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In the late 1960's Askey formulated several conjectures about the non-negativity
of integrals of products of orthogonal polynomials.

In the 1970's it was realized that some of the integrals (≡ linearization coef-
�cients) considered by Askey and his coauthors have combinatorial interpre-
tations involving some kind of inhomogeneous partitions and permutations.
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The simple Laguerre polynomials can be de�ned by one of the following
equivalent conditions :

1. (Coe�cients) Ln(x) =
∑n

k=0
(−1)k

k!

(
n
k

)
xk.

2. (Generating function)
∑

n≥0Ln(x)t
n = (1− t)−1 exp

(
−xt
1−t

)
.

3. (Orthogonality relation)
∫∞
0 e−xLm(x)Ln(x) dx = δm,n.

4. (Recurrence relation) (n+1)Ln+1(x) = (2n+1− x)Ln(x)− nLn−1(x).

5. (Moments) µn =
∫∞
0 e−x dx = n!.

Even and Gillis (1974) showed that

(−1)
∑m

k=1
nk

∫ ∞

0
e−x

m∏
j=1

Lnj(x)dx (1)

is equal to the number of generalized derangements of sets of sizes n1, n2, . . . , nm.
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The Hermite polynomials {Hn(x)}n≥0 can be de�ned by one of the following
�ve equivalent conditions :

1. (Coe�cients) Hn(x) =
∑

0≤2k≤n(−1)k n!
2kk!(n−2k)!

(2x)n−2k.

2. (Generating function)
∑

n≥0Hn(x) t
n

n!
= exp(2xt− t2).

3. (Orthogonality relation)
∫
RHm(x)Hn(x)e−x

2

dx = 2nn!
√
π δmn.

4. (Recurrence relation) 2xHn(x) = Hn+1(x) + 2nHn−1(x), with H−1(x) =
0, H0(x) = 1.

5. (Moments) µ2n+1 = 0, µ2n = 1 · 3 · · · (2n− 1)/2n.

Azor, Gillis, and Victor (1982) and independently Godsil (1982) showed that

2−(n1+···+nm)/2
∫
R

e−x
2

√
π

m∏
j=1

Hnj(x)dx,

where the Hn(x)'s are the Hermite polynomials, is the number of perfect
inhomogeneous matchings of sets of sizes n1, n2, . . . , nm.
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We denote by Πn and Sn the set of partitions and the set of permutations,
respectively, of [n] := {1,2, . . . , n}.

A perfect matching of [n] is just a set partition of [n] the blocks of which
have exactly two elements.

Let Mn denote the set of perfect matchings of [n].

We represent pictorially matchings, set partitions and permutations of [n].

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Diagrams of, from left to right, the matching M = 14/26/37/58, the parti-
tion π = 14/237/58/6 and the permutation σ = 83746251
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Inhomogeneous partitions and permutations.

n = (n1, . . . , nm) m-tuple of positive integers, n := n1 + · · ·+ nm.

Set Sj = {n1 + · · ·+ nj−1 +1, . . . , n1 + · · ·+ nj} for j = 1, . . . ,m.

A partition π of [n] is said to be inhomogeneous if each block of π contains
at least two elements and no two elements in the same block belong to the
same set Si (1 ≤ i ≤ m).

We denote by P(n) and K(n) the set of inhomogeneous partitions and the
set of inhomogeonous perfect matchings, respectively, of [n].

Similarly, a permutation σ of [n] is an inhomogeneous derangement if σ(Si)∩
Si = ∅ for all i ∈ [m].
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1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Diagrams of, from left to right, a partition in P(2,3,3) and permutation in
D(2,3,3).

Note that a set partition (resp., permutation) is inhomogeneous if and only
in its diagram, there is no isolated vertex and no arc connecting two elements
in the same Si (1 ≤ i ≤ m).
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The Tchebyche� polynomials of the second kind are the (unique) polynomials

Un(x) de�ned by
sin(n+1)θ

sinθ
= Un(cosθ). De Sainte Catherine and Viennot (1975)

proved that

2

π

∫ 1

−1

√
1− x2

m∏
j=1

Unm(x)dx,

where the Un(x)'s are the Tchebyche� polynomials of the second kind, is
the number of perfect inhomogeneous noncrossing matchings of sets of sizes
n1, n2, . . . , nm.
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The Charlier polynomials C(a)
n (x) can be de�ned by one of the following �ve

equivalent conditions :

1. (Explicit formula) C(a)
n (x) =

∑n
k=0

(
n
k

)(
x
k

)
k!(−a)n−k.

2. (Generating function)
∑∞

n=0C
(a)
n (x)w

n

n!
= e−aw(1 + w)x,

3. (Orthogonality)
∫∞
0 C(a)

n (x)C(a)
m (x)dψ(a)(x) = ann!δmn, where ψ(a) is the

step function of which the jumps at the points x = 0,1, . . . are ψ(a)(x) =
e−aax

x!
.

4. (Recursion relation) C(a)
n+1(x) = (x− n− a)C(a)

n (x)− anC(a)
n−1(x).

5. (Moments) µn =
∑n

k=1 S(n, k)a
k, where S(n, k) are the Stirling numbers

of the second kind.

Zeng (1988) and Gessel (1989) showed that∫ ∞

0
C(a)
n1

(x) · · ·C(a)
nm (x)dψ(a)(x) =

∑
π∈P(n)

abl(π),

where P(n) is the set of inhomogeneous partitions of type n and bl(π) =
number of blocks in π.
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The (generalized) Laguerre polynomials can be de�ned by

L(α)
n (x) =

(α+1)n
n!

n∑
k=0

(−n)k
k!(α+1)k

xk, (2)

and satisfy the orthogonality relation∫ ∞

0

xαe−x

Γ(α+1)
L(α)
m (x)L(α)

n (x) dx =
(α+1)n

n!
δm,n. (3)

Foata and Zeilberger (1988) showed that

(−1)
∑m

k=1
nm n1! · · ·nm!

∫ ∞

0

xαe−x

Γ(α+1)

m∏
j=1

L(α)
nj (x)dx =

∑
σ∈D(n)

(α+1)cyc(π),

cyc(σ) = number of cycles of σ and D(n) is the set of generalized derange-
ments of type n.

9



Zeng (1992) extended this study to Meixner and Meixner-Pollaczek.

Kim and Zeng (2001) found a common generalization of all these combina-
torial interpretations.

There are essentially three methods to establish these combinatorial interpre-
tations.
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The generating function approach. Combining the β-extension of MacMahon's
Master theorem (Foata and Zeilberger, 1988) and the exponential formula,
all the known combinatorial interpretations of the linearization coe�cients
of the orthogonal She�er polynomials can be deduced by computing their
generating functions.

The direct combinatorial approach. (De Sainte Catherine et Viennot) Using
the combinatorial interpretations of the orthogonal polynomials (Hermite and
Laguerre) as matching polynomials of certain graphs and the combinatorial
interpretations to obtain a messy sum, and then using a killing involution to
reduce it to some nicer models.

A more classical approach. Find a recurrence for the linearization coe�cients
and show that the desired combinatorial interpretations satisfy the same re-
currence.

The 3 methods can be used to prove the combinatorial interpretations of
orthogonal She�er polynomials.
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However, the generating function approach seems to fail when one tries to
extend the previous results to their q-analogues, even though a conjecture for
the combinatorial interpretation is formulated.

Rogers q-Hermite polynomials :

xHn(x|q) = Hn+1(x|q) + [n]qHn−1(x|q).
Here q is (say) in (−1, 1), and

[n]q = 1+ q+ · · ·+ qn−1 =
1− qn

1− q
.

Orthogonal with respect to

dµq(x) =
1

π

√
1− q sin(θ)(q; q)∞

∣∣(qe2iθ;q)∞∣∣2 dx,
for x = 2√

1−q cos(θ), θ ∈ [0, π], and

(a; q)∞ =
∞∏
j=0

(1− aqj).
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Moments

µn =

∫
xndµq(x) =

∑
π

qcros2(π),

where the summation is over all perfect matchings of {1,2, . . . , n}.

Ismail, Stanton and Viennot (1987), using the pure combinatorial approach,
proved that ∫

Hn1(x|q) . . . Hnk(x|q)dµq(x) =
∑

π∈K(n1,n2,...,nk)

qcros2π.

For k = 4, it gives a remarkable combinatorial evaluation of the Askey-Wilson
integral

(q; q)∞
2π

∫ π

0

(e2iθ, e−2iθ; q)∞∏4
j=1(tje

iθ, tje−iθ; q)∞
dθ =

(t1t2t3t4; q)∞∏
1≤j<k≤4(tjtk; q)∞

.
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The Al-Salam-Chihara q-Charlier polynomials

Recurrence

xCq,n(x, a) = Cq,n+1(x, a) + (a+ [n]q)Cq,n(x, a) + a[n]qCq,n−1(x, a).

Moments (Biane 1997)

µn(a, q) =
∑
π∈Πn

qcros2(π)a|π|.

Linearization coe�cients, using stochastic process, Anshelevich (2005)

Lq (Cq,n1(x, a) . . . Cq,nk(x, a)) =
∑

π∈Π(n1,n2,...,nk)

qcros2πa|π|.
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The Al-Salam-Chihara q-Laguerre polynomials

Recurrence :

Ln+1(x; q) = (x− y[n+1]q − [n]q)Ln(x; q)− y[n]2qLn−1(x; q).

Explicit formulas :

Ln(x; q) =
n∑

k=0

(−1)n−k
n!q
k!q

[n
k

]
q
qk(k−n)yn−k

k−1∏
j=0

(
x− (1− yq−j)[j]q

)
.

Moments (Randrianarivony (1994), Corteel (2006))

µ(ℓ)
n (y, q) :=

∑
σ∈Sn

ywex(σ)qcros(σ).

Linearization coe�cients. Using recursive approach, K., Stanton and Zeng
(2009) proved

Lq(Ln1(x; q) . . . Lnk(x; q)) =
∑

σ∈D(n1,...,nk)

ywex(σ)qcros(σ).
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The q-Laguerre polynomials have the following interpretation :

Ln(x; q) =
∑

A⊂[n],f :A→[n]

(−1)|A|xn−|A|yα(A,f)qw(A,f),

where f is injective.

Di�cult to use for a combinatorial proof of the linearization formula

Lq(Ln1(x; q) . . . Lnk(x; q)) =
∑

σ∈D(n1,...,nk)

ywex(σ)qcros(σ).



Characterization of linearization coe�cients with di�erence equations.

For simplicity (and without loss of generality), we only consider sequence of
monic orthogonal polynomials. Let {pn(x)} be a sequence of monic orthogonal
polynomials ∫

R
pm(x)pn(x)dµ(x) = ζnδm,n, ζ0 = 1. (4)

Linearization coe�cients in the expansion of
∏m−1
j=1 pnj(x) in {pn(x)}.

I(n) :=

∫
R

m∏
j=1

pnj(x) dµ(x), (5)

where n = (n1, . . . , nm), nj is a nonnegative integer for 1 ≤ j ≤ m. We shall
use the following notation :

I±j (n) = I(n1, . . . , nj−1, nj ± 1, nj+1, . . . , nm).
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By (Favard's Theorem) the polynomials {pn(x)} must satisfy a three term
recurrence relation of the form

pn+1(x) = (x− bn)pn(x)− cnpn−1(x), n > 0, (6)

with p−1(x) := 0, p0(x) = 1.

Remark. The numbers I(n) satisfy the system of di�erence equations

I+j (n)− I+k (n) = (bnk − bnj)I(n)− cnjI
−
j (n) + cnkI

−
k (n). (7)

Proof. Suppose 1 ≤ t ≤ m. By Favard's recurrence,

I+t (n) =

∫
R

(
(x− bnt)pnt(x)− cntpnj−1(x)

)∏
r ̸=t

pnr(x)dµ(x),

whence, by linearity of the integral,

I+t (n) =

∫
R
x

m∏
r=1

pnt(x)dµ(x)− bntI(n)− cntI
−
t (n).
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Theorem 1 The system of di�erence equations

(1 ≤ j ≤ m) Y +
j (n)− Y +

j+1(n) = (bnj+1 − bnj)I(n)− cnjY
−
j (n) + cnj+1Y

−
j+1(n).

and the boundary conditions
(i) Y (0, . . . ,0) = 1,
(ii) Y (n1, n2, · · · , nm) = 0 if

∑m−1
j=1 nj < nm,

(ii) Y +
j (0, . . . ,0,1) = c1 if 1 ≤ j ≤ m− 1.

have a unique solution which is given by (5).

Proof.

The numbers I(n) satisfy the system of di�erence equations

I+j (n)− I+k (n) = (bnk − bnj)I(n)− cnjI
−
j (n) + cnkI

−
k (n). (8)

The boundary condition leads easily to the uniqueness.

18



Linearization coe�cients of Charlier polynomials.

Set C(n, a) =
∑

π∈P(n) a
bl(π).

Lemma 2 For 1 ≤ k, j ≤ m, k ̸= j, the polynomials C(n, a) satisfy

C+
j (n, a)− C+

k (n, a) = (nk − nj)C(n, a) + ankC
−
k (n, a)− anjC

−
j (n, a). (9)

Proof. Let Nj = n1 + · · · + nj. The partitions of P+
j (n) can be divided into

three categories :
� Nj+1 and one element of Sk form a block of two elements, the correspon-
ding generating function is ankC

−
k (n, a) ;

� Nj + 1 and one element of Sk belong to a block containing at least one
another element, the corresponding generating function is

∑
π∈P(n)(nk −

nk,j(π))abl(π), where nk,j(π) is the number of blocks in π containing both
elements of Sj and Sk (Clearly nk,j(π) = nj,k(π)) ;

� Nj +1 is in a block without any element of Sk, let Rk,j(n, a) be the corres-
ponding generating function.

Thus we have

C+
j (n, a) =

∑
π∈P(n)

(nk − nk,j(π))a
bl(π) + ankC

−
k (n, a) +Rk,j(n, a).

Clearly, we have Rk,j(n, a) = Rj,k(n, a).
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Rogers q-Hermite polynomials.

K(n|q) =
∑

M∈K(n)

qcros(M) (10)

Lemma 3 For 1 ≤ j ≤ m− 1, the polynomials K(n; q) satisfy

K+
j (n|q)−K+

j+1(n|q) = [nj+1]qK
−
j+1(n|q)− [nj]qK

−
j (n|q). (11)

Proof. Let u = n1 + · · ·+ nj +1.

u u+1 u+ ℓ

......
︷ ︸︸ ︷ℓ− 1 crossings

u− 1 uu− ℓ

......
︷ ︸︸ ︷ℓ− 1 crossings

(left) the blocks Sj and Sj+1 in K+
j (n), (right) the blocks Sj and Sj+1 in

K+
j+1(n)
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More formally, Let u = n1 + · · · + nj + 1. The matchings in K+
j (n) (resp.

K+
j+1(n)) can be divided into two categories :

� the integer u ∈ Sj (resp, u ∈ Sj+1) is matched with the ℓth element u+ ℓ
in Sj+1 (resp. u − ℓ in Sj), from left (resp., right), with ℓ ∈ [nj+1] (resp.
ℓ ∈ [nj]), then the corresponding edge will cross each of the ℓ− 1 edges of
which one vertex is u+ t (resp. u− t) with 1 ≤ t ≤ ℓ− 1. An illustration is
given below. Hence the generating function of such matchings is

(1 + q+ · · ·+ qnj+1−1)K−
j+1(n|q) (resp. (1 + q+ · · ·+ qnj−1)K−

j ( n|q));

� the integer u is matched with an element not in Sj ∪ Sj+1, let Ru(n|q) be
the generating polynomial of such matchings.

It follows that K+
j (n|q) = [nj+1]qK

−
j+1(n|q)+Ru(n|q) and K

+
j+1(n|q) = [nj]qK

−
j (n|q)+

Ru(n|q).



We can obtain the linearization coe�cients of the Al-Salam Chihara q-Charlier
and q-Laguerre polynomials with similar methods but the proofs are more
technical. See
� Ismail, K. and Zeng, Separation of variables and combinatorics of lineari-
zation coe�cients of orthogonal polynomials, 2011.

� K., Stanton and Jiang Zeng, The combinatorics of Al�Salam�Chihara q-
Laguerre polynomials, 2009.
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