Topological graph polynomials and quantum field theories (QFT)

ADRIAN TANASĂ

LIPN, Univ. Paris XIII
J. Phys. A 42 (2009)
J. Noncomm. Geom. 4 (2010)
(in collaboration with T. Krajewski, V. Rivasseau and Z. Wang)
Strobl, 15th of September 2010

- Graph theory: Tutte polynomial
- QFT and Feynman integrals; parametric representation
- Relation Tutte polynomial - parametric representation
- Ribbon graphs \& the Bollobás-Riordan polynomial
- Perspectives

Graph theory - some definitions

tadpole line - line which starts and ends on the same vertex (loop)
1PR (1 particle reducible) line - a line whose removal increases by 1 the number of connected components of the graph (bridge)
regular line - line which is neither 1PR nor a tadpole line
semi-regular line - line which is not a tadpole line
spanning tree - connected subgraph with no loops (cycle)

2 natural operations for an edge e in a graph G :
(1) deletion $\rightarrow G-e$
(2) contraction $\rightarrow G / e$
\hookrightarrow associated to these operations - the Tutte polynomial
(combinatorial object encoding the topological information of a graph)

Tutte polynomial

(W. T. Tutte, Graph Theory, '84, H. H. Crapo, Aequationes Mathematicae,, '69)
a 1st definition - deletion/contraction:
e - regular line
$T_{G}(x, y):=T_{G / e}(x, y)+T_{G-e}(x, y)$
\rightarrow terminal forms - m 1PR lines and n tadpole lines
$T_{G}(x, y):=x^{m} y^{n}$.

rank

$$
r(A):=\left|V_{G}\right|-k(A)
$$

$r(A)$ - the rank of the subgraph A
V_{G} - number of vertices
$k(A)$ - number of connected components
2nd definition - sum over subgraphs:

$$
T_{G}(x, y):=\sum_{A}(x-1)^{r(E)-r(A)}(y-1)^{n(A)} .
$$

$n(A)$ - number of loops of the subgraph A (nulity - cyclomatic number)
the two definitions are equivalent

Multivariate Tutte polynomial

(A. Sokal, London Math. Soc. Lecture Note Ser., 2005)
$\beta_{e}, e=1, \ldots, E$ (different variable for each edge)
E - the total number of edges
q - variable associated to the vertices
1st definition - deletion/contraction:

$$
Z_{G}(q,\{\beta\}):=Z_{G / e}\left(q,\left\{\beta-\left\{\beta_{e}\right\}\right\}\right)+\beta_{e} Z_{G-e}\left(q,\left\{\beta-\left\{\beta_{e}\right\}\right\}\right),
$$

e - not necessary regular
\rightarrow terminal forms with v vertices and without edges

$$
Z_{G}(q, \beta):=q^{v}
$$

Multivariate Tutte polynomial - 2nd definition

2nd definition - sum over subgraphs:

$$
Z_{G}(q, \beta):=\sum_{A \subset E} q^{k(A)} \prod_{e \in A} \beta_{e}
$$

the two definitions are equivalent

Quantum field theory (QFT)

QFT - graph theory
Φ^{4} model - 4-valent vertices
$\Phi(x)$ - a field, $\quad x \in \mathbb{R}^{4}$ (the space-time)

propagator (associated to each edge of the graph):
$C\left(p_{\ell}, m\right)=\frac{1}{p_{\ell}^{2}+m^{2}}, p_{\ell} \in \mathbb{R}^{4}, i=1, \ldots, E=3, m \in \mathbb{R}$ the mass

QFT - Feynman integrals

- integration over each of the E internal momentum of the graph G
- conservation of incoming/outgoing momentae at each vertex of the graph G
\rightarrow Feynman integral \mathcal{A}_{G}

Parametric representation of the Feynman integrals

introduction of some parameters α :

$$
\frac{1}{p_{\ell}^{2}+m^{2}}=\int d \alpha_{\ell} e^{-\alpha\left(p_{\ell}^{2}+m^{2}\right)}, \quad \forall \ell=1, \ldots, E
$$

\rightarrow Gaussian integration over internal momentae p_{i}

$$
\Longrightarrow \mathcal{A}_{G}\left(p_{\mathrm{ext}}\right)=\int_{0}^{\infty} \frac{e^{-V\left(p_{\mathrm{ext}}, \alpha\right) / U(\alpha)}}{U(\alpha)^{\frac{D}{2}}} \prod_{\ell=1}^{E}\left(e^{-m^{2} \alpha_{\ell}} d \alpha_{\ell}\right)
$$

U, V - polynomials in the parameters α

$$
U=\sum_{\mathcal{T}} \prod_{\ell \notin \mathcal{T}} \alpha_{\ell}
$$

\mathcal{T} - spanning tree of the graph

$$
U_{G}(\alpha)=\alpha_{e} U_{G-e}(\alpha)+U_{G / e}(\alpha)
$$

terminal forms (graph formed only of tadpole or 1PR edges)

$$
U_{G}(\alpha)=\prod_{e \text { tadpole }} \alpha_{e},
$$

new proof: Grassmannian development of the Pfaffians resulted from the Gaussian integrations over the internal momentae p_{i}
relation with the multivariate Tutte polynomial - the polynomial U_{G} satisfies the deletion/contraction relation
(S. Bloch et. al., Commun. Math. Phys., 2006, F. Brown, arXiv:0804.1660)
it can be obtained as a limit of the multivariate Tutte polynomial

Generalization: ribbon graphs

$$
b c=1
$$

$b c$ - number of connected components of the graph's boundary (if the graph is connected, bc - the number of faces)

Bollobás-Riordan polynomial R_{G}

(B. Bollobás and O. Riordan, Proc. London Math. Soc., 83 2001, Math. Ann., 323 (2002)
J. Ellis-Monaghan and C. Merino, arXiv:0803.3079[math.CO], 0806.4699[math.CO])
\hookrightarrow generalization of the Tutte polynomial for ribbon graphs

$$
R_{G}(x, y, z)=\sum_{H \subset G}(x-1)^{r(G)-r(H)} y^{n(H)} z^{k(H)-b c(H)+n(H)} .
$$

the additional variable z keeps track of the additional topological information ($b c$ or the graph genus g)
\hookrightarrow some generalizations:
(S. Chumotov, J. Combinatorial Theory 99 (2009), F. Vignes-Tourneret, Discrete Mathematics 309 (2009)

Deletion/contraction for the Bollobás-Riordan polynomial

$R_{G}(x, y, z)=R_{G / e}(x, y, z)+R_{G-e}(x, y, z)$, e semi-regular edge terminal forms (graphs \mathcal{R} with 1 vertex):

$$
k(\mathcal{R})=V(\mathcal{R})=k(H)=V(H)=1 \rightarrow R(x, y, z)=R(y, z)
$$

$$
R_{\mathcal{R}}(y, z)=\sum_{H \subset \mathcal{R}} y^{E(H)} z^{2 g(H)} .
$$

Multivariate Bollobás-Riordan polynomial

generalization of the Bollobás-Riordan polynomial analogous to the generalization of the Tutte polynomial

$$
Z_{G}\left(x,\left\{\beta_{e}\right\}, z\right)=\sum_{H \subset G} x^{k(H)}\left(\prod_{e \in H} \beta_{e}\right) z^{b c(H)}
$$

\hookrightarrow satisfies the deletion/contraction relation

Noncommutative quantum field theory (NCQFT)

NCQFTs - ribbon graphs

Parametric representation for a noncommutative ϕ^{4} model

$$
\mathcal{A}_{G}^{\star}(p)=\int_{0}^{\infty} \frac{e^{-V^{\star}(p, \alpha) / U^{\star}(\alpha)}}{U^{\star}(\alpha)^{\frac{D}{2}}} \prod_{\ell=1}^{L}\left(e^{-m^{2} \alpha_{\ell}} d \alpha_{\ell}\right)
$$

Theorem:

$$
U^{\star}=\left(\frac{\theta}{2}\right)^{b c-1+2 g} \sum_{\mathcal{T}^{\star}} \prod_{\ell \notin \mathcal{T}^{\star}} 2 \frac{\alpha_{\ell}}{\theta}
$$

θ - noncommutativity parameter
\mathcal{T}^{\star} - \star-trees (non-trivial generalization of the notion of trees)
(quasi-trees)

Relation to the multivariate Bollobás-Riordan polynomial

$$
U_{G}^{\star}\left(\left\{\alpha_{e}\right\}\right)=\alpha_{e} U_{G-e}^{\star}+U_{G / e}^{\star} .
$$

for the sake of completeness ...

$$
U_{G}^{\star}(\alpha, \theta)=(\theta / 2)^{E-V+1}\left(\prod_{e \in E} \alpha_{e}\right) \times \lim _{w \rightarrow 0} w^{-1} Z_{G}\left(\frac{\theta}{2 \alpha_{e}}, 1, w\right) .
$$

Conclusion et perspectives

relation between combinatorics and QFTs

- other type of topological polynomials related to other QFT models (T. Krjewski et. al., arXiv:0912.5438) - no deletion/contraction property
- generalization to tensor models (appearing in recent approaches for a theory of quantum gravity)

(R. Gurău, Annales H. Poincaré 11 (2010), J. Ben Geloun et. al., Class. Quant. Grav. 27 (2010))

Vielen Dank fur lhre Aufmerksamkeit

Thank you for your attention

Exemple

The Moyal algebra is the linear space of smooth and rapidly decreasing functions $\mathcal{S}\left(\mathbb{R}^{\mathcal{D}}\right)$ equipped with the Moyal product:

$$
(f \star g)(x)=\int \frac{d^{D} k}{(2 \pi)^{D}} d^{D} y f\left(x+\frac{1}{2} \Theta \cdot k\right) g(x+y) e^{i k \cdot y}
$$

