
Séminaire Lotharingien de Combinatoire 69 (2013), Article B69c

ALGEBRAIC AND AFFINE PATTERN AVOIDANCE

TOM DENTON

Abstract. We investigate various connections between the 0-
Hecke monoid, Catalan monoid, and pattern avoidance in permu-
tations, providing new tools for approaching pattern avoidance in
an algebraic framework. In particular, we characterize contain-
ment of a class of ‘long’ patterns as equivalent to the existence
of a corresponding factorization. We then generalize some of our
constructions to the affine setting.
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1. Introduction

Pattern avoidance is a rich and interesting subject which has re-
ceived much attention since Knuth first connected the notion of [231]-
avoidance with stack sortability [Knu97]. Pattern avoidance has also
appeared in the study of smoothness of Schubert varieties [BL00, Bil98],
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the Temperley–Lieb algebra and the computation of Kazhdan–Lusztig
polynomials [Fan96, FG99]. There is also an extensive literature on
enumeration of permutations avoiding a given pattern; for an introduc-
tion, see [Bón04]. Pattern containment (the complementary problem to
pattern avoidance) was previously known to be related to the (strong)
Bruhat order; in particular, Tenner showed that a principal order ideal
of a permutation is Boolean if and only if the permutation avoids the
patterns [321] and [3412] [Ten07].

While many have studied pattern avoidance for particular patterns,
there are relatively few results on pattern avoidance as a general phe-
nomenon. Additionally, while there has been a great deal of combi-
natorial research on pattern avoidance, there have been few algebraic
characterizations. In this paper, we first introduce an equivalence be-
tween pattern containment and a factorization problem for certain per-
mutation patterns. We then use these results directly in analyzing the
fibers of certain quotients of the 0-Hecke monoid. Finally, we consider
the question of pattern avoidance in the affine permutation group.

We begin by introducing the notion of a width system, which, in
some cases, allows the factorization of a permutation x containing a
pattern σ as x = yσ′z, where σ′ is a ‘shift’ of σ, y and z satisfy certain
compatibility requirements, and the len(x) = len(y) + len(σ) + len(z).
This factorization generalizes an important result of Billey, Jockusch,
and Stanley [BJS93], which states that any permutation x contain-
ing a [321]-pattern contains a braid; that is, some reduced word for
x in the simple transpositions contains a contiguous subword sisi+1si.
(This subword, in our context, plays the role of the σ′.) Equivalently, a
permutation that is [321]-avoiding is fully commutative, meaning that
every reduced word may be obtained by commutation relations. These
permutations have been extensively studied, with major contributions
by Fan and Green [Fan96, FG99] and Stembridge [Ste96], who associ-
ated a certain poset to each fully commutative element, where linear
extensions of the poset are in bijection with reduced words for the
permutation.

Width systems allow us to extend this notion of subword contain-
ment considerably, and give an algebraic condition for pattern contain-
ment for certain patterns. The width system is simply a measure of
various widths of a pattern occurrence within a permutation (called an
‘instance’). For certain width systems, an instance of minimal width
implies a factorization of the form discussed above. These width sys-
tems tend to exist for relatively long permutations. The main results
are contained in Propositions 3.3, 3.4, 3.5, 3.7, and Corollary 3.6.
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We then apply these results directly, and study pattern avoidance of
certain patterns (most interestingly [321]-avoidance) in the context of
quotients of the 0-Hecke monoid. The non-decreasing parking functions
NDPFN may be realized as a quotient of the 0-Hecke monoid for the
symmetric group SN , and coincide with the set of order-preserving re-
gressive functions on a poset when the poset is a chain. These functions
are enumerated by the Catalan numbers; if one represents f ∈ NDPFN

as a step function, its graph will be a (rotated) Dyck path. These func-
tions form a J -trivial monoid under composition, and may be realized
as a quotient of the 0-Hecke monoid; the monoid NDPFn coincides
with the Catalan monoid. We show that the fibers of this quotient
each contain a unique [321]-avoiding permutation of minimal length
and a [231]-avoiding permutation of maximal length (Theorem 4.2).
We then show that a slightly modified quotient has fibers containing
a unique [321]-avoiding permutation of minimal length, and a [312]-
avoiding permutation of maximal length (Theorem 4.4).

This provides a bijection between [312] and [321]-avoiding permu-
tations. The bijection is equivalent to the bijection of Simion and
Schmidt between [132]-avoiding permutations and [123]-avoiding per-
mutations [SS85], but here we have given an algebraic interpretation
of the bijection. (The patterns [312] and [123] are the respective “com-
plements” of the patterns [312] and [321].)

We then combine these results to obtain a bijection between [4321]-
avoiding permutations and elements of a submonoid of NDPF2N (The-
orem 5.3), which we consider as a parabolic submonoid of a type B
generalization of non-decreasing parking functions, which coincide with
the double Catalan monoid [MS12].

We then expand our discussion to the affine symmetric group and
affine 0-Hecke monoid. The affine symmetric group was introduced
originally by Lusztig [Lus83], and questions concerning pattern avoid-
ance in the affine symmetric group have recently been studied by
Lam [Lam06], Green [Gre02], Billey and Crites [BC12]. Lam and Green
separately showed that an affine permutation contains a [321]-pattern
if and only if it contains a braid, in the same sense as in the finite case.

We introduce a definition for affine non-decreasing parking functions
NDPF(1)

N , and demonstrate that this monoid of functions may be ob-
tained as a quotient of the affine symmetric group. We obtain a combi-
natorial map from affine permutations to NDPF(1)

N and demonstrate
that this map coincides with the definition of NDPF(1)

N by generators
and relations as a quotient of S̃N . Finally, we prove that each fiber
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of this quotient contains a unique [321]-avoiding element of minimal
length (Theorem 6.11).

1.1. Overview. In Section 3 we introduce width systems on permu-
tation patterns as a potential system for understanding pattern con-
tainment algebraically. The main results of this section describe a class
of permutation patterns σ such that any permutation x containing σ
factors as x = yσ′z, with len(x) = len(y) + len(σ) + len(z). Here σ′ is
a “shift” of σ, and some significant restrictions on y and z are estab-
lished. The main results are contained in Propositions 3.3, 3.4, 3.5,3.7,
and Corollary 3.6.

We apply these ideas directly in Section 4 while analyzing the fiber
of a certain quotient of the 0-Hecke monoid of the symmetric group. In
Theorem 4.2, we show that each fiber of the quotient contains a unique
[321]-avoiding permutation and a unique [231]-avoiding permutation.
We then apply an involution and study a slightly different quotient in
which fibers contain a unique [321]-avoiding permutation and a unique
[312]-avoiding permutation (Theorem 4.4). In Section 5, we consider a
different monoid-morphism of the 0-Hecke monoid for which each fiber
contains a unique [4321]-avoiding permutation (Theorem 5.3).

We then define the Affine Nondecreasing Parking Functions in Sec-
tion 6, and establish these as a quotient of the 0-Hecke monoid of the
affine symmetric group. We prove that each fiber of the quotient con-
tains a unique [321]-avoiding affine permutation (Theorem 6.11).

1.2. Acknowledgements. This paper originally appeared as a chap-
ter in the author’s PhD thesis, awarded by the University of California,
Davis. As such thanks are due to my co-advisers, Prof. Anne Schilling
and Nicolas M. Thiéry, as well as my committee members, who pro-
vided useful feedback during the writing process. Thanks are also due
to the incredible math department at Davis, which provided a fertile
ground for study for five years. As I prepare this paper, I am a postdoc-
toral researcher at York University. Additional support (and copious
amounts of coffee) is provided by the Fields Institute.

2. Background and Notation

2.1. Pattern Avoidance. Pattern avoidance phenomena have been
studied extensively, originally by Knuth in his 1973 classic, The Art
of Computer Programming [Knu97]. A thorough introduction to the
subject may be found in the book “Combinatorics of Permutations” by
Bona [Bón04]. A pattern σ is a permutation in Sk for some k; given
a permutation x ∈ SN , we say that x contains the pattern σ if, in
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the one-line notation for x = [x1, . . . , xN ], there exists a subsequence
[xi1 , . . . , xik ] whose elements are in the same relative order as the ele-
ments in p. If x does not contain σ, then we say that x avoids σ, or
that x is σ-avoiding. (Note that if k > N , x must avoid σ.)

For example, the pattern [1, 2] appears in any x such that there exists
a xi < xj for some i < j. The only [12]-avoiding permutation in SN ,
then, is the long element, which is strictly decreasing in one-line nota-
tion. As a larger example, the permutation [3,4, 5,2, 1, 6] contains the
pattern [231] at the bold positions. In fact, this permutation contains
six distinct instances of the pattern [231].

An interesting and natural question is, given a pattern σ, how many
permutations in SN avoid σ? It has been known since Knuth’s original
work that for any pattern in S3, there are Catalan-many permutations
in SN avoiding σ [Knu97].

The [321]-avoiding permutations are of particular importance. It
was shown in [BJS93] that a permutation x ∈ SN is [321]-avoiding if
and only if x is ‘braid free.’ In particular, this means that there is no
reduced word for x containing the consecutive subsequence of sisi+1si
(or si+1sisi+1, equivalently), where the si are the simple transpositions
generating SN . Such permutations are called fully commutative.

Lam [Lam06] and Green [Gre02] separately showed that this result
extends to the affine symmetric group. The affine symmetric group (see
Definition 6) is a subset of the permutations of Z, satisfying some pe-
riodicity conditions. Pattern avoidance for the affine symmetric group
works exactly as in a finite symmetric group. The one-line notation for
x is the doubly infinite sequence x = [. . . , x−1, x0, x1, . . . , xN , xN+1, . . .].
Then x contains a pattern σ if any subsequence of x in one-line nota-
tion has the same relative order as σ. Fully commutative elements
of the affine symmetric group are those which have no reduced word
containing the consecutive subsequence sisi+1si, where the indices are
considered modulo N . Green showed that the fully commutative ele-
ments of the affine symmetric group coincide with the [321]-avoiding
affine permutations.

Fan and Green [Fan96, FG99] previously studied the quotient of the
full Hecke algebra Hq(W ) for W simply-laced, by the ideal I gener-
ated by Tsts + Tst + Tts + Ts + Tt + 1 for s and t generators of W
satisfying a braid relation sts = tst. This quotient H/I yields the
Temperley–Lieb Algebra. Fan showed that this quotient has a ba-
sis indexed by fully commutative elements of W , and in further work
with Richard Green derived information relating this quotient to the
Kazhdan–Lusztig basis for Hq(W ).
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A further application of pattern avoidance occurs in the study of
rational smoothness of Schubert varieties; an introduction to this topic
may be found in [BL00]. The Schubert varieties Xw in Type A are
indexed by permutations; a result of Billey [Bil98] shows that Xw is
smooth if and only if w is simultaneously [3412]- and [4231]-avoiding.
More recently, Billey and Crites have extended this result to affine
Schubert varieties (for affine Type A) [BC12], showing that an affine
Schubert variety Xw is rationally smooth if and only if w is simultane-
ously [3412]- and [4231]-avoiding or is a special kind of affine permuta-
tion, called a “twisted spiral.”

2.2. 0-Hecke monoids. Let W be a finite Coxeter group with index
set I = {1, . . . , N − 1}. It has a presentation

(1) W = 〈 si for i ∈ I such that (sisj)
m(si,sj), ∀i, j ∈ I 〉 ,

where I is a finite set, m(si, sj) ∈ {1, 2, . . . ,∞}, and m(si, si) = 1. The
elements si with i ∈ I are called simple reflections, and the relations
can be rewritten as:

(2)

s2i = 1 for all i ∈ I ,
sisjsisjsi · · ·︸ ︷︷ ︸

m(si,sj)

= sjsisjsisj · · ·︸ ︷︷ ︸
m(si,sj)

for all i, j ∈ I ,

where 1 denotes the identity in W . An expression w = si1 · · · si` for
w ∈ W is called reduced if it is of minimal length `. See [BB05, Hum90]
for further details on Coxeter groups.

The Coxeter group of type AN−1 is the symmetric group SN with
generators {s1, . . . , sN−1} and relations:

(3)

s2i = 1 for 1 ≤ i ≤ n− 1 ,

sisj = sjsi for |i− j| ≥ 2 ,

sisi+1si = si+1sisi+1 for 1 ≤ i ≤ n− 2 ;

the last two relations are called the braid relations.

0-Hecke monoid The 0-Hecke monoid H0(W ) = 〈πi | i ∈ I〉 of a Cox-
eter group W is generated by the simple projections πi with relations

(4)

π2
i = πi for all i ∈ I,

πiπjπiπj · · ·︸ ︷︷ ︸
m(si,sj)

= πjπiπjπi · · ·︸ ︷︷ ︸
m(si,sj)

for all i, j ∈ I .

Thanks to these relations, the elements of H0(W ) are canonically in-
dexed by the elements of W by setting πw := πi1 · · · πik for any reduced
word i1 . . . ik of w.
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2.3. Non-decreasing Parking Functions. We consider a collection
of functions which form a monoid under composition. Notice that we
use the right action in this paper, so that for x ∈ P and a function
f : P → P we write x.f for the value of x under f .

Monoid of Non-Decreasing Parking Functions Consider a poset
P = {1, . . . , N + 1}. The set NDPFN+1 of functions f : P → P which
are

• order preserving, that is, for all x, y ∈ P, x ≤P y implies x.f ≤P

y.f
• regressive, that is, for all x ∈ P one has x.f ≤P x

is a monoid under composition.

Proof. It is trivial that the identity function is order preserving and
regressive and that the composition of two order preserving and re-
gressive functions is as well. �

According to [GM09, 14.5.3], little is known about these monoids.
When P is a chain on N elements, we obtain the monoid NDPFN of

nondecreasing parking functions on the set {1, . . . , N} (see e.g. [Sol96];
it also is described under the notation CN in e.g. [Pin10, Section XI.4]
and, together with many variants, in [GM09, Chapter 14]). The unique
minimal set of generators for NDPFN is given by the family of idem-
potents (πi)i∈{1,...,N−1}, where each πi is defined by (i + 1).πi := i and
j.πi := j otherwise. The relations between those generators are given
by:

πiπj = πjπi for all |i− j| > 1 ,

πiπi−1 = πiπi−1πi = πi−1πiπi−1 .

It follows that NDPFN is the natural quotient of H0(SN) by the relation
πiπi+1πi = πi+1πi, via the quotient map πi 7→ πi [HT06, HT09, GM11].
Similarly, it is a natural quotient of Kiselman’s monoid [GM11, KM09].
In [DHST11], this monoid was studied as an instance of the larger class
of order-preserving regressive functions on monoids, and a set of explicit
orthogonal idempotents in the algebra was described.

3. Width Systems, Pattern Containment, and
Factorizations.

In this section we introduce width systems on permutation patterns,
which sometimes provide useful factorizations of a permutation con-
taining a given pattern. The results established here will be directly
applied in Sections 4 and 5.
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Definition Let x be a permutation and σ ∈ Sk a pattern. We say that
x factorizes over σ if there exist permutations y, z, and σ′ such that:

(1) x = yσ′z,
(2) σ′ has a reduced word matching a reduced word for σ with

indices shifted by some j,
(3) The permutation y satisfies y−1(j) < · · · < y−1(j + k),
(4) The permutation z satisfies z(j) < · · · < z(j + k),
(5) len(x) = len(y) + len(σ′) + len(z).

Set W = SN and J ⊂ I, with I the generating set of W . An
element x ∈ W has a right descent i if len(xsi) < len(x), and has
a left descent i if len(six) < len(x). Equivalently, x has a right
(respectively, left) descent at i if and only if some reduced word for x
ends (respectively, begins) with i. Let W J be the set of elements in W
with no right descents in J . Similarly, JW consists of those elements
with no left descents in J . Finally, WJ is the parabolic subgroup of
W generated by {si | i ∈ J}.

Recall that a reduced word or reduced expression for a per-
mutation x is a minimal-length expression for x as a product of the
simple transpositions si. Throughout this chapter, we will use double
parentheses enclosing a sequence of indices to denote words. For ex-
ample, ((1, 3, 2)) corresponds to the element s1s2s3 in S4. Note that
same expression can also indicate an element of H0(S4), with ((1, 3, 2))
corresponding to the element π1π2π3. Context should make usage clear.

Definition Let σ be a permutation pattern in Sk, with reduced word
((i1, . . . , im)). Let J = {j, j + 1, . . . , j + l} for some l ≥ k − 1 and
σ′ ∈ WJ with reduced word ((i1 + j, . . . , im + j)). Then we call σ′ a
J-shift or shift of σ.

Proposition 3.1. A permutation x ∈ SN factorizes over σ if and
only if x admits a factorization x = yσ′z with y ∈ W J , σ′ ∈ WJ , and
z ∈ JW , and len(x) = len(y) + len(σ′) + len(z).

Proof. This is simply a restatement of the definition of factorization
over σ. In particular, y ∈ W J and z ∈ JW . �

This condition is illustrated diagrammatically in Figure 1 using a
string-diagram for the permutation x factorized as yσ′z. In the string
diagram of a permutation x, a vertical string connects each j to x(j),
with strings arranged so as to have as few crossings as possible. Com-
position of permutations is accomplished by vertical concatenation of
string diagrams. In the diagram, x is the vertical concatenation (and
product of) of y, σ′ and z.
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j j+1 ... j+k

... ... ......

... ... ... ... ...

...

j j+1 ... j+k

z(j) z(j+1) z(...) z(j+k)

y  (j)-1 y  (j+1)-1 y  (...)-1 y  (j+k)-1

σ

y

z

Figure 1. Diagrammatic representation of a permuta-
tion x factorizing over a pattern σ as x = yσz by com-
position of string diagrams.

The permutation y−1 preserves the order of {j, j+ 1, . . . , j+ k}, and
thus the strings leading into the elements {j, j + 1, . . . , j + k} do not
cross. Likewise, z preserves the order of {j, j + 1, . . . , j + k}, and thus
the strings leading out of {j, j + 1, . . . , j + k} in z do not cross. In
between, σ′ rearranges {j, j + 1, . . . , j + k} according to the pattern σ.

By the above discussion, it is clear that if x admits a factorization
yσ′z with y ∈ W J , σ′ ∈ WJ , and z ∈ JW then x contains σ. The ques-
tion, then, is when this condition is sharp. This question is interesting
because it provides an algebraic description of pattern containment.
For example, a permutation x which contains a [321]-pattern is guar-
anteed to have a reduced expression which contains a braid. Braid
containment can be re-stated as a factorization over [321]. When the
factorization question is sharp, (i.e., x contains σ if and only if x fac-
torizes over σ) one obtains an algebraic description of σ-containment.
The class of patterns with this property is rather larger than just [321],
as we will see in Propositions 3.3, 3.4, and 3.5.

Problem For which patterns σ does x contain σ if and only if x ∈
W Jσ′JW , where σ′ is a J-shift of σ for some J?

As a tool for attacking this problem, we introduce the notion of a
width system for a pattern.
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Definition Suppose x contains σ at positions (i1, . . . , ik); the tuple
P = (P1, . . . , Pk) is called an instance of the pattern σ, and we denote
the set of all instances of σ in x by Px.

Definition A width on an instance P of σ is a difference Pj−Pi with
j > i. A width system w for a permutation pattern σ ∈ Sk is a func-
tion assigning a tuple of widths to each instance of σ in x. An instance
P of a pattern in x is minimal (with respect to σ and w) if w(P )
is lexicographically minimal amongst all instances of σ in x. Finally,
an instance P = (P1, . . . , Pk) is locally minimal if P is the minimal
instance of σ in the partial permutation [xP1 , xP1+1, . . . , xPk−1, xPk

].

Example Consider the pattern [231] and let P = (p, q, r) be an ar-
bitrary instance of σ in a permutation x. We choose to consider the
width system w(P ) = (r − p, q − p). (Other width systems include
u(P ) = (r − q, q − p) and v(P ) = (r − q), for example.)

The permutation x = [3, 4, 5, 2, 1, 6] contains six [231] patterns. The
following table records each [231]-instance P and the width of the in-
stance w(P ):

P w(P )
[3,4, 5,2, 1, 6] (1, 2, 4) (3, 1)
[3,4, 5, 2,1, 6] (1, 2, 5) (4, 1)
[3, 4,5,2, 1, 6] (1, 3, 4) (3, 2)
[3, 4,5, 2,1, 6] (1, 3, 5) (4, 2)
[3,4,5,2, 1, 6] (2, 3, 4) (2, 1)
[3,4,5, 2,1, 6] (2, 3, 5) (3, 1)

Thus, under the width system w the instance (2, 3, 4) is the minimal
[231]-instance; it is also the only locally minimal [231]-instance.

In the permutation y = [1, 4, 8, 5, 2, 7, 6, 3], we have the following
instances and widths of the pattern [231]:

P w(P )
[1,4,8, 5,2, 7, 6, 3] (2, 3, 5) (3, 1)
[1,4,8, 5, 2, 7, 6,3] (2, 3, 8) (6, 1)
[1,4, 8,5,2, 7, 6, 3] (2, 4, 5) (3, 2)
[1,4, 8,5, 2, 7, 6,3] (2, 4, 8) (6, 2)
[1,4, 8, 5, 2,7, 6,3] (2, 6, 8) (6, 4)
[1,4, 8, 5, 2, 7,6,3] (2, 7, 8) (6, 5)
[1, 4, 8,5, 2,7, 6,3] (4, 6, 8) (4, 2)
[1, 4, 8,5, 2, 7,6,3] (4, 7, 8) (4, 3)

Here, the instance (2, 3, 5) is minimal under w. Additionally, the in-
stance (4, 6, 8) is locally minimal, since it is the minimal instance of
[231] in the partial permutation [5, 2,7, 6,3].
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2 3 1

b:=q-p

xp xq xr

a:=r-p

tx < 1 sx > 2

Figure 2. A diagram of a minimal [231] pattern. The
circled numbers represent elements (xp, xq, xr) filling the
roles of the pattern; the widths are denoted a and b,
and the restrictions on xt with p < t < q and xs with
s < q < r implied by minimality of the pair (a, b) are also
recorded. The red arrows record the fact that shifting
the end elements towards the center using a sequence of
simple transpositions reduces the length of the permuta-
tion.

For certain width systems, minimality provides a natural factoriza-
tion of x over σ.

Example We consider the width system for the pattern [231] depicted
in Figure 2.

Let x = [x1, x2, . . . , xN ] ∈ SN containing a [231]-pattern, and let
(p < q < r) be the indices of a minimal-width [231]-pattern in x under
the width system w = (r − p, q − p). (So xr < xp < xq.)

Minimality of the total width (r − p) implies that for every s with
q < s < r, we have xs > xp(> xr), as otherwise (xp, xq, xs) would be
a [231]-pattern of smaller width. Then multiplying x on the right by
u1 = sr−1sr−2 . . . sq+1 yields a permutation of length len(x)−(r−q−1),
with

xu1 = [x1, . . . , xp, . . . , xq, xr, xq+1 . . . , xN ].

Minimality of the inner width (q − p) implies that for every t with
p < t < q, then xt < xr. (If xp < xt < xq, then (xt, xq, xr) would
form a [231]-pattern of lower width. If xp > xt, then q was not chosen
minimally.) Then multiplying xu1 on the right by u2 = spsp+1 . . . sq−2
yields a permutation of length len(xu1)−(q−p−1) = len(x)−r+p+2).
This permutation is:

xu1u2 = [x1, . . . , xq−1, xp, xq, xr, xq+1 . . . , xN ].

Since [xp, xq, xr] form a [231]-pattern, we may further reduce the
length of this permutation by multiplying on the right by sqsq−1. The
resulting permutation has no right descents in the set J := {q − 1, q}.
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3 2 1

b:=q-p

xp xq xr

a:=r-p

tx < 1 sx > 2

Figure 3. A diagram of a left-minimal [321] pattern,
labeled analogously to the labeling in Figure 2.

We then set y = xu1u2sqsq−1, σ
′ = sq−1sq, and z = (u1u2)

−1. No-
tice that z has no left descents in {q − 1, q} by construction, since it
preserved the left-to-right order of xp, xq and xr. Then x = yσ′z is a
factorization of x over σ.

One may use a similar system of minimal widths to show that any
permutation containing a [321]-pattern contains a braid, replicating a
result of Billey, Jockusch, and Stanley [BJS93]. The corresponding
system of widths is depicted in Figure 3.

Definition Let σ be a permutation with a width system. The width
system is bountiful if for any x containing a locally minimal σ at
positions (p1, . . . , pk), any xt with pi < t < pi+1 has either xt < xpk for
all pk < t or xt > xpk for all pk > t.

Proposition 3.2. If a pattern σ admits a bountiful width system, then
any x containing σ factorizes over σ.

Proof. By definition, any xt with pi < t < pi+1 has either xt < xpk for
all pk < t or xt > xpk for all pk > t. Then using methods exactly as
in Example 3, we may vacate the elements xt by multiplying on the
right by simple transpositions, moving “small” xt out to the left and
moving “large” xt out to the right. This brings the minimal instance
of the pattern σ together into adjacent positions (j, j + 1, . . . , j + k),
while simultaneously creating a reduced word for the right factor z in
the factorization. Then we set J = {j, j + 1, . . . , j + k − 1}, and let σ′

be the J-shift of σ. Set y = xz−1σ′−1. Then by construction x = yσ′z
is a factorization of x over σ. �

Thus, establishing bountiful width systems allows the direct factor-
ization of x containing σ as an element of W Jσ′JW .

Problem Characterize the patterns which admit bountiful width sys-
tems.

Example The permutation x = [1324] = s2 contains a [123]-pattern,
but does not factor over [123]. To factor over [123], we have x ∈
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b
3 2 1

a

2 1 3
ab

1 3 2
bb

2 3 1

a

b
3 1 2

a

a

Figure 4. Diagrams of bountiful width systems for the
five patterns in S3 which admit bountiful width systems.

W J1J
JW , with J = {1, 2} or J = {2, 3}. Both choices for J contain 2,

so it is impossible to write x as such a product.

Proposition 3.3. Both patterns in S2 admit bountiful width systems.

Proof. Any minimal [12]- or [21]-pattern must be adjacent, and so the
conditions for a bountiful width system hold vacuously. �

Proposition 3.4. All of the patterns in S3 except [123] admit a boun-
tiful width system, as depicted in Figure 4.

Proof. A bountiful width systems has already been provided for the
pattern [231]. We only provide the details of the proof that the [213]
pattern is bountiful, as the proofs that the width systems for the pat-
terns [132], [312] and [321] are bountiful are analogous.

Let x ∈ SN contain a [213] pattern at positions (xp, xq, xr), and
choose the width system (a, b) = (r − q, q − p).

Suppose that (xp, xq, xr) is lexicographically minimal in this width
system, and consider xt with p < t < q and xs with q < s < r. Then
a = 1:

• If xs < xp, then (xp, xs, xr) is a [213] pattern with a smaller.
• If xp < xs, then (xp, xq, xs) is a [213] pattern with a smaller.

Thus, we must have r − q = 1.
Since b is minimal, we must also have that xt > xq or xt < xp for

every t with p < t < q. This completes the proof that the width system
is bountiful. �
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Proposition 3.5. Let σ be a pattern in SK−1 with a bountiful width
system, and let σ+ = [K, σ1, . . . , σK−1]. Then σ+ admits a bountiful
width system.

Similarly, let σ− = [σ1 + 1, . . . , σK−1 + 1, 1]. Then σ− admits a
bountiful width system.

Proof. Let w = (w1, w2, . . . , wk−2) be a bountiful width system on σ
(so wi is the difference between indices of an instance of σ in a given
permutation). Let x contain σ+ in positions (xp, . . . , xq). For σ+, we
show that the width system w+ = (w1, w2, . . . , wk−2, q−p) is bountiful,
where wi measures widths of elements in σ as in w.

Consider a σ+-pattern in a permutation x that is minimal under
the width system w+, appearing at indices given by the tuple p :=
(i1, . . . , ik+1). Then x contains a σ-pattern at positions (i2, . . . , ik+1).
This pattern may not be minimal under w but, by the choice of width
system, is as close as possible to being w-minimal, in the following
sense.

We examine two cases.

• If there are no indices t with i2 < t < ik+1 such that xt > xi1 ,
then σ must be w-minimal on the range i2, . . . , ik+1. (Otherwise,
a w-minimal σ-pattern in that space would extend to a pattern
that was less than p in the w+ width system.) Then bountiful-
ness of the σ pattern ensures that for any t with ij < t < ij+1

with j ≥ 2; then xt < xik for all ik < t or xt > xik for all ik > t.
(The “small” elements are still smaller than the “large” element
xi1 .)
• On the other hand, if there exist some t with i2 < t < ik+1 such

that xt > xi1 , we may move these xt out of the σ pattern to the
right by a sequence of simple transpositions, each decreasing the
length of the permutation by one. Let u be the product of this
sequence of simple transpositions. Then xu fulfills the previous
case. Each of the xt were larger than all pattern elements to the
right, so we see that σ+ fulfills the requirements of a bountiful
pattern.

The proof that σ− admits a bountiful width system is similar. �

Corollary 3.6. Let σ ∈ SK be a permutation pattern, where the length
of σ is at most one less than the length of the long element in SK. Then
σ admits a bountiful width system.

Proof. This follows inductively from Proposition 3.5, and the fact that
the patterns [12] and [21] both admit bountiful width systems. �
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a:=r-p

xp xr
tx < K-1

K-1

xq

σ1 K-2σK ...

or
tx > K

b:=r-q

sx < K-1

xqxp

σ1 K-1σK ...

a:=q-p

tx < K-1

Figure 5. Diagram of extensions of a bountiful width
system w by the additional widths a or (a, b), as de-
scribed in the proofs of Propositions 3.5 and 3.7.

Proposition 3.7. Let σ be a pattern in SK−2 with a bountiful width
system, and let σ++ = [K − 1, K, σ1, . . . , σK−1]. Then σ++ admits a
bountiful width system.

Similarly, let σ−− = [σ1 + 2, . . . , σK−2 + 2, 1, 2]. Then σ−− admits a
bountiful width system.

Proof. The proof of this proposition closely mirrors the proof of Propo-
sition 3.5. Let w = (w1, w2, . . . , wk−2) a bountiful width system on σ.
Let x contain σ++ in positions (xp, xr, xs, . . . , xq). For σ++, we claim
that the width system w++ = (w1, w2, . . . , wk−2, q − p, s − r) is boun-
tiful, where wi measures widths of elements in σ as in w. (The width
system w++ is depicted in Figure 5.)

Again, local minimality of σ ensures that all xt with s < t < q with xt
not in the instance of σ++ are either smaller than all pattern elements
to the left of xt, or larger than all pattern elements to the right of xt.
The choice of w++ ensures that all xt with p < t < r are either less
than xp or larger than xr, and that all xt with r < t < s are less than
xp. Then w++ is bountiful.

The proof that σ−− is bountiful is analogous. �

3.1. Further Directions. Initial investigation suggests that patterns
admitting a bountiful width system are somewhat rare, though there
are more than those described by Corollary 3.6. Weakening the defi-
nition of a factorization over a permutation may provide an additional
avenue of investigation, though.
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Definition A permutation x ∈ W = SN left-factorizes over a pat-
tern σ ∈ SK if x = yσ′z with:

• σ′ ∈ WJ , with J = {j, j + 1, . . . , j + k} and σ′ containing a
σ-pattern,
• y ∈ W J ,
• len(x) = len(y) + len(σ) + len(z).

This definition drops the requirement that z ∈ JW . This definition
may be too weak, though, since one can show that any permutation
containing the pattern [K,K − 1, . . . , 1] left-factors over every pattern
in SK .

On the other hand, consider Example 3. The permutation x =
[1, 3, 2, 4] = s2 admits a factorization S{1,3}1{1,3}

{1,3}S, and the element
1{1,3} contains a [123]-pattern. Allowing factorizations over arbitrary
subgroups – and obtaining a combinatorial characterization of these
factorizations – may provide a way forward.

Problem Find a general characterization of pattern containment in
terms of factorizations of a permutation.

4. Pattern Avoidance and the NDPF Quotient

In this section, we consider certain quotients of the 0-Hecke monoid
of the symmetric group, and relate the fibers of the quotient to pattern-
avoidance. The 0-Hecke monoid H0(SN) is defined in Definition 2.2,
and the Non-decreasing Parking Function NDPFN quotient is discussed
in Section 2.3, in its guise as the the monoid of order-preserving regres-
sive functions on a chain.

Definition For x ∈ H0(SN), we say x contains a braid if some
reduced word for x contains a contiguous subword πiπi+1πi.

The permutation x contains an unmatched ascent if some reduced
word for x contains a contiguous subword πiπi+1 that is not part of a
braid. More precisely, if inserting a πi directly after the πiπi+1 increases
the length of x, then x contains an unmatched ascent. Equivalently,
x may be factorized as x = yπiπi+1z, where y has no right descents
in {i, i + 1}, and z has no left descents in {i, i + 1}, and len(x) =
len(y) + 2 + len(z).

An unmatched descent is analogously defined as a contiguous sub-
word πi+1πi such that insertion of a πi immediately before this sub-
word increases the length of x. Equivalently, x may be factorized as
x = yπi+1πiz, where y has no right descents in {i, i+ 1}, and z has no
left descents in {i, i+ 1}, and len(x) = len(y) + 2 + len(z).
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Lemma 4.1. For x ∈ SN , x contains a [231]-pattern if and only if x
has an unmatched ascent. Likewise, x contains a [312]-pattern if and
only if x has an unmatched descent.

Proof. This is a straightforward application of the bountiful width sys-
tem for the patterns [231] and [312]. The resulting factorization con-
tains an unmatched ascent (respectively, descent). �

This process of inserting an si can be made more precise in the
symmetric group setting: suppose sj1 . . . sisi+1 . . . sjk is a reduced ex-
pression for x ∈ SN . Then write x = x1sisi+1x2. To insert si, multiply
x on the right by x−12 six2. As such, this insertion can be realized as
multiplication by some reflection.

This insertion is generally not a valid operation in H0(SN), since
inverses do not exist. However, the operation does make sense in the
NDPF setting: the NDPF relation simply allows one to exchange a
braid for an unmatched ascent or vice-versa.

Theorem 4.2. Each fiber of the map φ : H0(SN)→ NDPFN contains
a unique [321]-avoiding element of minimal length and a unique [231]-
avoiding element of maximal length.

Proof. The first part of the theorem follows directly from a result of
Billey, Jockusch, and Stanley [BJS93], which states that a symmetric
group element contains a braid if and only if the corresponding permu-
tation contains a [321]. Alternatively, one can use the width system for
[321] established in Proposition 3.4 to obtain a factorization including a
braid. Then for any x in the fiber of φ, one can remove braids obtained
from minimal-width [321]-patterns using the NDPF relation and ob-
tain a [321]-avoiding element. Each application of the NDPF-relation
reduces the length of the permutation by one, so this process must
eventually terminate in a [321]-avoiding element. Uniqueness follows
since there are exactly CN [321]-avoiding elements in SN , where CN is
the Nth Catalan number, and are thus in bijection with elements of
NDPFN .

For the second part, we use the bountiful [231] width system estab-
lished in Example 3. Let x contain a [231]-pattern. The width system
allows us to write a factorization x = yπiπi+1z, where y has no right
descents in {i, i + 1} and z has no left descents in {i, i + 1}. Then we
may apply the NDPF relation to insert a πi, turning the [231]-pattern
into a [321] pattern, and increasing the length of x by one. Since we
are in a finite symmetric group, there is an upper bound on the length
one may obtain by this process, and so the process must terminate
with a [231]-avoiding element. Recall that [231]-avoiding permutations
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Figure 6. Fibers of the NDPF quotient for H0(S4).

are also counted by the Catalan numbers [Knu97], and apply the same
reasoning as above to complete the theorem. �

Recall that the right action of SN acts on positions. A permutation y
has a right descent at position i if the two consecutive elements yi, yi+1

are out of order in one-line notation. Then multiplying on the right by
si puts these two positions back in order and reduces the length of y
by one. Likewise, if y does not have a right descent at i, multiplying
by si increases the length by one.

Fibers of the NDPF quotient For S4, the fibers of the NDPF quo-
tient can be found in Figure 6.

As a larger example, let σ = [3, 6, 4, 5, 7, 2, 1] ∈ S7. For Lemma 4.1,
we find minimal-width [231]-patterns, with the element correspond-
ing to the 3 chosen as far to the left as possible. (The subsequence
(5, 7, 2) of σ is such a minimal [231]-pattern.) Then applying the
transformation [231]→ [321] on that instance of the pattern preserves
the fiber of the NDPF quotient, and increases the length of the per-
mutation by 1. By sequentially removing eight such minimal [231]-
patterns, one obtains the long element in S7, which is [231]-avoiding.
The fiber containing the long element also contains a [321]-avoiding el-
ement [2, 3, 4, 5, 6, 7, 1], which has length 6, and is the shortest element
in its fiber.

We now fix bountiful width system for [231]- and [321]-patterns,
which we will use for the remainder of this section.

Definition Let x ∈ SN , x = [x1, . . . , xN ] in one-line notation, and con-
sider all [231]-patterns (xp, xq, xr) in x. The width of a [231]-pattern
(xp, xq, xr) is the pair (r− p, q− p). The pattern is a minimally cho-
sen [231]-pattern if the width is lexicographically minimal amongst
all [231]-patterns in x.

On the other hand, call a [321]-pattern (xp, xq, xr) left minimal if
for all t with p < t < q, xt < xr, and for all s with q < s < r, xs > xq.

The following is a direct result of the proof of Lemma 4.1.
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Corollary 4.3. Let x ∈ SN . Let (xp, xq, xr) be a minimally chosen
[231]-pattern in x. Then the permutation

[x1, . . . , xp−1, xq, xp+1, . . . , xq−1, xp, xq+1, . . . , xr, . . . , xN ],

obtained by applying the transposition tp,q, is in the same NDPF-fiber
as x. The result of applying this transposition is a left-minimal [321]-
pattern.

4.1. Involution. Let Ψ be the involution on the symmetric group in-
duced by conjugation by the longest word. Then Ψ acts on the gen-
erators by sending si → sN−i. This descends to an isomorphism of
H0(SN) by exchanging the generators in the same way: πi → πN−i.

We can thus obtain a second map from H0(SN) → NDPFN by pre-
composing with Ψ. This has the effect of changing the NDPF relation
to a statement about unmatched descents instead of unmatched as-
cents. Then applying the NDPF relation allows one to exchange braids
for unmatched descents and vice-versa, giving the following theorem.

Theorem 4.4. Each fiber of the map φ ◦Ψ : H0(SN)→ NDPFN con-
tains a unique [321]-avoiding element for minimal length and a unique
[312]-avoiding element of maximal length.

The proof is exactly the mirror of the proof in previous section.
We fix bountiful width system for [312]-patterns, and a second boun-

tiful width system for [321]-patterns, which we will use for the remain-
der of this section.

Definition Let x ∈ SN , x = [x1, . . . , xN ] in one-line notation, and con-
sider all [312]-patterns (xp, xq, xr) in x. The width of a [312]-pattern
(xp, xq, xr) is the pair (r− p, r− q). The pattern is a minimally cho-
sen [312]-pattern if the width is lexicographically minimal amongst
all [312]-patterns in x.

Likewise, call a [321]-pattern (xp, xq, xr) right minimal if the right
width (p − r, r − q) is lexicographically minimal amongst all [321]-
patterns in x. On the other hand, call a [321]-pattern (xp, xq, xr) right
minimal if for all t with p < t < q, xt < xq, and for all s with
q < s < r, xs > xp.

Corollary 4.5. Let x ∈ SN . Let (xp, xq, xr) be a minimally chosen
[312]-pattern in x. Then the permutation

[x1, . . . , xp−1, xq, xp+1, . . . , xq−1, xp, xq+1, . . . , xr, . . . , xN ],

obtained by applying the transposition tp,q, is in the same NDPF ◦Ψ-
fiber as x. The result of applying this transposition is a right-minimal
[321]-pattern.
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5. Type B NDPF and [4321]-Avoidance

In this section, we establish a monoid morphism of H0(SN) whose
fibers each contain a unique [4321]-avoiding permutation. To moti-
vate this map, we begin with a discussion of Non-Decreasing Parking
Functions of Type B.

The Weyl Group of Type B may be identified with the signed sym-
metric group SB

N , which is discussed (for example) in [BB05]. Com-
binatorially, SB

N may be understood as a group permuting a collection
of N labeled coins, each of which can be flipped to heads or tails. The
size of SB

N is thus 2NN !. A minimal set of generators of this group
are exactly the simple transpositions {ti | i ∈ {1, . . . , N − 1}} inter-
changing the coins labeled i and i + 1, along with an extra generator
tN which flips the last coin.

The group SB
N can be embedded into S2N by identifying the ti with

sis2N−i for each i ∈ {1, . . . , N − 1}, and tN with sN .

Definition The Type B Non-Decreasing Parking Functions
BNDPFN form the submonoid of NDPF2N generated by the collection
µi := πiπ2N−i for i in the set {1, . . . , N}.

Note that µN = π2
N = πN .

The Type B Non-Decreasing Parking Functions we define here does
not seem to align with other instances of Type B Catalan-type objects
in the literature.

The number of BNDPFN has been explicitly computed up to N = 9,
though a proof for a general enumeration has proven elusive, in the
absence of a more conceptual description of the full set of functions
generated thusly. The sequence obtained (starting with the 0-th term)
is

(1, 2, 7, 33, 183, 1118, 7281, 49626, 349999, 253507, . . .),

which agrees with the sequence

N∑
j=0

(
N

j

)2

Cj

so far as it has been computed. This appears in Sloane’s On-Line
Encyclopedia of Integer Sequences as sequence A086618 [Slo03], and
was first noticed by Hivert and Thiéry [HT09].

Conjecture 5.1.

|BNDPFN | =
N∑
j=0

(
N

j

)2

Cj.
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Let X be some object (group, monoid, algebra) defined by generators
S and relations R. Recall that a parabolic subobject XJ is generated
by a subset J of the set S of simple generators, retaining the same
relations R as the original object. Let BNDPFN,N̂ denote the parabolic
submonoid of of BNDPFN retaining all generators but µN .

Consider the embedding of BNDPFN,N̂ in NDPF2N . Then a reduced
word for an element of BNDPFN,N̂ can be separated into a pairing of
NDPFN elements as follows:

µi1µi2 . . . µik = πi1π2N−i1π2N−i2πi2 . . . πikπ2N−ik(5)

= πi1πi2 . . . πikπ2N−i1π2N−i2 . . . π2N−ik(6)

In particular, one can take any element x ∈ H0(SN) and associate it
to the pair:

ω(x) := (φ(x), φ ◦Ψ(x)),

recalling that Ψ is the Dynkin automorphism on H0(SN), described in
Section 4.1.

Given the results of the earlier section, one naturally asks about the
fiber of ω. It is easy to do some computations and see that the situation
is not quite so nice as before. In H0(S4) the only fiber with order greater
than one contains the elements [4321] and [4231]. Notice what happens
here: [4231] contains both a [231]-pattern and a [312]-pattern, which
is straightened into two [321]-patterns. On the level of reduced words,
two reduced words for [4231] are ((3, 2, 1, 2, 3)) = ((1, 2, 3, 2, 1)), one of
which ends with the unmatched ascent [2, 3] while the other ends with
the unmatched descent [2, 1]. Multiplying on the right by the simple
transposition s2 matches both of these simultaneously.

In fact, this is a perfectly general operation. Let x ∈ H0(SN). For
any minimally-chosen [231]-pattern in x, one can locate an unmatched
ascent in x that corresponds to the pattern. Here the smaller element
to the right remains fixed while the two ascending elements to the left
are exchanged. Then applying the NDPF relation to turn the [231] into
a [321] preserves the fiber of φ. Likewise, one can turn a minimal [312]
into a [321] and preserve the fiber of φ ◦Ψ(x). Here the larger element
to the left is fixed while the two ascending elements to the right are
exchanged. Hence, to preserve the fiber of ω, one must find a pair of
ascending elements with a large element to the left and a small element
to the right: this is exactly a [4231]-pattern.

One may make this more precise by defining a system of widths
under which minimal [4231]-patterns contain a locally minimal [231]-
pattern and a locally-minimal [321]-pattern. The results of Section 3
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xq xr xs

a:=s-r
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cx > 2

b:=q-p
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Figure 7. A diagram of a minimal [4321] pattern, la-
beled analogously to the labeling in Figure 2.

imply that this is possible. Applying the NDPF relation, this becomes
a [4321].

On the other hand, we can define a minimal [4321]-pattern by a tuple
of widths analogous to the constructions of minimal [231]-patterns. The
construction of this tuple, and the constraints implied when the tuple
is minimal, is depicted in Figure 7. Such a minimal pattern may always
be turned into a [4231]-pattern while preserving the fiber of ω.

Let x ∈ SN and P = (xp, xq, xr, xs) a [4321]-pattern in x. For the
remainder of this section, we fix the width system (q − p, r − q, s− r),
and use the same width system for [4231]-patterns. One may check
directly that this is a bountiful width system in both cases.

Lemma 5.2. Let x contain a minimal [4321]-pattern given by P =
(xp, xq, xr, xs), and let x′ = xtr,s, where tr,s is the transposition ex-
changing xr and xs. Then ω(x′) = ω(x).

Proof. Since the width system on [4321]-patterns is bountiful, we can
factor x = yxJz, with len(x) = len(y) + len(xJ) + len(z) where

xJ = ss−2ss−1ssss−1ss−2ss−1.

By the discussion above, the trailing ss−1 in xJ may be removed to
simultaneously yield an unmatched ascent and an unmatched descent.
Then this removal preserves the fiber of both φ and Ψ ◦ φ, and thus
also preserves the fiber of ω. �

Note that there need not be a unique [4231]-avoiding element in a
given fiber of ω. The first example of this behavior occurs in N = 7,
where there is a fiber consisting of [5274163], [5472163], and [5276143].
In this list, the first element is [4321]-avoiding, and the two latter ele-
ments are [4231]-avoiding. In the first element, there are [4231] patterns
[5241] and [7463] which can be respectively straightened to yield the
other two elements. Notice that either transposition moves the 4 past
the bounding element of the other [4231]-pattern, thus obstructing the
second transposition.
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Theorem 5.3. Each fiber of ω contains a unique [4321]-avoiding ele-
ment.

Proof. Given any element of H0(SN), we have seen that we can pre-
serve the fiber of ω by turning locally minimal [4321]-patterns into
[4231]-patterns. Each such operation reduces the length of the element
being acted upon, and thus this can only be done so many times. Fur-
thermore, any minimal-length element in the fiber of ω will be [4321]-
avoiding. We claim that this element is unique.

First, note that one can impose a partial order on the fiber of ω
with x covering y if x is obtained from y by turning a locally minimal
[4321]-pattern into a [4231]-pattern. Then the partial order is obtained
by taking the transitive closure of the covering relation. Note that if
x covers y then x is longer than y. The Hasse diagram of this poset is
connected, since any element of the fiber can be obtained from another
by a sequence of NDPF relations respecting both the fiber of φ and
φ ◦Ψ(x).

Let x be an element of H0(SN) containing (at least) two locally
minimal [4321]-patterns, in positions (xa, xb, xc, xd) and (xp, xq, xr, xs),
with a < b < c < d, p < q < r < s. Then one can exchange xb with xc
or xq with xr and preserve the fiber of ω. Let y be the element obtained
from exchanging xb with xc, and z obtained by exchanging xq with xr.
Then we claim that there exists w covered by both y and z. (In other
words, the poset structure on each fiber is a meet semilattice.)

If the tuples (a, b, c, d) and (p, q, r, s) are disjoint, then the claim is
clearly true. Likewise, if a = p and/or d = s the claim holds. A
complete but perhaps unenlightening proof of the claim can be accom-
plished by showing that it holds for all BNDPFN,N̂ with N < 8, where
every possible intermingling of the tuples with every possible ordering
of the entries x. occurs at least once. It is best to perform this check
with a computer, given that there are 2761 elements in BNDPF7,7̂, with
7! = 5040 elements in the fibers, and indeed a computer check shows
that the claim holds. The code accomplishing this is provided below.

Let’s look at a couple cases, though, to get a feeling for why this
should be true. Refer to the extremal elements at the edge of the
[4321] pattern as the “boundary,” and the elements to be transposed
as the “interior.” The main cases are the following:

Case c = r: Just take the smaller of xs and xd to be the common
right boundary for both patterns.

Case c = q: The problem for [4231] patterns was that one could apply
a transposition that obstructed the other transposition by moving one
of the interior elements past its boundary. But here, we have xd < xc
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and xs < xq = xd, so we can use s as the boundary for both patterns,
and the obstruction is averted. In this case, though, the two transpo-
sitions generate six elements in the fiber, instead of four. We can still
find a common meet, though. [xaxbxqxrxs] becomes [xaxqxbxrxs] and
[xaxbxrxqxs], which both cover [xaxrxbxqxs], for example.

Case r = d or q = d: Again, just take s as a common boundary for
the two patterns.

And so on. Many cases are symmetric to the three considered above,
and every interesting case is solved by changing the boundary of one
of the patterns.

Now that every pair of elements have a common meet, we are almost
done. Suppose there exist two different [4321]-avoiding elements A1

and A2 in some fiber. Then since the fiber is connected, we can find
a minimal element x where a branching occurred, so that x covers
both y > A1 and z > A2, and x is of minimal length. But if both y
and z were obtainable from x, then there exists a w of shorter length
below them both. Now w sits above some [4321]-avoiding element, as
well. If w > A1 but not A2, then in fact a branching occurred at z,
contradicting the minimality of x. The same reasoning holds if w > A2

but not A1. If w is above both A1 and A2, then in fact y was comparable
to A2 and z was comparable to A1, and there was not a branching at
x at all. �

5.1. Code for Theorem 5.3. Here we provide code for checking the
claim of Theorem 5.3 that each fiber of ω contains a unique [4321]-
avoiding element. The code is written for the Sage computer algebra
system, which has extensive built-in functions for combinatorics of per-
mutations, including detecting the presence of permutation patterns.

The code below constructs a directed graph (see the function named
omegaFibers) whose connected components are fibers of ω. The
vertices of this graph are permutations, and the edges correspond to
straightening locally-minimal [4231]-patterns into [4321] patterns. A
component is ‘bad’ if it does not contain exactly one [4321]-avoiding
permutation.

def width4231(p):

"""

Returns the width of a [4231]-instance p.

"""

return (p[1]-p[0], p[2]-p[1], p[3]-p[2])

def min4231(x):

"""
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This function takes a permutation x and finds all

minimal-width 4231-patterns in x, and returns them

as a list.

"""

P=x.pattern_positions([4,2,3,1])

if P==[]:

return None

minimal=[P[0]]

for i in [1..len(P)-1]:

if width4231(P[i])<width4231(minimal[0]):

minimal = [ P[i] ]

else:

if width4231(P[i])==width4231(minimal[0]):

minimal.append(P[i])

return minimal

def localMin4231(x):

"""

This function finds all locally-minimal

4231-patterns in a permutation x, and returns

them as a list.

"""

P=x.pattern_positions([4,2,3,1])

if P==[]:

return None

localMin=[]

for p in P:

xp=Permutation(x[ p[0]:p[3]+1 ])

qp=[i - p[0] for i in p]

qmin=min4231(xp)

if qp in qmin: localMin.append(p)

return localMin

def omegaFibers(N):

"""

Given N, this function builds a digraph whose vertices

are given by permutations of N, and with an edge a->b

whenever b is obtained from a by straightening a

locally minimal 4231-pattern into a 4321-pattern. The

connected components of G are the fibers of the map

omega.

"""



26 TOM DENTON

S=Permutations(N)

G=DiGraph()

G.add_vertices(S.list())

for x in S:

if x.has_pattern([4,2,3,1]):

# print x, localMin4231(x)

#add edges for each locally minimal 4231.

Q=localMin4231(x)

for q in Q:

y=Permutation((q[1]+1,q[2]+1))*x

G.add_edge(x,y)

return G

def headCount(G):

"""

This function takes the diGraph G produced by the

omegaFibers function, and finds any connected

components with more than one 4321-pattern. It

returns a list of all such connected components.

"""

bad=[]

for H in G.connected_components_subgraphs():

total=0

for a in H:

if not a.has_pattern([4,3,2,1]): total+=1

if total != 1:

print H, total

bad.append(H)

print "N =", N

print "\tTotal connected components: \t", count

print "\tBad connected components:\t",len(bad),’\n’

return bad

As explained in Theorem 5.3, we should check that each fiber of ω
contains a unique [4321]-avoiding element for each N ≤ 7. This is
accomplished by running the following commands:

sage: for N in [1..7]:

sage: G=omegaFibers(N)

sage: HH=headCount(G)

The output of this loop is as follows:

N = 1

Total connected components: 1
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Bad connected components: 0

N = 2

Total connected components: 2

Bad connected components: 0

N = 3

Total connected components: 6

Bad connected components: 0

N = 4

Total connected components: 23

Bad connected components: 0

N = 5

Total connected components: 103

Bad connected components: 0

N = 6

Total connected components: 513

Bad connected components: 0

N = 7

Total connected components: 2761

Bad connected components: 0

There are no bad components, and thus the theorem holds.
The sequence (1, 2, 6, 23, 103, 513, 2761) is the beginning of the se-

quence counting [4321]-avoiding permutations. This also counts [1234]-
avoiding permutations (reversing a [1234]-avoiding permutation yields
a [4321]-avoiding permutation, and vice versa), and is listed in that con-
text in Sloane’s On-Line Encyclopedia of Integer Sequences (sequence
A005802) [Slo03].

The author executed this code on a computer with a 900-mhz Intel
Celeron processor (blazingly fast by 1995 standards) and 2 gigabytes
of RAM. On this machine, the N = 6 case took 3.86 seconds of CPU
time, and the N = 7 case took just over one minute (62.06s) of CPU
time. The N = 8 case (which is unnecessary to the proof) correctly
returns 15767 connected components, none of which are bad, in 1117.24
seconds (or 18.6 minutes).
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6. Affine NDPF and Affine [321]-Avoidance

The affine symmetric group is the Weyl group of type A
(1)
N , whose

Dynkin diagram is given by a cycle with N nodes. All subscripts on

generators for type A
(1)
N in this section will be considered (mod N). A

combinatorial realization of this Weyl group is given below.

Definition The affine symmetric group S̃N is the set of bijections
σ : Z→ Z satisfying:

• Skew-Periodicity: σ(i+N) = σ(i) +N , and

• Sum Rule:
∑N

i=1 σ(i) =
(
N+1
2

)
.

We will often denote elements of S̃N in the window notation, which
is a one-line notation where we only write (σ(1), σ(2), . . . , σ(N)). Due
to the skew-periodicity restriction, writing the window notation for σ
specifies σ on all of Z.

The generators si of S̃N are indexed by the set I = {0, 1, . . . , N−1},
and si acts by exchanging j and j + 1 for all j ≡ i(mod N). These
satisfy the relations:

• Reflection: s2i = 1,
• Commutation: sjsi = sisj when |i− j| > 1, and
• Braid Relations: sisi+1si = si+1sisi+1.

In these relations, all indices should be considered mod N .
Since the Dynkin diagram is a cycle, it admits a dihedral group’s

worth of automorphisms. One can implement a “flip” automorphism
Φ by fixing s0 and sending si → sN−i for all i 6= 0, extending the
automorphism used in the finite case. A “rotation” automorphism
ρ can be implemented by simply sending each generator si → si+1.
Combinatorially, this corresponds to the following operation. Given
the window notation (σ1, σ2, . . . , σN), we have:

ρ(σ) = (σN −N + 1, σ1 + 1, σ2 + 1, . . . , σN−1 + 1).

This can be thought of as shifting the base window one place to the
left, and then adding one to every entry. It is clear that this operation
preserves the skew periodicity and sum rules for affine permutations,
and it is also easy to see that ρN = 1.

As before, we can define the Hecke algebra of S̃N , and the 0-Hecke
algebra, generated by πi with πi idempotent anti-sorting operators,
exactly mirroring the case for the finite symmetric group. As in the
finite case, elements of the 0-Hecke algebra are in bijection with affine
permutations. We can also define the NDPF quotient of H0(S̃N), by
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introducing the relation

πi+1πiπi+1 = πi+1πi.

This allows us to give combinatorial definition for the affine NDPF,
which we will prove to be equivalent to the quotient.

Definition The extended affine non-decreasing parking functions are
the functions f : Z→ Z which are:

• Regressive: f(i) ≤ i,
• Order Preserving: i ≤ j ⇒ f(i) ≤ f(j), and
• Skew Periodic: f(i+N) = f(i) +N .

Define the shift functions sht as the functions sending i → i − t for
every i.

The affine non-decreasing parking functions NDPF(1)
N are ob-

tained from the extended affine non-decreasing parking functions by
removing the shift functions for all t 6= 0.

Notice that the definition implies that

f(N)− f(1) ≤ N.

Furthermore, since the shift functions are not in NDPF(1)
N , there is

always some j ∈ {0, 1, . . . , N} such that f(j) 6= f(j+ 1) unless f is the
identity.

We now state the main result of this section, which will be proved
in pieces throughout the remainder of the chapter.

Theorem 6.1. The affine non-decreasing parking functions NDPF(1)
N

are a J -trivial monoid which can be obtained as a quotient of the 0-
Hecke monoid of the affine symmetric group by the relations πjπj+1πj =
πjπj+1, where the subscripts are interpreted modulo N . Each fiber of
this quotient contains a unique [321]-avoiding affine permutation.

Proposition 6.2. As a monoid, NDPF(1)
N is generated by the func-

tions fi defined by:

fi(j) =

{
j − 1 : j ≡ i+ 1(mod N)
j : j 6≡ i+ 1(mod N).

These functions satisfy the relations:

f 2
i = fi

fifj = fjfi when |i− j| > 1, and

fifi+1fi = fi+1fifi+1 = fi+1fi when |i− j| = 1,

where the indices are understood to be taken (mod N).
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Proof. One can easily check that these functions fi satisfy the given
relations. We then check that any f ∈ NDPF(1)

N maybe written as a
composition of the fi.

Let f ∈ NDPF(1)
N . If there is no j ∈ {0, . . . , N} such that f(j) =

f(j + 1), then f is a shift function, and is thus the identity.
Otherwise, we have some j such that f(j) = f(j + 1). We can

then build f using fi’s by the following procedure. Notice that, if
any g ∈ NDPF(1) has g(j) = g(j + 1) for some j, we can emulate
a shift function by concatenating g with fjfj+1 · · · fj+N−1, where the
subscripts are understood to be taken (mod N). In other words, we
have:

g sh1 = gfjfj+1 · · · fj+N−1.

Suppose, without loss of generality, that f(N) 6= f(N + 1), so that
N and N + 1 are in different fibers of f , and N is maximal in its fiber.
(If the “break” occurs elsewhere, we simply use that break as the ‘top’
element for the purposes of our algorithm. Alternately, we can apply
the Dynkin automorphism to f until ρkf(N) 6= ρkf(N + 1). for some
k. We can use this algorithm to construct ρkf , and then apply ρ N −k
times to obtain f .) Begin with g = 1, and construct g algorithmically
as follows.

• Collect together the fibers. Set g′ to be the shortest element
in NDPFN such that the fibers of g′ match the fibers of f in
the base window. Let g0 be the affine function obtained from a
reduced word for g′. This is the pointwise maximal function in
NDPF(1)

N with fibers equal to the fibers of f .
• Now that the fibers are collected, post-compose g0 with fi’s to

move the images into place. We begin with g := g0 and apply
the following loop:

while g 6= f :

for i in {1, . . . , N} :

if g(i+ 1) > f(i+ 1) and g−1(g(i+ 1)− 1) = ∅ :

g := g.fi.

This process clearly preserves the fibers of g0 (which coincide
with the fibers of f), and terminates only if g = f . We need to
show that the algorithm eventually halts.

Recall that g0(i) ≥ f(i) for all i, and then notice that it is
impossible to obtain any g in the evaluation of the algorithm
with g(i) < f(i), so that we always have g(i)− f(i) > 0. With
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each application of a fj, the sum
∑N

i=1(g(i) − f(i)) decreases
by one.

Suppose the loop becomes stuck; then for every i either f(i+
1) = g(i + 1) or g−1(g(i + 1) − 1) 6= ∅. If there is no i with
f(i + 1) = g(i + 1), then there must be some i with g−1(g(i +
1) − 1) = ∅, since g(N) − g(1) ≤ N and g 6= 1. Then we can
find a minimal i ∈ {1, . . . , N} with f(i+ 1) = g(i+ 1).

Now, find j minimal such that f(i + j) 6= g(i + j), so that
f(i + j − 1) = g(i + j − 1). In particular, notice that i + j −
1 and i + j must be in different fibers for both f and g. If
g−1(g(i + j) − 1) = ∅, then the loop would apply a fi+j−1 to
g, but the loop is stuck, so this does not occur and we have
that f(i + j − 1) = g(i + j − 1) = g(i + j) − 1 < f(i + j) ≤
g(i+ j) = g(i+ j − 1) + 1. This then forces g(i+ j) = f(i+ j),
contradicting the condition on j.

Thus, the loop must eventually terminate, with g = f .

We have not yet shown that these relations are all of the relations
in the monoid; this must wait until we have developed more of the
combinatorics of NDPF(1)

N . In fact, NDPF(1)
N is a quotient of the 0-

Hecke monoid of S̃N by the relations πiπi+1πi = πiπi+1 for each i ∈ I,
where subscripts are understood to be taken mod N . To prove this
(and simultaneously prove that we have in fact written all the relations
in NDPF(1)

N), we will define three maps, P,Q, and R (illustrated in
Figure 8). The map P : H0(S̃N)→ NDPF(1)

N is the algebraic quotient
on generators sending πi → fi. The map Q : H0(S̃N) → NDPF(1)

N is
a combinatorial algorithm that assigns an element of NDPF(1)

N to any
affine permutation. In Lemma 6.8 we show that P = Q. Additionally,
we have already shown that P is onto (since the fi generate NDPF(1)

N),
so Q is onto as well.

The third map R : NDPF(1)
N → H0(S̃N) assigns a [321]-avoiding

affine permutation to an f ∈ NDPF(1)
N . In fact, R ◦ P is the identity

on the set of [321]-avoiding affine permutations, and P ◦R is the identity
on NDPF(1)

N . This then implies that there are no additional relations
in NDPF(1)

N . �

Corollary 6.3. The map P : H0(S̃N)→ NDPF(1)
N , defined by sending

πi → fi and extending multiplicatively, is a monoid morphism.

Proof. The generators fi satisfy all relations in the 0-Hecke algebra,
so P is a quotient of H0(S̃N) by whatever additional relations exist in
NDPF(1)

N . �
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Affine Non-decreasing
Parking Functions

Algebraic 
 Quotient

P

Q

Combinatorial 
    Quotient

R

Inclusion Map

Affine Permutations

[321]-Avoiding
Affine Permutations

Figure 8. Maps between H0(S̃N) and NDPF(1)
N .

Lemma 6.4. Any function f ∈ NDPF(1)
N is entirely determined by

its set of fibers, set of images, and one valuation f(i) for some i ∈ Z.

Proof. This follows immediately from the fact that f is regressive and
order preserving. �

Lemma 6.5. Let f ∈ NDPF(1)
N , and Ff = {mj} be the set of maximal

elements of the fibers of f . Each pair of distinct elements mj,mk of
the set Ff ∩ {1, 2, . . . , N} has f(mj) 6≡ f(mk)(mod N).

Proof. Suppose not. Then f(mj) − f(mi) = kN for some k ∈ Z,
implying that f(mj) = f(mi + kN). Since f(mj) − f(mi) ≤ N , we
must have k = 0. But then mj and mi are in the same fiber, providing
a contradiction. �

Theorem 6.6. NDPF(1)
N is J -trivial.

Proof. This is a direct consequence of the regressiveness of functions in
NDPF(1)

N . Let M := NDPF(1)
N , and f ∈ M . Then each g ∈ MfM

has g(i) ≤ f(i) for all i ∈ Z. Thus, if MgM = MfM , we must have
f = g. Then the J -equivalence classes of M are trivial, so NDPF(1)

N

is J -trivial. �

Note that NDPF(1)
N is not aperiodic in the sense of a finite monoid.

(Aperiodicity was defined in Section 2.) Take the function f where
f(i) = 0 for all i ∈ {1, . . . , N}. Then fk(1) = (1− k)N , so there is no
k such that fk = fk+1.
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Figure 9. Example of the combinatorial quotient Qcl :
H0(S5) → NDPF5. The string diagram is read left-to-
right, with the permutation illustrated with black strings
and the image function drawn in red. The permutation
in the left diagram, then, is x = [2, 4, 1, 5, 3] and Qcl(x)
is the function f = [1, 1, 1, 3, 3]. For the permutation on
the right, we have y = [4, 2, 1, 5, 3] and Qcl(y) = Qcl(x) =
[1, 1, 1, 3, 3]. Notice that these two permutations x and
y are related by turning the [321]-pattern in y into a
[231]-pattern in x, preserving the fiber of Q.

6.1. Combinatorial Quotient. A direct combinatorial map from aff-
ine permutations to NDPF(1)

N is now discussed. This map directly
constructs a function f from an arbitrary affine permutation x, with
the same effect as applying the algebraic NDPF(1) quotient to the 0-
Hecke monoid element indexed by x. We first define the combinatorial
quotient in the finite case and provide an example (Figure 9).

Definition The combinatorial quotient Qcl : H0(SN) → NDPFN is
given by the following algorithm, which assigns a function f to a per-
mutation x.

(1) Set f(N) := x(N).
(2) Suppose i is maximal such that f(i) is not yet defined.

If x(i) > f(i + 1), set f(i) := f(i + 1). Otherwise, set f(i) :=
x(i).

Note that the map Qcl is closely related to bijection of Simion and
Schmidt between [132]-avoiding permutations and [123]-avoiding per-
mutations [SS85]. (The bijection is also covered very nicely in [Bón04])
This bijection operates by marking all left-to-right minima (i.e., ele-
ments smaller than all elements to their left) of a [132]-avoiding per-
mutation, and then reverse-sorting all elements which are not marked.
The resulting permutation is [123]-avoiding. For example, the permu-
tation [5, 6,4, 7,1, 2, 3] avoids the pattern [132]; the bold entries are
the left-to-right minima. Sorting the non-bold entries, one obtains the
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permutation [5, 7,4, 6,1, 3, 2], which avoids the permutation [123]. No-
tice that the bold entries are still left-to-right minima after anti-sorting
the other entries.

The patterns [231] and [123] are the respective “reverses” of the
patterns [132] and [321], obtained by simply reversing the one-line no-
tation. It is trivial to observe that x avoids p if and only if the reverse
of x avoids the reverse of p. Then the “reverse” of the Simion-Schmidt
algorithm (which marks right-to-left minima, and sorts the other en-
tries) gives a bijection between [231]- and [321]-avoiding permutations;
in fact, this is the same bijection given by the fibers of the NDPF
quotient of the 0-Hecke monoid.

A similar combinatorial quotient from S̃N → NDPF(1)
N may be

defined, generalizing the map Qcl. This map will assign a function f
to an affine permutation x.

Below, we will show that each fiber of the map Q contains a unique
[321]-avoiding affine permutation (Theorem 6.11). However, it is too
much to expect a bijection between affine [231]- and [321]-avoiding per-
mutations. By a result of Crites, there are infinitely many affine per-
mutations that avoid a pattern σ if and only if σ contains the pattern
[321] [Cri10]. Thus, there are infinitely many [321]-avoiding affine per-
mutations, but only finitely many [231]-avoiding affine permutations.

We first identify some k ∈ {1, 2, . . . , N} such that for every j > k,
x(j) > x(k).

Lemma 6.7. Choose k0 ∈ {1, 2, . . . , N} such that x(k0) ≤ x(m) for
every m ∈ {1, 2, . . . , N}. Then for every j > k0, x(j) > x(k0).

Proof. Suppose j > k0 with x(j) < x(k0). Then there exists p ∈ N such
that j − pN ∈ {1, 2, . . . , N}, so that x(j − pN) = x(j)− pN < x(k0),
contradicting the minimality of x(k0). �

Now the affine combinatorial quotient is defined by the following
algorithm.

Definition The combinatorial quotient Q : H0(S̃N) → NDPF(1)
N is

given by the following algorithm, which assigns a function f to an affine
permutation x.

(1) Choose k0 ∈ {1, 2, . . . , N} such that x(k0) ≤ x(m) for every
m ∈ {1, 2, . . . , N}. Set f(k0) = x(k0).

(2) Choose i ∈ {1, 2, . . . , N − 1} minimal such that f(k0 − i) is
not yet defined. If x(k0 − i + 1) < f(k0 − i), set f(k0 − i) :=
f(k0 − i+ 1). Otherwise, set f(k0 − i) := x(k0 − i).

(3) Define f on all other i using skew periodicity.
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Lemma 6.8. The affine combinatorial quotient Q agrees with the al-
gebraic NDPF(1) quotient P .

Proof. We denote the combinatorial quotient by Q and the algebraic
quotient by P .

One can easily check that Q(1) = P (1) = 1, and Q(πi) = P (πi) = fi.
Since P is a monoid morphism, we have that P (xπi) = P (x)P (πi) =
ffi. We then assume that Q(x) = P (x) = f , and consider Q(xπi). We
will show that Q(xπi) = Q(x)fi = ffi = P (xπi).

If πi is a right descent of x then Q(xπi) = Q(x) = f = P (xπi), and
we are done.

If πi is not a right descent of x, we have x(kN + i) < x(kN + i+ 1)
for all k ∈ Z, and

xπi(j) =

 x(j) for all j 6≡ i, i+ 1(mod N)
x(j + 1) for all j ≡ i(mod N)
x(j − 1) for all j ≡ i+ 1(mod N)

We examine the functions Q(xπi) and ffi on i and i + 1, since these
functions are equal on j 6≡ i, i + 1(mod N), and the actions on i and
i+ 1 then determine the functions on all j ≡ i, i+ 1(mod N).

We consider two cases, depending on whether i and i+ 1 are in the
same fiber of f .

• If i and i+ 1 are in the same fiber of f and i+ 1 is maximal in
this fiber, we must (by construction of Q) have x(i+ 1) < x(i),
contradicting the assumption that πi was not a right descent of
x.
• If i and i+ 1 are in the same fiber of f and i+ 1 is not maximal

in this fiber, then there exists some (minimal) m > i + 1 > i
with x(m) < x(i) and x(m) < x(i+ 1), maximal in the fiber of
i and i+ 1. Then x(m) < x(i+ 1) = xπi(i) and x(m) < x(i) =
xπi(i+ 1). Since the maximal size of a fiber of f is N , we have
that m− i ≤ N . Then (since i+ 1 not maximal in the fiber of
f) m 6≡ i+ 1(mod N).

If m ≡ i(mod N), then i is maximal in its fiber, and we must
have i and i+ 1 in different fibers, contrary to assumption.

If m 6≡ i(mod N), we have x(m) = xπi(m) < xπi(i), xπi(i +
1), and so by the construction of Q, we have Q(xπi)(i) =
Q(xπi)(i + 1) = Q(xπi)(m) = Q(x)(m) = x(m). Then in this
case, Q(xπi) = f .

On the other hand, ffi(i) = f(i) = f(m) = ffi(m), and
ffi(i+ 1) = f(i) = f(m) = ffi(m), so ffi = f .
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• If i and i+1 are in different fibers of f , then we have i maximal
in its fiber, and take m (possibly equal to i + 1) to be the
maximal element of the fiber in which i+ 1 sits. We note that
if m ≡ i+1(mod N), then we must have i and i+1 in the same
fiber, reducing to the previous case.

Otherwise, applying the construction of Q, we find that
Q(xπi)(i + 1) = x(i), and that Q(xπi)(i) = x(i); thus i + 1
is removed from its fiber and merged into the fiber with i. The
resulting function is equal to ffi.

This exhausts all cases, completing the proof. �

Corollary 6.9. The finite type combinatorial quotient agrees with the
NDPFN quotient of H0(SN) obtained by introducing the relations:

πiπi+1πi = πi+1πi for i ∈ {1, . . . , N − 2}.
Proof. This follows immediately from Lemma 6.8 by parabolic restric-
tion to the finite case. In the finite case, the index set is {1, 2, . . . , N −
1}, so we must have i ∈ {1, . . . , N − 2}. �

6.2. Affine [321]-Avoidance. An affine permutation x avoids a pat-
tern σ ∈ Sk if there is no subsequence of x in the same relative order as
σ. This ostensibly means that an infinite check is necessary, however
one may show that only a finite number of comparisons is necessary
to determine if x contains a [321]-pattern. The following lemma is
equivalent to [Gre02, Lemma 2.6].

Lemma 6.10. Let x contain at least one [321]-pattern, with xi > xj >
xk and i < j < k. Then x contains a [321]-pattern xi′ > xj > xk′ such
that i ≤ i′ < j < k′ ≤ k, j − i′ < N , and k′ − j < N .

Proof. We have xj > xk > xk−aN = xk−aN for a ∈ N, so if k− j > N ,
we can find a [321] pattern replacing xk with xk−aN . A similar argument
allows us to replace i with i + bN for the maximal b ∈ N such that
j − (i+ bN) < N . �

As noted by Green, one can then check whether an affine permutation
contains a [321]-pattern using at most

(
N
3

)
comparisons. Green also

showed that any affine permutation containing a [321]-pattern contains
a braid; we can actually replicate this result using a width system on
the affine permutation, as depicted in Figure 10. The lemma ensures
that the width of a minimal [321]-pattern under this width system has
a total width of at most 2N − 2. One must consider the case when the
total width of a minimal [321]-instance is greater than N , but nothing
untoward occurs in this case: the width system is bountiful and allows
a factorization of x over [321].
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b:=q-p

3

xp

2

xq

1

xr

a:=r-p

tx < 1 sx > 2

1-N

xr-N

3+N

xp+N

j:=r-N-p j:=r-N-p

Figure 10. Diagram of a bountiful width system for
the pattern [321] for affine permutations. The pattern
occurs at positions (xp, xq, xr), with width system given
by (r − p, q − p). In the case where r − p > N , there is
an ‘overlap’ of j = r−N −p. Bountifulness of the width
system ensures that the elements in the overlap may be
moved moved out of the interior of the pattern instance
by a sequence of simple transpositions, each decreasing
the length of the permutation by one, just as in the non-
affine case.

We now prove the main result of this section.

Theorem 6.11. Each fiber of the NDPF(1)
N quotient of S̃N contains

a unique [321]-avoiding affine permutation.

Proof. We first establish that each fiber contains a [321]-avoiding affine
permutation, and then show that this permutation is unique.

Recall the algebraic quotient map P : H0(S̃N) → NDPF(1)
N , which

introduces the relation πiπi+1πi = πi+1πi.
Choose an arbitrary affine permutation x; we show that the fiber

Q−1 ◦ Q(x) contains a [321]-avoiding permutation. If x is itself [321]-
avoiding, we are already done. So assume x contains a [321]-pattern.
As shown by Green [Gre02], an affine permutation x contains a [321]-
pattern if and only if x has a reduced word containing a braid; thus,
x = yπiπi+1πiz for some permutations y and z with len(x) = len(y) +
3+len(z). Applying the NDPF(1)

N relations, we may set x′ = yπi+1πiz,
and have Q(x) = Q(x′), with len(x′) = len(x)−1. If x′ contains a [321],
we apply this trick again, reducing the length by one. Since x is of
finite length, this process must eventually terminate; the permutation
at which the process terminates must then be [321]-avoiding. Then the
fiber Q−1 ◦Q(x) contains a [321]-avoiding permutation.

We now show that each fiber contains a unique [321]-avoiding affine
permutation, using the combinatorial quotient map.
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Let x be [321]-avoiding, and let Q(x) = f an affine non-decreasing
parking function; we use information from f to reconstruct x. Let {mi}
be the set of elements of Z that are maximal in their fibers under f . By
the construction of the combinatorial quotient map, we have x(mi) =
f(mi) for every i. Since f is in NDPF(1)

N , we have x(mi) < x(mi′)
whenever i < i′; thus {x(mi)} is a strictly increasing sequence.

Let {mi,j} = f−1 ◦ f(mi) \ {mi}, with mi,j < mi,j+1 for every j.
Notice that if i < i′ and j < j′ then mi,j < mi′,j′ .

We claim that if i < i′ and j < j′, then x(mi,j) < x(mi′,j′). If not,
then we have

x(mi′) < x(mi′,j′) < x(mi,j), with mi,j < mi′,j′ < mi′ ,

in which case x contains a [321]-pattern, contrary to assumption. Thus,
the sequence {x(mi,j)} with i and j arbitrary is a strictly increasing
sequence.

Now {f(mi) = x(mi)} and {x(mi,j)} are two increasing sequences.
Since x is a bijection, and every z ∈ Z is either an mi or an mi,j, x is
determined by the choice of x(m1,1). A valid choice for x(m1,1) exists,
since every f arises as the image of some affine permutation under Q,
and every fiber contains some [321]-avoiding element.

One can show that the choice of x(m1,1) is uniquely determined
by the following argument. Suppose two valid possibilities exist for
x(m1,1), giving rise to two different [321]-avoiding affine permutations
x and x′. Suppose without loss of generality that 1 ≤ m1,1 ≤ N , and
that x(m1,1) < x′(m1,1). Then:

(
N + 2

2

)
=

N∑
k=1

x(k)

=
∑

(x(mi) +
∑

x(mi,j)) where mi, mi,j ∈ {1, . . . , N}

<
∑

(x′(mi) +
∑

x′(mi,j)) where mi, mi,j ∈ {1, . . . , N}

=
N∑
k=1

x′(k)

=

(
N + 2

2

)
,

providing a contradiction. Hence x(m1,1) is uniquely determined, and
thus each fiber of Q contains a unique [321]-avoiding permutation. �
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