x \in[-1,1]:-1 \leq P_{n}(x) \leq 1
$$

Alzer's Conjecture

Here is another example:

$$
\forall n \in \mathbb{N} \forall x \in[-1,1]: P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x) \geq 0
$$

Alzer's Conjecture

Here is another example:

$$
\forall n \in \mathbb{N} \forall x \in[-1,1]: P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x) \geq 0
$$

Alzer's Conjecture

Here is another example:

$$
\forall n \in \mathbb{N} \forall x \in[-1,1]: P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x) \geq 0
$$

Alzer's Conjecture

Here is another example:

$$
\forall n \in \mathbb{N} \forall x \in[-1,1]: P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x) \geq 0
$$

Alzer's Conjecture

Here is another example:

$$
\forall n \in \mathbb{N} \forall x \in[-1,1]: P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x) \geq 0
$$

Alzer's Conjecture

Here is another example:

$$
\forall n \in \mathbb{N} \forall x \in[-1,1]: P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x) \geq 0
$$

Alzer's Conjecture

Here is another example:

$$
\forall n \in \mathbb{N} \forall x \in[-1,1]: P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x) \geq 0
$$

Alzer's Conjecture

Here is another example:

$$
\forall n \in \mathbb{N} \forall x \in[-1,1]: P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x) \geq 0
$$

Alzer's Conjecture

Here is another example:

$$
\forall n \in \mathbb{N} \forall x \in[-1,1]: P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x) \geq 0
$$

Alzer's Conjecture

Here is another example:

$$
\forall n \in \mathbb{N} \forall x \in[-1,1]: P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x) \geq 0
$$

Alzer's Conjecture

Here is another example:

$$
\forall n \in \mathbb{N} \forall x \in[-1,1]: P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x) \geq 0
$$

- This is known as Turan's inequality.

Alzer's Conjecture

Here is another example:

$$
\forall n \in \mathbb{N} \forall x \in[-1,1]: P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x) \geq 0
$$

- This is known as Turan's inequality.
- For specific n, it is just a polynomial inequality.

Alzer's Conjecture

Here is another example:

$$
\forall n \in \mathbb{N} \forall x \in[-1,1]: P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x) \geq 0
$$

- This is known as Turan's inequality.
- For specific n, it is just a polynomial inequality.
- For general n, it is not trivial. (Try it.)

Alzer's Conjecture

Here is another example:

$$
\forall n \in \mathbb{N} \forall x \in[-1,1]: P_{n+1}^{2}(x)-P_{n}(x) P_{n+2}(x) \geq 0
$$

- This is known as Turan's inequality.
- For specific n, it is just a polynomial inequality.
- For general n, it is not trivial. (Try it.)

A proof for general n can be obtained in the same way as for Bernoulli's inequality using induction, recurrences, and CAD.

Alzer's Conjecture

Alzer conjectured that Turan's inequality

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq 0
$$

Alzer's Conjecture

Alzer conjectured that Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

where $\alpha_{n}=\Delta_{n}(0)$.

Alzer's Conjecture

Alzer conjectured that Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

where $\alpha_{n}=\Delta_{n}(0)$.

Alzer's Conjecture

Alzer conjectured that Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

where $\alpha_{n}=\Delta_{n}(0)$.

Alzer's Conjecture

Alzer conjectured that Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

where $\alpha_{n}=\Delta_{n}(0)$.

Alzer's Conjecture

Alzer conjectured that Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

where $\alpha_{n}=\Delta_{n}(0)$.

Alzer's Conjecture

Alzer conjectured that Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

where $\alpha_{n}=\Delta_{n}(0)$.

Alzer's Conjecture

Alzer conjectured that Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

where $\alpha_{n}=\Delta_{n}(0)$.

Alzer's Conjecture

Alzer conjectured that Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

where $\alpha_{n}=\Delta_{n}(0)$.

Alzer's Conjecture

Alzer conjectured that Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

where $\alpha_{n}=\Delta_{n}(0)$.

Alzer's Conjecture

Alzer conjectured that Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

where $\alpha_{n}=\Delta_{n}(0)$.
Can we show this also by induction?

Alzer's Conjecture

Alzer conjectured that Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

where $\alpha_{n}=\Delta_{n}(0)$.
Can we show this also by induction?
Not directly.

Alzer's Conjecture

Alzer conjectured that Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

where $\alpha_{n}=\Delta_{n}(0)$.
Can we show this also by induction?
Not directly.
The obvious induction step formula is large and false.

Alzer's Conjecture

Alzer conjectured that Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

Observations:

Alzer's Conjecture

Alzer conjectured that Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

Observations:

- By symmetry, it suffices to consider $x \geq 0$.

Alzer's Conjecture

Alzer conjectured that Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

Observations:

- By symmetry, it suffices to consider $x \geq 0$.
- For $x=0$ there is nothing to show.

Alzer's Conjecture

Alzer conjectured that Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

Observations:

- By symmetry, it suffices to consider $x \geq 0$.
- For $x=0$ there is nothing to show.
- For $x>0$, it suffices to show that $\Delta_{n}(x) /\left(1-x^{2}\right)$ is increasing.

Alzer's Conjecture

Alzer conjectured that Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

Observations:

- By symmetry, it suffices to consider $x \geq 0$.
- For $x=0$ there is nothing to show.
- For $x>0$, it suffices to show that $\Delta_{n}(x) /\left(1-x^{2}\right)$ is increasing.
New idea: Show that $\frac{d}{d x} \frac{\Delta_{n}(x)}{1-x^{2}} \geq 0$

Alzer's Conjecture

Alzer conjectured that Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

We have

$$
\begin{aligned}
\frac{d}{d x} \frac{\Delta_{n}(x)}{1-x^{2}}= & \left((n-1) n P_{n}(x)^{2}-\left((2 n+1) x^{2}-1\right) P_{n}(x) P_{n+1}(x)\right. \\
& \left.+(n+1) x P_{n+1}(x)^{2}\right) /\left(n\left(1-x^{2}\right)^{2}\right)
\end{aligned}
$$

Alzer's Conjecture

Alzer conjectured that Turan's inequality can be improved to

$$
\Delta_{n}(x)=P_{n+1}(x)^{2}-P_{n}(x) P_{n+2}(x) \geq \alpha_{n}\left(1-x^{2}\right)
$$

We have

$$
\begin{aligned}
\frac{d}{d x} \frac{\Delta_{n}(x)}{1-x^{2}}= & \left((n-1) n P_{n}(x)^{2}-\left((2 n+1) x^{2}-1\right) P_{n}(x) P_{n+1}(x)\right. \\
& \left.+(n+1) x P_{n+1}(x)^{2}\right) /\left(n\left(1-x^{2}\right)^{2}\right)
\end{aligned}
$$

A positivity proof for the latter expression by CAD and induction on n succeeds.

So what?

Just a crazy way to solve some more Monthly Problem?
No! This is strong enough to prove open conjectures

1. Moll's log-concavity conjecture (Kauers, Paule, 2007)
2. Alzer's conjecture (Alzer, Gerhold, Kauers, Lupas, 2007)
3. Schöberl's conjecture (Pillwein, 2008)

All three proofs depend heavily on CAD computations.
All three proofs depend on a specific twist to the method.

So what?

Just a crazy way to solve some more Monthly Problem?
No! This is strong enough to prove open conjectures

1. Moll's log-concavity conjecture (Kauers, Paule, 2007)
2. Alzer's conjecture (Alzer, Gerhold, Kauers, Lupas, 2007)
3. Schöberl's conjecture (Pillwein, 2008)

All three proofs depend heavily on CAD computations.
All three proofs depend on a specific twist to the method.

So what?

Just a crazy way to solve some more Monthly Problem?
No! This is strong enough to prove open conjectures

1. Moll's log-concavity conjecture (Kauers, Paule, 2007)
2. Alzer's conjecture (Alzer, Gerhold, Kauers, Lupas, 2007)
3. Schöberl's conjecture (Pillwein, 2008)

All three proofs depend heavily on CAD computations.
All three proofs depend on a specific twist to the method.

Schöberl's Conjecture

Schöberl's Conjecture

- In the higher order finite element method (FEM), solutions of PDEs are locally approximated by polynomials.

Schöberl's Conjecture

- In the higher order finite element method (FEM), solutions of PDEs are locally approximated by polynomials.
- Some basis polynomials lead to better numerical performance than the
 standard basis $1, x, x^{2}, x^{3}, \ldots$.

Schöberl's Conjecture

- In the higher order finite element method (FEM), solutions of PDEs are locally approximated by polynomials.
- Some basis polynomials lead to better numerical performance than the
 standard basis $1, x, x^{2}, x^{3}, \ldots$.
- Good basis functions have good properties.

Schöberl's Conjecture

- In the higher order finite element method (FEM), solutions of PDEs are locally approximated by polynomials.
- Some basis polynomials lead to better numerical performance than the
 standard basis $1, x, x^{2}, x^{3}, \ldots$.
- Good basis functions have good properties.
- What a good properties are, this depends on the particular application.

Schöberl's Conjecture

- For one particular application, Schöberl chose

$$
f_{n}(x):=\frac{1}{2 x(n+1)} \sum_{k=n}^{2 n}(k+1)\left(P_{k+1}(x) P_{k}(0)-P_{k+1}(0) P_{k}(x)\right)
$$

Schöberl's Conjecture

- For one particular application, Schöberl chose

$$
f_{n}(x):=\frac{1}{2 x(n+1)} \sum_{k=n}^{2 n}(k+1)\left(P_{k+1}(x) P_{k}(0)-P_{k+1}(0) P_{k}(x)\right)
$$

- He showed that this family has all the desired properties

Schöberl's Conjecture

- For one particular application, Schöberl chose

$$
f_{n}(x):=\frac{1}{2 x(n+1)} \sum_{k=n}^{2 n}(k+1)\left(P_{k+1}(x) P_{k}(0)-P_{k+1}(0) P_{k}(x)\right)
$$

- He showed that this family has all the desired properties if and only if

$$
\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x) \geq 0
$$

Schöberl's Conjecture

- For one particular application, Schöberl chose

$$
f_{n}(x):=\frac{1}{2 x(n+1)} \sum_{k=n}^{2 n}(k+1)\left(P_{k+1}(x) P_{k}(0)-P_{k+1}(0) P_{k}(x)\right)
$$

- He showed that this family has all the desired properties if and only if

$$
\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x) \geq 0
$$

- Hence was born the Schöberl conjecture.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

$$
\text { for } n=0,1, \ldots, 20
$$

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

$$
\text { for } n=0,1, \ldots, 20 \text {. }
$$

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

$$
\text { for } n=0,1, \ldots, 20 \text {. }
$$

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

$$
\text { for } n=0,1, \ldots, 20 \text {. }
$$

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

$$
\text { for } n=0,1, \ldots, 20 \text {. }
$$

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

$$
\text { for } n=0,1, \ldots, 20 \text {. }
$$

- Looks like it's true...

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

$$
\text { for } n=0,1, \ldots, 20 \text {. }
$$

- Looks like it's true...
- For specific $n \in \mathbb{N}$: easy.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

- Looks like it's true...
- For specific $n \in \mathbb{N}$: easy.
- For $x= \pm 1$ or 0 : easy.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

- Looks like it's true...
- For specific $n \in \mathbb{N}$: easy.
- For $x= \pm 1$ or 0 : easy.
- For $n \gg 0$ and $|x| \rightarrow 1$: easy.

Schöberl's Conjecture

Consider

$$
S_{n}(x):=\sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x)
$$

for $n=0,1, \ldots, 20$.

- Looks like it's true...
- For specific $n \in \mathbb{N}$: easy.
- For $x= \pm 1$ or 0 : easy.
- For $n \gg 0$ and $|x| \rightarrow 1$: easy.
- For "symbolic" n and x :
not easy at all!

Schöberl's Conjecture

A direct proof by CAD and induction fails.

Schöberl's Conjecture

A direct proof by CAD and induction fails.
Task: Bring the thing into a better form.

Schöberl's Conjecture

A direct proof by CAD and induction fails.
Task: Bring the thing into a better form.
Veronika Pillwein found that a good form is

$$
\begin{aligned}
S_{n}(x)= & \sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x) \\
= & \frac{2 n+1}{x^{2}} P_{2 n}(0)\left(x P_{2 n+1}(x)-\frac{2(2 n+1)}{4 n+3} P_{2 n}(x)\right) \\
& \quad-\frac{2}{x^{2}} \sum_{k=0}^{2 n} \frac{P_{k}(0) P_{k}(x)}{(2 k-1)(2 k+3)}
\end{aligned}
$$

Schöberl's Conjecture

A direct proof by CAD and induction fails.
Task: Bring the thing into a better form.
Veronika Pillwein found that a good form is

$$
\begin{aligned}
S_{n}(x)= & \sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x) \\
= & \frac{2 n+1}{x^{2}} P_{2 n}(0)\left(x P_{2 n+1}(x)-\frac{2(2 n+1)}{4 n+3} P_{2 n}(x)\right) \\
& \quad-\frac{2}{x^{2}} \sum_{k=0}^{2 n} \frac{P_{k}(0) P_{k}(x)}{(2 k-1)(2 k+3)}
\end{aligned}
$$

Note: Computer algebra can prove this, but it cannot discover good forms (yet).

Schöberl's Conjecture

A direct proof by CAD and induction fails.
Task: Bring the thing into a better form.
Veronika Pillwein found that a good form is

$$
\begin{aligned}
S_{n}(x)= & \sum_{k=0}^{n}(4 k+1)(2 n-2 k+1) P_{2 k}(0) P_{2 k}(x) \\
= & \frac{2 n+1}{x^{2}} P_{2 n}(0)\left(x P_{2 n+1}(x)-\frac{2(2 n+1)}{4 n+3} P_{2 n}(x)\right) \\
& \quad-\frac{2}{x^{2}} \sum_{k=0}^{2 n} \frac{P_{k}(0) P_{k}(x)}{(2 k-1)(2 k+3)}
\end{aligned}
$$

Note: Computer algebra can prove this, but it cannot discover good forms (yet). Why is it good after all?

Schöberl's Conjecture

$$
(2 n+1) P_{2 n}(0)\left(x P_{2 n+1}(x)-\frac{2(2 n+1)}{4 n+3} P_{2 n}(x)\right) \stackrel{?}{\geq} \sum_{k=0}^{2 n} \frac{2 P_{k}(0) P_{k}(x)}{(2 k-1)(2 k+3)} .
$$

Schöberl's Conjecture

$$
(2 n+1) P_{2 n}(0)\left(x P_{2 n+1}(x)-\frac{2(2 n+1)}{4 n+3} P_{2 n}(x)\right) \sum^{?} \sum_{k=0}^{2 n} \frac{2 P_{k}(0) P_{k}(x)}{(2 k-1)(2 k+3)} .
$$

Schöberl's Conjecture

$$
(2 n+1) P_{2 n}(0)\left(x P_{2 n+1}(x)-\frac{2(2 n+1)}{4 n+3} P_{2 n}(x)\right) \sum^{?} \sum_{k=0}^{2 n} \frac{2 P_{k}(0) P_{k}(x)}{(2 k-1)(2 k+3)} .
$$

Schöberl's Conjecture

$$
(2 n+1) P_{2 n}(0)\left(x P_{2 n+1}(x)-\frac{2(2 n+1)}{4 n+3} P_{2 n}(x)\right) \sum_{i}^{?} \sum_{k=0}^{2 n} \frac{2 P_{k}(0) P_{k}(x)}{(2 k-1)(2 k+3)} .
$$

Schöberl's Conjecture

$$
(2 n+1) P_{2 n}(0)\left(x P_{2 n+1}(x)-\frac{2(2 n+1)}{4 n+3} P_{2 n}(x)\right) \stackrel{?}{\geq} \sum_{k=0}^{2 n} \frac{2 P_{k}(0) P_{k}(x)}{(2 k-1)(2 k+3)}
$$

Schöberl's Conjecture

$$
(2 n+1) P_{2 n}(0)\left(x P_{2 n+1}(x)-\frac{2(2 n+1)}{4 n+3} P_{2 n}(x)\right) \sum_{i}^{?} \sum_{k=0}^{2 n} \frac{2 P_{k}(0) P_{k}(x)}{(2 k-1)(2 k+3)} .
$$

Schöberl's Conjecture

$$
(2 n+1) P_{2 n}(0)\left(x P_{2 n+1}(x)-\frac{2(2 n+1)}{4 n+3} P_{2 n}(x)\right) \stackrel{?}{\geq} \sum_{k=0}^{2 n} \frac{2 P_{k}(0) P_{k}(x)}{(2 k-1)(2 k+3)} .
$$

Schöberl's Conjecture

$$
(2 n+1) P_{2 n}(0)\left(x P_{2 n+1}(x)-\frac{2(2 n+1)}{4 n+3} P_{2 n}(x)\right) \stackrel{?}{\geq} \sum_{k=0}^{2 n} \frac{2 P_{k}(0) P_{k}(x)}{(2 k-1)(2 k+3)} .
$$

Schöberl's Conjecture

$$
(2 n+1) P_{2 n}(0)\left(x P_{2 n+1}(x)-\frac{2(2 n+1)}{4 n+3} P_{2 n}(x)\right) \sum_{i}^{?} \sum_{k=0}^{2 n} \frac{2 P_{k}(0) P_{k}(x)}{(2 k-1)(2 k+3)} .
$$

Schöberl's Conjecture

$$
(2 n+1) P_{2 n}(0)\left(x P_{2 n+1}(x)-\frac{2(2 n+1)}{4 n+3} P_{2 n}(x)\right) \sum_{i}^{?} \sum_{k=0}^{2 n} \frac{2 P_{k}(0) P_{k}(x)}{(2 k-1)(2 k+3)} .
$$

Schöberl's Conjecture

$$
(2 n+1) P_{2 n}(0)\left(x P_{2 n+1}(x)-\frac{2(2 n+1)}{4 n+3} P_{2 n}(x)\right) \sum_{i}^{?} \sum_{k=0}^{2 n} \frac{2 P_{k}(0) P_{k}(x)}{(2 k-1)(2 k+3)} .
$$

Schöberl's Conjecture

$$
(2 n+1) P_{2 n}(0)\left(x P_{2 n+1}(x)-\frac{2(2 n+1)}{4 n+3} P_{2 n}(x)\right) \sum_{i}^{?} \sum_{k=0}^{2 n} \frac{2 P_{k}(0) P_{k}(x)}{(2 k-1)(2 k+3)} .
$$

Schöberl's Conjecture

$$
(2 n+1) P_{2 n}(0)\left(x P_{2 n+1}(x)-\frac{2(2 n+1)}{4 n+3} P_{2 n}(x)\right) \sum_{i}^{?} \sum_{k=0}^{2 n} \frac{2 P_{k}(0) P_{k}(x)}{(2 k-1)(2 k+3)} .
$$

Schöberl's Conjecture

$$
(2 n+1) P_{2 n}(0)\left(x P_{2 n+1}(x)-\frac{2(2 n+1)}{4 n+3} P_{2 n}(x)\right) \sum_{i}^{?} \sum_{k=0}^{2 n} \frac{2 P_{k}(0) P_{k}(x)}{(2 k-1)(2 k+3)} .
$$

Schöberl's Conjecture

$$
(2 n+1) P_{2 n}(0)\left(x P_{2 n+1}(x)-\frac{2(2 n+1)}{4 n+3} P_{2 n}(x)\right) \sum_{i}^{?} \sum_{k=0}^{2 n} \frac{2 P_{k}(0) P_{k}(x)}{(2 k-1)(2 k+3)} .
$$

Schöberl's Conjecture

$$
(2 n+1) P_{2 n}(0)\left(x P_{2 n+1}(x)-\frac{2(2 n+1)}{4 n+3} P_{2 n}(x)\right) \sum_{i}^{?} \sum_{k=0}^{2 n} \frac{2 P_{k}(0) P_{k}(x)}{(2 k-1)(2 k+3)} .
$$

Schöberl's Conjecture

$$
(2 n+1) P_{2 n}(0)\left(x P_{2 n+1}(x)-\frac{2(2 n+1)}{4 n+3} P_{2 n}(x)\right) \sum_{i}^{?} \sum_{k=0}^{2 n} \frac{2 P_{k}(0) P_{k}(x)}{(2 k-1)(2 k+3)} .
$$

Schöberl's Conjecture

$$
\underbrace{(2 n+1) P_{2 n}(0)\left(x P_{2 n+1}(x)-\frac{2(2 n+1)}{4 n+3} P_{2 n}(x)\right)}_{\ddot{O} \text { no sum }} \stackrel{?}{\geq} \sum_{k=0}^{2 n} \frac{2 P_{k}(0) P_{k}(x)}{(2 k-1)(2 k+3)} .
$$

Schöberl's Conjecture

$$
\underbrace{}_{\underset{\because}{ } \underbrace{(2 n+1) P_{2 n}(0)\left(x P_{2 n+1}(x)-\frac{2(2 n+1)}{4 n+3} P_{2 n}(x)\right)} \stackrel{?}{\geq} \sum_{k=0}^{2 n} \frac{2 P_{k}(0) P_{k}(x)}{(2 k-1)(2 k+3)} .} \quad
$$

Schöberl's Conjecture

$$
\underbrace{(2 n+1) P_{2 n}(0)\left(x P_{2 n+1}(x)-\frac{2(2 n+1)}{4 n+3} P_{2 n}(x)\right)}_{\begin{array}{c}
* \\
\text { no sum } \\
\text { oscillation }
\end{array}} \geq \underbrace{\sum_{k=0}^{2 n} \frac{2 P_{k}(0) P_{k}(x)}{(2 k-1)(2 k+3)}}_{\text {a sum }} .
$$

Schöberl's Conjecture

Schöberl's Conjecture

Schöberl's Conjecture

Schöberl's Conjecture

$$
(2 n+1) P_{2 n}(0)\left(x P_{2 n+1}(x)-\frac{2(2 n+1)}{4 n+3} P_{2 n}(x)\right) \stackrel{?}{\geq} \sum_{k=0}^{2 n} \frac{2 P_{k}(0) P_{k}(x)}{(2 k-1)(2 k+3)}
$$

Hand calculation gives

$$
\begin{gathered}
(2 n+1)\left(x P_{2 n}(x) P_{2 n+1}(x)-\frac{2 n+1}{4 n+3} P_{2 n}(x)^{2}-\frac{2 n+1}{4 n+1} P_{2 n+1}(x)^{2}\right. \\
\left.-\frac{2 n+1}{4 n+3} P_{2 n}(0)^{2}\right) \geq \sum_{k=0}^{2 n} \frac{2 P_{k}(0) P_{k}(x)}{(2 k-1)(2 k+3)} .
\end{gathered}
$$

Schöberl's Conjecture

$$
(2 n+1) P_{2 n}(0)\left(x P_{2 n+1}(x)-\frac{2(2 n+1)}{4 n+3} P_{2 n}(x)\right) \stackrel{?}{\geq} \sum_{k=0}^{2 n} \frac{2 P_{k}(0) P_{k}(x)}{(2 k-1)(2 k+3)}
$$

Hand calculation gives

$$
\begin{aligned}
& (2 n+1)\left(x P_{2 n}(x) P_{2 n+1}(x)-\frac{2 n+1}{4 n+3} P_{2 n}(x)^{2}-\frac{2 n+1}{4 n+1} P_{2 n+1}(x)^{2}\right. \\
& \left.-\frac{2 n+1}{4 n+3} P_{2 n}(0)^{2}\right) \geq \sum_{k=0}^{2 n} \frac{2 P_{k}(0) P_{k}(x)}{(2 k-1)(2 k+3)} . \\
& \frac{\sqrt{-0.4}}{}
\end{aligned}
$$

Schöberl's Conjecture

$$
(2 n+1) P_{2 n}(0)\left(x P_{2 n+1}(x)-\frac{2(2 n+1)}{4 n+3} P_{2 n}(x)\right) \stackrel{?}{\geq} \sum_{k=0}^{2 n} \frac{2 P_{k}(0) P_{k}(x)}{(2 k-1)(2 k+3)}
$$

Hand calculation gives

$$
\begin{gathered}
(2 n+1)\left(x P_{2 n}(x) P_{2 n+1}(x)-\frac{2 n+1}{4 n+3} P_{2 n}(x)^{2}-\frac{2 n+1}{4 n+1} P_{2 n+1}(x)^{2}\right. \\
\left.-\frac{2 n+1}{4 n+3} P_{2 n}(0)^{2}\right) \geq \sum_{k=0}^{2 n} \frac{2 P_{k}(0) P_{k}(x)}{(2 k-1)(2 k+3)}
\end{gathered}
$$

It suffices to prove the stronger statement

$$
\begin{aligned}
P_{2 n}(0)(x & \left.P_{2 n+1}(x)-\frac{2(2 n+1)}{4 n+3} P_{2 n}(x)\right) \stackrel{?}{\geq} x P_{2 n}(x) P_{2 n+1}(x) \\
& \quad-\frac{2 n+1}{4 n+3} P_{2 n}(x)^{2}-\frac{2 n+1}{4 n+1} P_{2 n+1}(x)^{2}-\frac{2 n+1}{4 n+3} P_{2 n}(0)^{2}
\end{aligned}
$$

Schöberl's Conjecture

- This latter inequality contains no sum.

Schöberl's Conjecture

- This latter inequality contains no sum.
- It could not be found in the literature, nor proven by hand.

Schöberl's Conjecture

- This latter inequality contains no sum.
- It could not be found in the literature, nor proven by hand.
- But recurrences+CAD+induction succeeds!

Schöberl's Conjecture

- This latter inequality contains no sum.
- It could not be found in the literature, nor proven by hand.
- But recurrences+CAD+induction succeeds!
- The computations take about 1 h .

Schöberl's Conjecture

- This latter inequality contains no sum.
- It could not be found in the literature, nor proven by hand.
- But recurrences+CAD+induction succeeds!
- The computations take about 1 h .
- This completes the proof of Schöberl's conjecture.

Schöberl's Conjecture

- This latter inequality contains no sum.
- It could not be found in the literature, nor proven by hand.
- But recurrences+CAD+induction succeeds!
- The computations take about 1 h .
- This completes the proof of Schöberl's conjecture.
- Punch line: Both the human part and the CAD part are nontrivial.

So what?

Just a crazy way to solve some more Monthly Problem?
No! This is strong enough to prove open conjectures

1. Moll's log-concavity conjecture (Kauers, Paule, 2007)
2. Alzer's conjecture (Alzer, Gerhold, Kauers, Lupas, 2007)
3. Schöberl's conjecture (Pillwein, 2008)

All three proofs depend heavily on CAD computations.
All three proofs depend on a specific twist to the method.

So what?

Just a crazy way to solve some more Monthly Problem?
No! This is strong enough to prove open conjectures

1. Moll's log-concavity conjecture (Kauers, Paule, 2007)
2. Alzer's conjecture (Alzer, Gerhold, Kauers Lupas, 2007)
3. Schöberl's conjecture (Pillwein, 2008)

All three proofs depend heavily on CAD computations.
All three proofs depend on a specific twist to the method.

Conclusions

Conclusions

- Special Function inequalities are painful.

Conclusions

- Special Function inequalities are painful.
- This is true both for humans as well as for computers.

Conclusions

- Special Function inequalities are painful.
- This is true both for humans as well as for computers.
- There is no algorithm for proving special function inequalities.

Conclusions

- Special Function inequalities are painful.
- This is true both for humans as well as for computers.
- There is no algorithm for proving special function inequalities.
- But polynomial inequalities are algorithmic (CAD).

Conclusions

- Special Function inequalities are painful.
- This is true both for humans as well as for computers.
- There is no algorithm for proving special function inequalities.
- But polynomial inequalities are algorithmic (CAD).
- CAD+recurrences+induction provides a proving method.

Conclusions

- Special Function inequalities are painful.
- This is true both for humans as well as for computers.
- There is no algorithm for proving special function inequalities.
- But polynomial inequalities are algorithmic (CAD).
- CAD+recurrences+induction provides a proving method.
- This method may or may not succeed.

Conclusions

- Special Function inequalities are painful.
- This is true both for humans as well as for computers.
- There is no algorithm for proving special function inequalities.
- But polynomial inequalities are algorithmic (CAD).
- CAD+recurrences+induction provides a proving method.
- This method may or may not succeed.
- Appropriate preparation of the input is often required.

Conclusions

- Special Function inequalities are painful.
- This is true both for humans as well as for computers.
- There is no algorithm for proving special function inequalities.
- But polynomial inequalities are algorithmic (CAD).
- CAD+recurrences+induction provides a proving method.
- This method may or may not succeed.
- Appropriate preparation of the input is often required.
- It's not clear a priori what "appropriate" means.

What's next?

For the future we plan to go into two directions.

What's next?

For the future we plan to go into two directions.

1. Prove additional conjectured special function inequalities.

What's next?

For the future we plan to go into two directions.

1. Prove additional conjectured special function inequalities.

Example: The Askey-Gasper conjecture says that if $a_{n, m, k, l}$ is such that

$$
\frac{1}{1-x-y-z-w+\frac{2}{3}(x y+x z+x w+y z+y w+z w)}=\sum_{n, m, k, l} a_{n, m, k, l} x^{n} y^{m} z^{k} w^{l}
$$

then all $a_{n, m, k, l}$ are positive.

What's next?

For the future we plan to go into two directions.

1. Prove additional conjectured special function inequalities.

Example: The Askey-Gasper conjecture says that if $a_{n, m, k, l}$ is such that

$$
\frac{1}{1-x-y-z-w+\frac{2}{3}(x y+x z+x w+y z+y w+z w)}=\sum_{n, m, k, l} a_{n, m, k, l} x^{n} y^{m} z^{k} w^{l}
$$

then all $a_{n, m, k, l}$ are positive.
We got some partial results together with Zeilberger in 2008.

What's next?

For the future we plan to go into two directions.

1. Prove additional conjectured special function inequalities.
2. Understand systematically what will work when, and why.

What's next?

For the future we plan to go into two directions.

1. Prove additional conjectured special function inequalities.
2. Understand systematically what will work when, and why.

Example: If $f(n)$ satisfies a linear recurrence with polynomial coefficients, under which circumstances does there exist a finite number $r \in \mathbb{N}$ such that
$f(n) \geq 0 \wedge f(n+1) \geq 0 \wedge \cdots \wedge f(n+r) \geq 0 \Rightarrow f(n+r+1) \geq 0$.

What's next?

For the future we plan to go into two directions.

1. Prove additional conjectured special function inequalities.
2. Understand systematically what will work when, and why.

Example: If $f(n)$ satisfies a linear recurrence with polynomial coefficients, under which circumstances does there exist a finite number $r \in \mathbb{N}$ such that
$f(n) \geq 0 \wedge f(n+1) \geq 0 \wedge \cdots \wedge f(n+r) \geq 0 \Rightarrow f(n+r+1) \geq 0$.
We got some partial results together with Pillwein in 2010.

A Simple Exercise

Prove, by whatever method you prefer, the following three inequalities:

- $\sum_{k=1}^{n} \frac{L_{k}^{2}}{F_{k}} \geq \frac{\left(L_{n+2}-3\right)^{2}}{F_{n+2}-1} \quad(n \geq 2)$
- $\left(\sum_{k=1}^{n} \sqrt{k}\right)^{2} \leq\left(\sum_{k=1}^{n} \sqrt[3]{k}\right)^{3} \quad(n \geq 0)$
- $\prod_{k=1}^{n}\left(1-a_{k}\right)<\frac{1}{1+\sum_{k=1}^{n} a_{k}} \quad\left(n \geq 1 ; a_{1}, \ldots, a_{k} \in(0,1)\right)$

