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Multivariate polynomials with prescribed zero restrictions

I Statistical mechanics: Lee–Yang program on phase
transitions, correlation inequalities.

I Probability theory: Negative dependence, symmetric exclusion
process.

I Matrix theory: Matrix inequalities for Hermitian matrices,
Horn’s problem.

I Control theory: Stability of solutions systems of equations.

I Complex analysis: Dynamics of zeros of polynomials and
entire functions.

I PDE: Hyperbolic PDE, fundamental solution of PDE’s with
constant coefficients.

I Optimization: Convex optimization generalizing semidefinite
programming.

I Combinatorics: Unimodality, log-concavity, graph polynomials,
matroid theory.



Outline

I Stable polynomials; a multivariate analog of real-rooted
polynomials.

I Inequalities (Negative dependence).

I Symmetric exclusion process.

I Linear operators preserving real-rootedness/stability.

I Multivariate Eulerian polynomials.

I “Stability” in the algebra of free quasi-symmetric functions.

I Infinite log-concavity.

I Stable polynomials and matroid theory.

I Generalized Lax conjecture in convex optimization.



Real-rooted polynomials
Let P(x) = a0 + a1x + · · ·+ anx

n be a polynomial with positive
coefficients.

I {ak}nk=0 is unimodal if for some m:

a0 ≤ a1 ≤ · · · ≤ am ≥ am+1 ≥ · · · ≥ an−1 ≥ an.

⇐= {ak}nk=0 is log-concave:

a2
k ≥ ak−1ak+1, for all 1 ≤ k ≤ n − 1.

⇐= {ak}nk=0 is ultra-log-concave:

a2
k(n

k

)2
≥ ak−1( n

k−1

) ak+1( n
k+1

) , for all 1 ≤ k ≤ n − 1.

⇐= P(x) is real-rooted.



Examples of real–rooted polynomials

I Eulerian polynomials (and generalizations):

An(x) =
∑
σ∈Sn

xdes(σ)+1,

where des(σ) = |{i ∈ [n − 1] : σ(i) > σ(i + 1)}|.
I Matching polynomials: Generating polynomial of matchings in

a graph. A matching is a subset M of pairwise disjoint edges.

I Independence polynomials of claw-free graphs: Generating
polynomial of independent sets of vertices. A graph is claw
free if it contains no induced claw.

claw

I Orthogonal polynomials.

I Characteristic polynomials of hermitian matrices.



Multivariate analog of real-rootedness

I Let P(x) ∈ C[x1, . . . , xn] and H = {z ∈ C : Im(z) > 0}.
I P is stable if

x ∈ Hn =⇒ P(x) 6= 0.

I (1− x1x2)(1 + 2x1 + 4x2 + 3x3) is stable.

I If P ∈ R[x1], then P is stable iff it is real-rooted.

I If P ∈ R[x] is stable, then P(x , x , . . . , x) is real-rooted.

I By convention call the zero polynomial stable.

I The space of stable polynomial in n variables and of degree at
most d is closed. (Hurwitz’ theorem on the continuity of
zeros).

I This space has nonempty interior.



Examples

I Helmann–Lieb theorem
Let x = (xi )i∈V be variables and λ = (λe)e∈E nonnegative weights.
Then

PG ,λ(x) =
∑
M

(−1)|M|
∏

e=ij∈M
λexixj ,

where the sum is over all matchings is stable.

I In particular, the generating polynomial∑
M

x |M|

is real-rooted.



Determinantal polynomials

I Let A0, . . . ,An be hermitian m ×m matrices. If A1, . . . ,An

are positive semidefinite, then

P(x) = det(A0 + A1x1 + · · ·+ Anxn)

is stable.

Proof. We may assume that A1 is positive definite. Let x + iy ∈ Hn.
We need to prove that P(x + iy) 6= 0.

P(x + iy) = det

(
A0 +

n∑
k=0

xkAk + i
n∑

k=0

ykAk

)
= det(A + iB) = det(B) det(B−1/2AB−1/2 + iI )

I B−1/2AB−1/2 is hermitian, so −i is not an eigenvalue. Thus
P(x + iy) 6= 0.



Determinantal polynomials

For n = 2 there is a converse which follows from seminal work of
Helton and Vinnikov which solves a conjecture of P. Lax from 1958:

Theorem
Let P(x , y) be a real polynomial of degree at most d . TFAE

I P is stable;

I There exist three symmetric real d × d matrices A,B,C such
that A,B are positive semidefinite and

P(x , y) = det(xA + yB + C ).

I The exact converse fails for more than three variables by a
count of parameters: Detn,d ≤ n

(d+1
2

)
,Stablen,d =

(n+d
n

)
.



Spanning tree polynomials

I Let G = (V ,E ) be a connected graph with V = {1, . . . , n}.
I The spanning tree polynomial (in x = (xe)e∈E ) is

PG (x) =
∑
T

∏
e∈T

xe ,

where the sum is over all spanning trees of G .

I The weighted Laplacian of G is the linear matrix polynomial

LG (x) =
∑
e∈E

xe(δe1 − δe2)(δe1 − δe2)T ,

where {δi}ni=1 is the standard basis of Rn and e1, e2 are the
vertices incident to the edge e.

I Kirchhoff’s matrix-tree theorem
Let LG (x)i be the matrix obtained by deleting row and column i in
LG (x). Then PG (x) = det(LG (x)i ).

I Spanning tree polynomials are stable.



Inequalities

I Let

P(x) =
∑
α∈Nn

a(α)xα, where xα = xα1
1 · · · xαn

n

be a stable polynomial with non-negative coefficients.

I For all α, β ∈ Nn

a(α)a(β) ≥ a(α ∨ β)a(α ∧ β).

I Thm. (Gurvits): If P is homogeneous of degree n, then

a(1, 1, . . . , 1) ≥ n!

nn
Cap(P),

where

Cap(P) = inf
x1,...,xn>0

P(x1, . . . , xn)

x1 · · · xn
.



Inequalities

I Recall that a matrix A = (aij)
n
i ,j=1 with nonnegative entries is

doubly stochastic if each row and each column sums to one.

I Let P(x) =
∏n

i=1(
∑n

j=1 aijxj) =
∑

α a(α)xα.

I Then

a(1, . . . , 1) =
∑
σ∈Sn

n∏
i=1

aiσ(i) = per(A),

where Sn is the symmetric group on {1, . . . , n}.
I Also P is stable and Cap(P) = 1.

I Hence

per(A) ≥ n!

nn

I which was conjectured by Van der Waerden in 1926 and
proved by Egorychev/Falikman in 1979/1980.



Inequalities: Positive dependence

I Let S be a finite set and µ a discrete probability measure on
{0, 1}S i.e.,

µ : {0, 1}S → [0,∞),
∑

η∈{0,1}S
µ(η) = 1

I Think of S as sites that can be occupied by particles.

I µ is pairwise positively correlated if for all distinct i , j ∈ S

µ
(
η : η(i) = η(j) = 1

)
≥ µ

(
η : η(i) = 1

)
µ
(
η : η(j) = 1

)
I µ is positively associated if for all increasing

f , g : {0, 1}S → R ∫
fgdµ ≥

∫
fdµ

∫
gdµ



I Let i 6= j and

f (η) =

{
1 if η(i) = 1,

0 if η(i) = 0
and g(η) =

{
1 if η(j) = 1,

0 if η(j) = 0

I Then∫
fdµ = µ

(
η : η(i) = 1

)
and

∫
fgdµ = µ

(
η : η(i) = η(j) = 1

)
.

I Hence positive association is stronger than pairwise positive
correlation.

I FKG Theorem (Fortuin, Kasteleyn, Ginibre)

µ is positively associated if

µ(α)µ(β) ≤ µ(α ∨ β)µ(α ∧ β), for all α, β ∈ {0, 1}S .



Inequalities: Negative dependence

I µ is pairwise negatively correlated if for all distinct i , j ∈ S

µ
(
η : η(i) = η(j) = 1

)
≤ µ

(
η : η(i) = 1

)
µ
(
η : η(j) = 1

)

I µ is negatively associated (NA) if for all increasing
f , g : {0, 1}S → R depending on disjoint sets of variables∫

fgdµ ≤
∫
fdµ

∫
gdµ

I Negative association is a desirable property implying for
example central limit theorems, but hard to prove for specific
examples.

I There is no known FKG theorem for negative dependence.
Find a “useful” property that implies NA!



Examples of NA measures

I The uniform spanning tree measure associated to a connected
graph G = (V ,E ) is the discrete probability measure on
{0, 1}E , that puts all mass and equal mass to the spanning
trees of G .

I Thm. (Feder and Mihail): Uniform spanning tree measures
are negatively associated.

I Determinantal measures: Let A be a positive semidefinite
n × n matrix with all eigenvalues ≤ 1. A defines a measure by

µ(η : ξ ≤ η) = det(A[ξ]),

where A[ξ] is the principal minor with rows and columns
indexed by ξ.

I Thm. (R. Lyons): Determinantal measures are negatively
associated.



Strong Rayleigh measures

I The partition function of µ is the multivariate polynomial

Zµ(x) =
∑

η∈{0,1}S
µ(η)xη, where xη =

∏
i∈S

x
η(i)
i .

I Strong Rayleigh measures: µ is strong Rayleigh if Zµ is stable.

I Theorem (Borcea, B., Liggett)

Strong Rayleigh measures are negatively associated.

I The proof uses a general form of the Feder–Mihail theorem
and theorems in analysis due to Grace–Walsh–Szegő and
Gårding.

I Uniform spanning tree measures are strong Rayleigh.

I Determinantal measures are strong Rayleigh.

I Strong Rayleigh measures have nonempty interior in the space
of all discrete probability measures on {0, 1}S .



The Symmetric Exclusion Process (SEP)
I Finite (countable) set S of sites.
I Configuration of particles η ∈ {0, 1}S .

η(i) = 0 vacant η(i) = 1 occupied

I Nonnegative symmetric S × S matrix Q = (qij)
n
i ,j=1

I The Symmetric Exclusion Process is the continuous time
Markov process on {0, 1}S , t 7→ ηt , with transitions described
by:

η → τij(η) at rate qij

where τij is the transposition that interchanges the
coordinates η(i) and η(j).

i j τij i j
• • → • •
• • → • •
• • → • •















Recall that a product measure is a measure µ of the form

Zµ(x) =
n∏

i=1

(1− pi + pixi ), where 0 ≤ pi ≤ 1.

Theorem (Liggett 1970’s)

Suppose that the initial distribution is a product measure then for
any finite A ⊆ S and t ≥ 0

P(ηt ≡ 1 on A) ≤
∏
i∈A

P(ηt(i) = 1)

Theorem (Andjel 1985)

Suppose that the initial distribution is a product measure then for
any finite disjoint sets A,B ⊆ S and t ≥ 0

P(ηt ≡ 1 on A ∪ B) ≤ P(ηt ≡ 1 on A)P(ηt ≡ 1 on B)



I Conjecture (Liggett, Pemantle)

Suppose that the initial distribution in SEP is a product measure,
then the distribution is negatively associated for all t ≥ 0.

I Unfortunately NA is not preserved by SEP.

I Problem
Find a negative dependence property P satisfying

(1) P is preserved by SEP,
(2) P =⇒ NA,
(3) Product measures have property P.

I Strong Rayleigh measures satisfy (2) and (3).

I Thm. (Borcea, B., Liggett): The strong Rayleigh property is
preserved by SEP.



A refined particle process

I Consider SEP with particle creation and annihilation allowed.

I At each site a particle is created at a certain rate (provided
that the site is empty).

I At each site a particle is annihilated at a certain rate
(provided that the site is occupied).

Observation (Wagner)

SEP with particle creation and annihilation preserves the strong
Rayleigh property.



























I What is the stationary distribution?

I Let σ = σ1σ2 · · ·σn+1 ∈ Sn+1 be a permutation.

I Let DB(σ) = (η1, . . . , ηn) ∈ {0, 1}n be defined by
ησi = 1⇐⇒ σi−1 > σi .

I DB(37284156) = (1, 1, 0, 1, 0, 0, 0).

I Let µn be the distribution of DB, i.e.,

µn(η) =
|{σ ∈ Sn+1 : DB(σ) = η}|

(n + 1)!
.

Theorem (Corteel and Williams)

µn is the stationary distribution for the above process.

I Hence µn is strong Rayleigh.

I Its partition function Zn satisfies

x(n + 1)!Zn(x , . . . , x) = An+1(x),

where An(x) is the nth Eulerian polynomial.



I Problem. Find the stationary distribution for other graphs.

I It is necessarily strong Rayleigh.



Linear operators preserving stability

Problem.
Characterize linear operators T : R[x ]→ R[x ] preserving real
rootedness.

I An old problem that goes back to the work of Laguerre,
Hermite, Jensen, Pólya, Schur who wanted to prove that all
zeros of the entire function

ξ(x) =
1

2

(
x2 +

1

2

)
πix/2−1/4Γ

(
1

4
− ix

2

)
ζ

(
1

2
− ix

)
are real.

I and more recently to Craven, Csordas, Saff, Iserles, Nørsett,
Brenti, Wagner, ...

I Gauss and Lucas: T = d/dx
I Hermite, Poulain, Jensen: T =

∑n
k=0 ak(d/dx)k preserves

real–rootedness iff
∑n

k=0 akx
k is real–rooted.

I A sequence {λk}∞k=0 ⊂ R is a multiplier sequence, if the
(diagonal) operator T (xk) = λkx

k preserves real–rootedness.
I Hence λk = k is a multiplier sequence (T = xd/dx).



Theorem (Pólya and Schur, 1914). TFAE

(i) {λk}∞k=0 is a multiplier sequence.

(ii) For each n ∈ N, all zeros of

T ((1 + x)n) =
n∑

k=0

(
n

k

)
λkx

k

are real and of the same sign.

(iii) The exponential generating function

T (ex) =
∞∑
k=0

λk
k!

xk

is an entire function, which is the limit, uniform on compact
sets, of polynomials with only real zeros which are all of the
same sign.



General Characterization

I Let Rn[x ] = {P ∈ R[x ] : degP ≤ n}.
I The symbol of a linear operator T : Rn[x ]→ R[x ] is the

bivariate polynomial

GT (x , y) = T ((x + y)n) =
n∑

k=0

(
n

k

)
T (xk)yn−k .

I Call T degenerate if its range is at most two-dimensional.

Theorem (Borcea and B.). A nondegenerate linear operator
T : Rn[x ]→ R[x ] preserves real-rootedness iff

GT (x , y) or GT (x ,−y) is stable.



Example

I Let An(x) =
∑n

k=0 A(n, k)xk be the Eulerian polynomial of
degree n.

I A(n + 1, k) = kA(n, k) + (n + 2− k)A(n, k − 1)

An+1(x) = x(1− x)
d

dx
An(x) + (n + 1)xAn(x) = T (An(x))

T = x(1− x)
d

dx
+ (n + 1)x

I We want to prove that T : Rn[x ]→ R[x ] preserves
real-rootedness.

T ((x + y)n)) = x(x + y)n−1(x + (d + 1)y + d),

I which is stable



I The symbol of a linear operator T : R[x ]→ R[x ] is the formal
power series

GT (x , y) = T (e−xy ) =
∞∑
k=0

T (xk)

k!
(−y)k .

I The Laguerre–Pólya class of entire functions in n variables,
L Pn(R), consists of all entire functions that are the uniform
limit on compact sets of real stable polynomials in n variables.

I e−xy = limn→∞(1− xy/n)n

Theorem (Borcea and B.). A nondegenerate linear operator
T : R[x ]→ R[x ] preserves real-rootedness iff

GT (x , y) or GT (x ,−y) is in the Laguerre–Pólya class.



Example: Differential operators

I Let T =
∑n

k=0 Qk(x)dk/dxk be a differential operator. Then

GT (x , y) = T (e−xy ) = e−xy
n∑

k=0

Qk(x)(−y)k .

I Hence T preserves real-rootedness iff
∑n

k=0 Qk(x)(−y)k is
stable iff
there exist three symmetric real matrices A,B,C such that
A,B are positive semidefinite and

n∑
k=0

Qk(x)yk = det(xA− yB + C ).



I Preserving real stability in one variable ⇐⇒ Symbol is real
stable in two variables.

I For κ = (κ1, . . . , κn) ∈ Nn, let

Cκ[x1, . . . , xn] = {P ∈ C[x1, . . . , xn] : degxj (P) ≤ κj for all j}.

I The symbol of a linear operator
T : Cκ[x1, . . . , xn]→ C[x1, . . . , xn] is the 2n-variate
polynomial

GT (x, y) = T ((x1 + y1)κ1 · · · (xn + yn)κn) ,

where T only acts on the x-variables.

Theorem (Borcea and B.). Suppose that the range of
T : Cκ[x1, . . . , xn]→ C[x1, . . . , xn] has dimension at least two.
Then T preserves stability if and only if GT (x, y) is stable.



I The complex Laguerre–Pólya class of entire functions in n
variables, L Pn(C), consists of all entire functions that are
the uniform limit on compact sets of stable polynomials in n
variables.

I The symbol of a linear operator
T : C[x1, . . . , xn]→ C[x1, . . . , xn] is the formal power series

GT (x, y) = T (e−x·y) =
∑
α∈Nn

T (xα)

α!
(−y)α,

where α! = α1! · · ·αn! and x · y = x1y1 + · · ·+ xnyn.

Theorem (Borcea and B.). Suppose that the range of
T : C[x1, . . . , xn]→ C[x1, . . . , xn] has dimension at least two.
Then T preserves stability if and only if GT (x, y) is in the complex
Laguerre–Pólya class.



Example

I Helmann–Lieb theorem
Let x = (xi )i∈V be variables and λ = (λe)e∈E nonnegative weights.
Then

PG ,λ(x) =
∑
M

(−1)|M|
∏

e=ij∈M
λexixj ,

where the sum is over all partial matchings is stable.

I Proof following Choe, Oxley, Sokal and Wagner:

I Let MAP : C[x1, . . . , xn]→ C[x1, . . . , xn] be the linear
operator that maps P to its multi-affine part:

MAP

(∑
α∈Nn

a(α)xα

)
=

∑
α∈{0,1}n

a(α)xα.



I MAP preserves stability:

MAP(e−x·y) = (1− x1y1) · · · (1− xnyn).

I The Heilmann–Lieb theorem follows from

MAP

∏
ij∈E

(1− λ(ij)xixj)

 = PG ,λ(x).



Example: Eulerian polynomials

I Consider the homogenized Eulerian polynomials:

An(x , y) =
∑
σ∈Sn

xdes(σ)+1yasc(σ)+1 = yn+1An(x/y).

An+1(x , y) = xy

(
∂

∂x
+

∂

∂y

)
An(x , y) = T (An).

I To prove that An(x , y) is stable and thus that An(x)
real-rooted, we want to prove that T preserves stability:

T (e−xz−yw ) = −xy(z + w)e−xz−yw ∈ L P4(C).



Multivariate Eulerian polynomials

I Define the descent bottom set and ascent bottom set of
σ ∈ Sn as

DB(σ) = {σ(i) : σ(i − 1) > σ(i)} and

AB(σ) = {σ(i) : σ(i) < σ(i + 1)},

where σ(0) = σ(n + 1) =∞.
I Define the weight of σ as

w(σ) =
∏

i∈DB(σ)

xi
∏

j∈AB(σ)

yj .

w(5762413) = x5x6x2x1y2y1y3y5.

I Define a multivariate Eulerian polynomial by

An(x, y) =
∑
σ∈Sn

w(σ).



Multivariate Eulerian polynomials
I An(x, y) is multi-affine and homogeneous of degree n + 1.
I For i = 0, . . . , n, the ith slot of σ is the space between σ(i)

and σ(i + 1).
I Let σ be a permutation of {2, . . . , n + 1} and insert the letter

1 in the slot i of σ.
I If σ(i) < σ(i + 1), then the new weight is

x1y1
∂

∂yσ(i)
w(σ)

I If σ(i) > σ(i + 1), then the new weight is

x1y1
∂

∂xσ(i+1)
w(σ)



I Inserting 1 in all slots has the effect:

x1y1

(
n+1∑
k=2

∂

∂xk
+

n+1∑
k=2

∂

∂yk

)
w(σ)

I Lemma

An+1(x, y) = x1y1

(
n+1∑
k=2

∂

∂xk
+

n+1∑
k=2

∂

∂yk

)
An(x∗, y∗),

where x∗ = (x2, x3, . . .).

I Corollary

An(x, y) is stable.

I Proof. It suffices to prove that operators of the form
T =

∑n
i=1 λi∂/∂xi , where λi ≥ 0 , preserves stability.

T (e−x·y) = −e−x·y
(

n∑
i=1

λiyi

)



Stability of free quasi-symmetric functions
I Let FQSym = ⊕∞n=0FQSymn be a formal C-linear vector space

with FQSymn having bases Sn.
I The product in FQSym is defined on the bases elements:

231 · 21 = 23154 + 23514 + 23541 + 25314 + 25341 + 52314

+ 25431 + 52341 + 52431 + 54231

I FQSym is called the algebra of free quasi-symmetric functions
or the Malvenuto–Reutenauer (Hopf-) algebra.

I Let as before

w(σ) =
∏

i∈DB(σ)

xi
∏

j∈AB(σ)

yj

and extend w linearly to FQSym.
I Call a weight w ′ : FQSym→ R[t1, t2, . . .] good if it is of the

form

w ′(ξ) = w(ξ)(tf (1), tf (2), . . . , tg(1), tg(2), . . .),

where f , g : Z+ → Z+ are arbitrary.



I In particular w1(σ) = t
des(σ)+1
1 t

|σ|−des(σ)
2 is good.

I Lemma (B., Leander).

Let w ′ be a good weight and η, ξ ∈ FQSym. Then w ′(η · ξ) only
depends on w ′(η) and w ′(ξ).

I Hence each good w ′ defines an (descent bottom) algebra.

I Theorem (B., Leander).

Let w ′ be a good weight and η, ξ ∈ FQSym be such that w ′(η)
and w ′(ξ) are stable. Then w ′(η · ξ) is stable.

I Note that An(x, y) = w(1n)

I The case of the theorem when w ′ = w1 is a reformulation of
conjecture of Brenti, first proved by Wagner.



P-Eulerian polynomials

I Let P be a partially ordered set on {1, . . . , n}.

The Poset Conjecture (or Neggers-

Stanley conjecture)

P = labelled poset

3

1

4

5

2

L(P ): set of linear extensions of P

w des(w)

35124 1

35142 2

31524 2

31452 2

53124 2

31542 3

53142 3

5

I Let L(P) be the linear extensions of P.

σ des(σ)
35124 1
35142 2
31524 2
31452 2
53124 2
31542 3
53142 3

AP(x) =
∑

σ∈L(P)

xdes(σ)+1 = x2 + 4x3 + 2x4



Neggers–Stanley conjecture: All zeros of AP(x) are real.

I Disproved in 2004 by B.

I However it holds (or is open) for many important classes of
permutations.

I We may define a multivariate analog by

AP(x, y) = w (`(P)) , where `(P) =
∑

σ∈L(P)

σ.

I If P is the anti-chain on [n], then AP(x, y) = An(x, y).

I Question: For which P is AP(x, y) stable?



I The disjoint union P t Q of two posets P and Q:

I Corollary

If AP(x, y) and AQ(x, y) are stable, then so is APtQ(x, y).

Proof. `(P t Q) = `(P) · `(Q).

I Corollary

AP(x, y) is stable for naturally labelled trees.



Peaks

I We have an analogous version for peaks in permutations.

I Let

Λ(σ) = {σ(i) : 2 ≤ i ≤ n− 1 and σ(i − 1) < σ(i) > σ(i + 1)}.

I Define wΛ : FQSym→ R[x2, x3, . . .] by

wA(σ) =
∏

j∈Λ(σ)

xj

I Again say that w ′Λ : FQSym→ R[t1, t2, . . .] is good if it is
obtained from wΛ by renaming and identifying some (or none)
of the variables.



I Lemma (B., Leander).

Let w ′Λ be a good weight and η, ξ ∈ FQSym. Then w ′Λ(η · ξ) only
depends on w ′Λ(η) and w ′Λ(ξ).

I A polynomial is Hurwitz stable if it non-vanishing whenever all
variables are in the open right half-plane.

I Theorem (B., Leander).

Let w ′Λ be a good weight and η, ξ ∈ FQSym be such that w ′Λ(η)
and w ′(ξ) are Hurwitz stable. Then w ′Λ(η · ξ) is Hurwitz stable.

I Corollary. ∑
σ∈Sn

∏
j∈Λ(σ)

xj is Hurwitz stable.

I Corollary. Let An be the alternating permutations of length n.∑
σ∈An

∏
j∈Λ(σ)

xj is stable.



Multivariate Eulerian polynomials for Coxeter groups
I Let W be a finite Coxeter group with generators S :

W = 〈S : (ss ′)m(s,s′) = 1,m(s, s) = 1〉.

I The descent set of w ∈W is

D(w) = {s ∈ S : `(ws) < `(w)}.

I The W -Eulerian polynomial is

AW (x) =
∑
w∈W

x |D(w)|+1.

I Conjecture (Brenti)

For any finite Coxeter group W , AW (x) is real-rooted.

I The only remaining case is type D? (Solution proposed by
Shi-Mei Ma).



Multivariate Eulerian polynomials for Coxeter groups
I An(x, y) is a multivariate stable analog for type A.
I Recall that Bn may be realized as signed permutations

Bn = {σ1 · · ·σn : σi ∈ Z, |σ1| · · · |σn| ∈ Sn}.

D(σ) = {i ∈ [n] : σi−1 > σi}, where σ0 := 0.

I Visontai and Williams proposed a multivariate analog:

DT(σ) = {max(|σi−1|, |σi |) : i ∈ [n] and σi−1 > σi},
AT(σ) = {max(|σi−1|, |σi |) : i ∈ [n] and σi−1 < σi},

Bn(x, y) =
∑
σ∈Bn

∏
i∈DT(σ)

xi
∏

j∈DT(σ)

yj .

I Theorem (Visontai and Williams)

Bn(x, y) is stable.



I Question
Is there a case-free stable multivariate W -Eulerian polynomial?

I Stable multivariate analogs of real-rooted Eulerian
polynomials for various classes of permutations have been
obtained by Haglund and Visontai.



I The set of descent bottoms is equidistributed with the
excedence set E (σ) = {i : σ(i) > i}.

I Note that

∑
σ∈Sn

∏
i∈E(σ)

xi = per


1 1 1 1
x1 1 1 1
x1 x2 1 1 · · ·
x1 x2 x3 1

...





I Consider a shape λ that fits into an n × n box

x y y y y y
x x x y y y
x x x y y y
x x x x y y
x x x x x y
x x x x x y


λ = (5, 5, 4, 3, 3, 1)



I Assign variables as

Bλ =



x1 y1 y1 y1 y1 y1

x1 x2 x3 y2 y2 y2

x1 x2 x3 y3 y3 y3

x1 x2 x3 x4 y4 y4

x1 x2 x3 x4 x5 y5

x1 x2 x3 x4 x5 y6



I Theorem (B., Haglund, Visontai, Wagner)

The permanent of Bλ is stable.

I Using this we proved the

I Monotone Column Permanent Conjecture (Haglund, Ono,
Wagner (1999))

If A is a real matrix which is weakly increasing down columns and
J is the all ones matrix, then per(A + xJ) is real-rooted.



SEP preserves SR

I It will be convenient to view a Markov chain on measures on
{0, 1}n as acting on the partition functions of the measures.

I Hence we view a Markov chain as a family of linear operators
Tt , t ≥ 0, acting on the space, Mn, of multi-affine complex
polynomials in n variables.

I The Markov property translates as

d

dt
Tt = LTt , for all t ≥ 0,

where L :Mn →Mn is the (linear) generator.

I In the case of SEP

L =
∑
i<j

qij(τij − ε),

where qij ≥ 0 are the jump-rates, τij is the transposition that
interchanges coordinates i and j , and ε is the identity.



Infinite log-concavity
I Define an operator, L, on sequences by

L({ak}nk=0) = {bk}nk=0

where
bk = a2

k − ak−1ak+1,

and a−1 = an+1 = 0.
I {ak}nk=0 is i-fold log-concave if Li ({ak}) is non-negative.
I {ak}nk=0 is infinitely log-concave Li ({ak}) is non-negative for

all i .
I For k , n ∈ N let

dk(n) = 2−2n
n∑

j=k

2j
(

2n − 2j

n − j

)(
n + j

n

)(
j

k

)
I dk(n) is the kth Taylor coefficient of the polynomial

Pn(a) =
2n+3/2(a + 1)n+1/2

π

∫ ∞
0

1

(x4 + 2ax2 + 1)n+1
dx .



I Boros–Moll Conjecture 1

{dk(n)}nk=0 is infinitely log-concave

I Log-concavity proved by Kauers and Paule.
I 2-log-concavity proved by Chen and Xia.

I Conjecture (B.)

The polynomials

Rn(x) =
n∑

k=0

dk(n)

(k + 2)!
xk

are real-rooted.

I The conjecture implies 3-log-concavity of {dk(n)}nk=0.

I Proved by Chen, Dou and Yang by establishing a recursion
which preserves real-rootedness.

I Boros–Moll Conjecture 2

{
(n
k

)
}nk=0 is infinitely log-concave.

I
(n
k

)2 −
( n
k−1

)( n
k+1

)
= 1

n+2

(n+1
k

)(n+1
k+1

)
, Narayana numbers.

I Proved for n ≤ 1450 by Sagan and McNamara.



Conjecture (Fisk, Sagan–McNamara, Stanley)

If
∑n

k=0 akx
k has only real and nonpositive zeros, then so does

n∑
k=0

(a2
k − ak−1ak+1)xk .

=⇒ Boros–Moll Conjecture 2.

Grace–Walsh–Szegő Coincidence Theorem

Let K ⊂ C be a disk or a half-plane and let f (x1, . . . , xn) be a
symmetric and multiaffine polynomial. For any ζ1, . . . , ζn ∈ K ,
there is a ζ ∈ K such that

f (ζ1, . . . , ζn) = f (ζ, . . . , ζ).



A Catalan symmetric function identity
Let x = (x1, . . . , xn) and

ek(x) =
∑

S⊆{1,...,n}
|S |=k

∏
i∈S

xi ,

be the kth elementary symmetric polynomial in x.

Lemma

n∑
k=0

ek(x)2 − ek−1(x)ek+1(x) = x1 · · · xn
bn/2c∑
k=0

Cken−2k

(
x +

1

x

)
,

where 1/x = (1/x1, . . . , 1/xn) and

Ck =
1

k + 1

(
2k

k

)
is a Catalan number.



Shape λ = (4, 4, 2, 1) Semi-standard Young tableau of shape λ

Schur function of shape λ

sλ(x1, . . . , xn) =
∑
T

∏
t∈T

xt = · · ·+ x2
1x

2
2x3x

2
4x

2
5x6x8 + · · ·

summed over all SSYT of shape λ and entries in {1, . . . , n}



ek(x)2 − ek+1(x)ek−1(x) = s2k (x),

where 2k = (2, . . . , 2). We want to prove

n∑
k=0

s2k (x) =

bn/2c∑
k=0

Ck

∑
|S|=2k

xS
∏
j /∈S

(1 + x2
j ).

1 2
2 5
4 6
7 7
8 9

=⇒
1 5
4 6
8 9

, {2, 7}

Number of standard Young tableaux of shape 2k is Ck .



Proof of the SSMF Conjecture
I Let P(x) =

∑n
k=0 akx

k =
∏n

k=0(1 + ρkx), where ρk > 0.
I Suppose

Q(ζ) =
n∑

k=0

(a2
k − ak−1ak+1)ζk = 0

for some ζ ∈ C, with ζ /∈ {x ∈ R : x ≤ 0}.
I Write ζ = ξ2, where Re(ξ) > 0.

Q(ζ) =
n∑

k=0

ek(z)2−ek+1(z)ek−1(z), where z = (ρ1ξ, . . . , ρnξ).

I Hence

Q(ζ) = anξ
n

bn/2c∑
k=0

Cken−2k

(
ρ1ξ +

1

ρ1ξ
, . . . , ρnξ +

1

ρnξ

)
= 0.

Re

(
ρkξ +

1

ρkξ

)
> 0.



Proof of the SSMF Conjecture

I The Grace–Walsh–Szegő Theorem provides a number ζ ∈ C,
with Re(ζ) > 0, such that

bn/2c∑
k=0

Cken−2k(ζ, . . . , ζ) =

bn/2c∑
k=0

Ck

(
n

2k

)
ζn−2k = 0

I If Re(ζ) > 0 then 1/ζ2 is not a negative real number.

I We are done if we can prove that all zeros of

pn(x) =

bn/2c∑
k=0

Ck

(
n

2k

)
xk

are negative.

I pn(x) is essentially a Jacobi orthogonal polynomial!!



Extending the SSMF conjecture

I Conjecture (Fisk)

Suppose a0 + a1x + · · ·+ adx
d has only real and negative zeros.

Then so does
d∑

n=0

∣∣∣∣∣∣
an an−1 an−2

an+1 an an−1

an+2 an+1 an

∣∣∣∣∣∣ xn.



Extension

I Let α = {αj}∞j=0 ⊂ R and consider the operator Tα defined by

ak 7→
∞∑
j=0

αjak−jak+j .

I Above we studied the case α = 1, 0,−1, 0, . . ..

I Theorem (B.)

Tα preserves the property of having only nonpositive zeros iff
Tα(ex) is in the Laguerre-Pólya class and has nonnegative
coefficients.



Immanants

I Let χλ be a character of the symmetric group, indexed by the
partition λ.

I The corresponding immanant is the matrix function defined by

imλ(A) =
∑
σ∈Sn

χλ(σ)
n∏

i=1

aiσ(i), where A = (aij)
n
i ,j=1

I For the trivial character we get the permanent, and for the
alternating the determinant.

I Theorem (Schur)

If A is positive semidefinite, then

imλ(A) ≥ f λ det(A),

where f λ = χλ(id) is the number of standard Young tableaux of
shape λ.



Permanent on top

I Lieb’s “Permanent–on–top” conjecture

If A is positive semidefinite, then

imλ(A) ≤ f λ per(A).

I Theorem (B.)

Let A be a n × n matrix, then the polynomial∑
λ`n

imλ′(A)sλ(x)

is stable.

I Question
What inequalities are satisfied for stable, homogeneous and
symmetric polynomials?



I If the coefficients in the monomial bases of such a polynomial
are nonnegative are also the coefficients in the Schur bases
nonnegative?

I Theorem (Borcea, B.)

Let P(z) =
∑

α∈Nn a(α)zα/α! be a stable polynomial with
nonnegative coefficients. Then

I a(α)2 ≥ a(α+ ei − ej)a(α− ei + ej), where {ei}ni=1 is the standard
bases.

I Recall that if λ, µ ` n, then λ is majorized by µ if

λ1 + λ2 + · · ·+ λj ≤ µ1 + µ2 + · · ·+ µj , for all j ≥ 1.

I If P is symmetric and λ ≤ µ in the majorization order, then
a(λ) ≥ a(µ).



Stable polynomials and Matroid theory

I Let E be a finite set. A collection B ⊂ 2E is the set of bases
of a matroid if for all B1,B2 ∈ B

e ∈ B1 \ B2 =⇒ ∃f ∈ B2 \ B1 s.t. B1 \ {e} ∪ {f } ∈ B.

I If v1, . . . , vm are vectors in a vector space V over k that span
V , then the set

{{i1, . . . , ik} : vi1 , . . . , vik is a basis of V }

is a bases of matroid representable over k .

I The support of a polynomial P(x) =
∑

α∈Nn a(α)xα is

supp(P) = {α : a(α) 6= 0}.

I Theorem (Choe, Oxley, Sokal, Wagner)

The support of a homogeneous, multiaffine and stable polynomial
is the set of bases of a matroid.



I Such matroids are called WHPP-matroids (weak half-plane
property).

I Question. Which matroids are WHPP?

I Recall that the spanning tree polynomial is stable. Hence
graphic matroids are WHPP.

I All matroids representable over C are WHPP: If
A = [v1, . . . , vm] ∈ Cr×m, then

det(x1v1v
∗
1 + · · ·+ xmvmv

∗
m) =

∑
|B|=r

| det(A(B))|2
∏
j∈B

xj ,

where A(B) is the r × r submatrix with columns indexed by B.

I Thm. (B., D’Leon): No projective geometry is WHPP. A
binary matroid is WHPP iff it is regular.



I Let B be the collection of all subsets of size 4 of {1, . . . , 8}
such that the corresponding vertices do not lie in an affine
plane in the following figure

I B is the set of bases of the Vámos cube, V8.
I Let further

V (x) =
∑
B∈B

∏
j∈B

xj = x1x2x3x5 + x1x2x3x6 + · · · .

I Theorem (Wagner-Wei, 2009)

V (x) is stable, hence V8 is WHPP.



Generalized Lax Conjecture
I The above questions can be thought of as discrete versions of

questions considered in convex optimization.
I A polynomial P(x) ∈ R[x1, . . . , xn] is a real zero polynomial

(RZ) if
I P(0) 6= 0, and
I for all x ∈ Rn, the polynomial t 7→ P(tx) is real-rooted.

I If A1, . . . ,An are hermitian matrices, then

det(I + x1A1 + · · ·+ xnAn)

is a RZ polynomial.
I If P ∈ R[x] and P(0) 6= 0 let CP be the connected component

of
{x ∈ Rn : P(x) 6= 0}

containing the origin.

I Theorem (Gårding)

If P is a RZ polynomial, then CP is a convex set, called rigidly
convex.



I The ball {x2
1 + · · ·+ x2

n ≤ 1} is rigidly convex since
1− x2

1 − · · · − x2
n is an RZ polynomial.

I The ancient tv-screen is not rigidly convex:

Spectrahedra and their properties
Let S ⊆ Rn be a spectrahedron. Then

! S is convex,
! S is a basic closed semialgebraic set, and
! all faces of S are exposed.

This three properties do not characterize spectrahedra. We will now
learn about another property of polyhedra called rigid convexity which is
strictly stronger and which is conjectured to characterize spectrahedra.

The basic closed semialgebraic set {x ∈ R2 | x4
1 + x4

2 ≤ 1} is convex
and has only exposed faces

but we will see that it is not a
spectrahedron. The reason for this will be that it is not rigidly convex.

x1

x2
x4
1 + x4

2 ≤ 1



I If P(x) = det(I + x1A1 + · · ·+ xnAn) where A1, . . . ,An are
hermitian, then

CP = {x ∈ Rn : I + x1A1 + · · ·+ xnAn is positive semidefinite}.

I Such sets are called spectrahedral, and are the feasible sets for
semidefinite optimization.

I Methods generalizing semidefinite optimization have been
developed for rigidly convex sets.

I Generalized Lax conjecture

{rigidly convex sets} = {spectrahedral sets}.
I Conjecture (P. Lax)

If P(x , y) is a RZ polynomial of degree d , then there are
symmetric d × d matrices such that

P(x , y) = det(I + xA + yB).

I Proved by Helton and Vinnikov.



I The exact analog of the Lax conjecture fails in more than
three variables by a count of parameters.

I Helton and Vinnikov proposed the following two conjectures.

I Conjecture 1. If P ∈ R[x1, . . . , xn] is a RZ polynomial, then
there exists symmetric matrices A1, . . . ,An such that
P(x) = det(I + x1A1 + · · ·+ xnAn).

I Conjecture 2. If P ∈ R[x1, . . . , xn] is a RZ polynomial, then
there exists symmetric matrices A1, . . . ,An and a positive
integer N such that P(x)N = det(I + x1A1 + · · ·+ xnAn).

I Suppose that H(x) is a homogeneous and stable polynomial.
Then P(x) = H(x1 + 1, . . . , xn + 1) is an RZ polynomial.



I Theorem (B.)

There is no power N such that

V (x1 + 1, . . . , x8 + 1)N

is a determinantal polynomial.

I The idea of the proof is that V8 is a WHPP matroid which is
not representable over C.


