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In the late 1960’'s Askey formulated several conjectures about the non-negativity
of integrals of products of orthogonal polynomials.

In the 1970’s it was realized that some of the integrals (= linearization coef-
ficients) considered by Askey and his coauthors have combinatorial interpre-
tations involving some kind of inhomogeneous partitions and permutations.



The simple Laguerre polynomials can be defined by one of the following
equivalent conditions :

1. (Coefficients) L,(z) = 1_, (_kl!)k (7)z".

(Generating function) »_ - La(2)t" = (1 — t)~lexp (;—f’;) :

(Orthogonality relation) [;° e *Ly(2)Ln(x) dz = Smn.
(Recurrence relation) (n+ 1)Ly41(x) = C2Cn+ 1 —2)Lp(x) —nly,—1(x).
(Moments) p, = [; e “dz = nl.
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Even and Gillis (1974) showed that

(—l)zkgln’f / e " H Ly (z)dx (1)
is equal to the number of generalized derangements of sets of sizes ni,no, ..., nm.



The Hermite polynomials {H,(z)},>0 can be defined by one of the following

five equivalent conditions :
1. (Coefficients) H,(z) = Zogzkgn(—l)km(zx)”_%-

n—

. (Generating function) ano Hn(:c)% = exp(2zt — t2).
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3. (Orthogonality relation) [, Hm(z)Hy(z)e ™ dz = 2"n! /T Smn.

4. (Recurrence relation) 2xH,(x) = Hpy1(x) + 2nH,_1(x), with H_;1(x) =
0, Ho(x) = 1.

5. (I\/Ioments) pont+1 =0, pop, =1-3--- (2n — 1)/2”’.

Azor, Gillis, and Victor (1982) and independently Godsil (1982) showed that
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where the H,(x)'s are the Hermite polynomials, is the number of perfect
inhomogeneous matchings of sets of sizes ni,no,...,nm.



We denote by 1, and &,, the set of partitions and the set of permutations,
respectively, of [n] ;= {1,2,...,n}.

A perfect matching of [n] is just a set partition of [n] the blocks of which
have exactly two elements.

Let M,, denote the set of perfect matchings of [n].

We represent pictorially matchings, set partitions and permutations of [n].
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Diagrams of, from left to right, the matching M =14/26/37/58, the parti-
tion m=14/237/58/6 and the permutation ¢ =83746251



Inhomogeneous partitions and permutations.
n = (ni,...,nyn) m-tuple of positive integers, n :=n1 + -+ + nn,.
Set Sj={mi+---+n;1+1,...,nm+---+n;}forj=1,...,m.

A partition m of [n] is said to be inhomogeneous if each block of = contains
at least two elements and no two elements in the same block belong to the
same set S; (1 <i<m).

We denote by P(n) and K(n) the set of inhomogeneous partitions and the
set of inhomogeonous perfect matchings, respectively, of [n].

Similarly, a permutation o of [n] is an inhomogeneous derangement if o(S;) N
S; = 0 for all i € [m].
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Diagrams of, from left to right, a partition in P(2,3,3) and permutation in
D(2,3,3).

Note that a set partition (resp., permutation) is inhomogeneous if and only
in its diagram, there is no isolated vertex and no arc connecting two elements
in the same S; (1 <i<m).



The Tchebycheff polynomials of the second kind are the (unique) polynomials

U,(x) defined by W = U,(cosf). De Sainte Catherine and Viennot (1975)
proved that

1 m
2/ V11— 22 H Un (x)dz,
T J-1 i=1

where the U,(x)'s are the Tchebycheff polynomials of the second kind, is
the number of perfect inhomogeneous noncrossing matchings of sets of sizes
N1, N2, ..., Nm.



The Charlier polynomials Cﬁﬂ)(x) can be defined by one of the following five
equivalent conditions :

1.
2.
3.

(Explicit formula) C{¥(z) = > ieo (1) )k (—a)"*.
(Generating function) > >, cgﬂ(x)g_? = e (1 4+ w)?,

(Orthogonality) [;* O\ ()P (2)dp @D () = a™n)6mn, Where (@ is the
step function of which the jumps at the points = 0,1,... are ¥(¥(z) =

—Qa T

e “a
xz!

(Recursion relation) Cé‘_?l(:c) =(z—n—a)C¥(z) — aanL‘l)l(:c).

5. (Moments) u, = > ;_; S(n,k)a*, where S(n,k) are the Stirling numbers

of the second kind.

Zeng (1988) and Gessel (1989) showed that

| 0@ @@ = Y o),
0

meP(n)

where P(n) is the set of inhomogeneous partitions of type n and bl(x) =
number of blocks in .



The (generalized) Laguerre polynomials can be defined by

(@) () = (a4 1)n - (—n)k Lk
L (@) n! kz:%k!(a—l—l)k ’ (2)

and satisfy the orthogonality relation

(a+ 1)n5

n! e (3)

Torte™ )y (@ _
e KO RIOLE

Foata and Zeilberger (1988) showed that

m 0 eI m
(—1)Zk=1n’" nil-- - np,! / H Lfs‘)(x)dx = Z (o + 1)velm)
o Ma+1): +€D(n)

cyc(o) = number of cycles of o and D(n) is the set of generalized derange-
ments of type n.



Zeng (1992) extended this study to Meixner and Meixner-Pollaczek.

Kim and Zeng (2001) found a common generalization of all these combina-
torial interpretations.

There are essentially three methods to establish these combinatorial interpre-
tations.

10



The generating function approach. Combining the g-extension of MacMahon’s
Master theorem (Foata and Zeilberger, 1988) and the exponential formula,
all the known combinatorial interpretations of the linearization coefficients
of the orthogonal Sheffer polynomials can be deduced by computing their
generating functions.

The direct combinatorial approach. (De Sainte Catherine et Viennot) Using
the combinatorial interpretations of the orthogonal polynomials (Hermite and
Laguerre) as matching polynomials of certain graphs and the combinatorial
interpretations to obtain a messy sum, and then using a Killing involution to
reduce it to some nicer models.

A more classical approach. Find a recurrence for the linearization coefficients
and show that the desired combinatorial interpretations satisfy the same re-
currence.

The 3 methods can be used to prove the combinatorial interpretations of
orthogonal Sheffer polynomials.
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However, the generating function approach seems to fail when one tries to
extend the previous results to their g-analogues, even though a conjecture for

the combinatorial interpretation is formulated.

Rogers g-Hermite polynomials :
rHy(x|q) = Hyot1(z|q) + [n]¢Hn-1(z|q).
Here ¢ is (say) in (-1, 1), and

[l =14q+ - +¢" "=
Orthogonal with respect to
1 . i0: 2
dpg(z) = ;\/ 1 —qsin(0)(q; ) |(q€2 e'q)oo| dx,

_ 2
for z = \/1__qcos(9), 0 € [0, 7], and

(a; @)oo = H(l — aqj)-

7=0
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Moments
= [ ) = 3

where the summation is over all perfect matchings of {1,2,...,n}.

Ismail, Stanton and Viennot (1987), using the pure combinatorial approach,
proved that

/ Ho(2la) ... Ho(el)dpg(x) = S ¢,

me(ny,no,...,ny)

For Kk = 4, it gives a remarkable combinatorial evaluation of the Askey-Wilson
integral

(¢ Qo /7T (e2?,e72%; q) o J0 — (t1totsta; @)oo
4 : . — - .
2m 0 szl(tje"e,tje_w; q) oo H1§j<k§4(tjtk:r Q) oo
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The Al-Salam-Chihara g-Charlier polynomials

Recurrence
$Cq,n(wa CL) — Cq,n—l—l(xa a) + (a + [n]q)C ,n(xa a) + a[n]qu,n_l(x, a).
Moments (Biane 1997)

pnla,q) = Y ¢7°=Malm,

well,

Linearization coefficients, using stochastic process, Anshelevich (2005)

Ly(Con(m,a)...Con(z,a)) = > ¢"mall.

WEn(nl,ng ..... nk)
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The Al-Salam-Chihara g-Laguerre polynomials
Recurrence :

Lpt1(z; @) = (z — yln + 1]y — [n]g) La(z; @) — y[n]; Ln-1(z; q).

Explicit formulas :

k—1
n} k=) n—k H (:,; — (1 - yq_j)[j]q) -

~ n!
. —_ E n—k'"*q

j=0
Moments (Randrianarivony (1994), Corteel (2006))

,u?(f) (y, q) e Z ywem(a)qcros(a).
o€EsS,

Linearization coefficients. Using recursive approach, K., Stanton and Zeng
(2009) proved

‘CQ(Lnl (CC, Q) c e Lnk(xi q)) — Z ywew(g)qcrOS(O_)'

oc€D(ny,...,n;)
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The g-Laguerre polynomials have the following interpretation :
Lo(x; q) = Z (—1)lAlgn—lAly oA qulAf)
AC[n],f:A—s[n]

where f is injective.

Difficult to use for a combinatorial proof of the linearization formula

LoLn(@i @) L @) = > yren(@)geros),

oc€D(ny,...,n;)



Characterization of linearization coeffcients with difference equations.

For simplicity (and without loss of generality), we only consider sequence of
monic orthogonal polynomials. Let {p,(x)} be a sequence of monic orthogonal
polynomials

4%@%@%@%%%w Co=1. (4)

Linearization coefficients in the expansion of H;.”:_ll pn, () in {pn(x)}.

1) = [ T o @) duco), (5)
R
where n = (ni,...,nm,), n; iS a nonnegative integer for 1 < j < m. We shall

use the following notation :

I;—L(n) =I(n1,...,nj—1,n; £ 1, n41,...,7m).
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By (Favard’s Theorem) the polynomials {p,(z)} must satisfy a three term
recurrence relation of the form

pn—i—l(x) — (LU - bn)pn(x) - Cnpn—l(x)a n > 0, (6)
with p_1(x) := 0, po(x) = 1.

Remark. The numbers I(n) satisfy the system of difference equations

If(n) — 7 (n) = (bn, — by)I[(0) — cn, I (n) + e 1y (n). (7)
Proof. Suppose 1 <t < m. By Favard’s recurrence,

1) = [ (@ = b)p@) = cupn2(@) [ @)duCo).
R r#t

whence, by linearity of the integral,

It+('n,) = /R.:cijlpnt(x)du(x) — b, I(m) — cn I ().
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Theorem 1 The system of difference equations

(1 S .] S m) Yy—i_(n) o Y7—_|_|-1(n) — (bnj+1 o bn])I(n) o an}/;'_(n) + an+1}/};1(n)‘

and the boundary conditions

(i) Y(0,...,0) =1,

(i) Y(n1,mo, -+ ,nm) =0 if Y70 nj < n,
(i) Y1 (0,...,0,1) =c1 if1<j<m—1.
have a unique solution which is given by (5).

Proof.
The numbers I(n) satisfy the system of difference equations

I (n) — I (n) = (bn, — bu) () — co I, (n) + o I} (n). (8)

The boundary condition leads easily to the uniqueness.
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Linearization coefficients of Charlier polynomials.
Set C(n,a) = Zwep(n) aP!(m)

Lemma 2 For1<k,j<m,k# j, the polynomials C(n,a) satisfy
C’;_(n, a) — Cf (n,a) = (ng — n;)C(n,a) + aniCy (n,a) — an;C; (n,a).  (9)

Proof. Let Nj =mni+ ---+ n;. The partitions of P} (n) can be divided into

three categories :
— N;+1 a%d one element of S, form a block of two elements, the correspon-

ding generating function is an;C, (n,a) ;
— N; + 1 and one element of S;, belong to a block containing at least one
another element, the corresponding generating function is ZWEP(n)(nk —

ny, ;(7))aP' (™, where ny ;(r) is the number of blocks in 7 containing both
elements of S; and S (Clearly ny ;(7) = n;i(m));
— N;+ 1 is in a block without any element of S, let Ry ;(n,a) be the corres-

ondin enerating function.
Thpus we %agve 9

Cj_(na CL) — Z (nk — nk,j(ﬂ-))abl(ﬂ) + ankck_(n7 CL) + Rk,j(n7 CL).
TeP(n)

Clearly, we have Ry ;(n,a) = R;;(n,a).
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Rogers g-Hermite polynomials.

K(nlg) = ) ¢ (10)

MeK(n)

Lemma 3 Forl<j<m-—1, the polynomials K(n;q) satisfy
KF(nlq) — K1 (nlg) = [nj41]4K 1 (nlg) — [n,],K; (nlg). (11)

Proof. Letu=mni1+---+n; + 1.

¢ — 1 crossings ¢ — 1 crossings
~ = ~ =
uu—+1 u -+ u— £ u—1 u

(left) the blocks S; and S,41 in IC]JF(n), (right) the blocks S; and S;41 in
K (n)
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More formally, Let u = nj + --- + n; + 1. The matchings in IC;F(n) (resp.

IC;.Zrl(n)) can be divided into two categories :

— the integer u € S; (resp, u € Sj+1) is matched with the ¢th element u + ¢
in S;4+1 (resp. u— ¢ in S;), from left (resp., right), with ¢ € [n,;+1] (resp.
¢ € [n;]), then the corresponding edge will cross each of the ¢ — 1 edges of
which one vertex is u 4+t (resp. u —t) with 1 <t < /¢ — 1. An illustration is
given below. Hence the generating function of such matchings is

A+q+-+ ¢ DK (nlg) (resp. (I4q+---+¢" HK; (nlg));

— the integer u is matched with an element not in S; U S;41, let Ru(n|q) be
the generating polynomial of such matchings.
It follows that K" (nlq) = [n11]¢K 1 (nlg)+Ru(nlq) and K, (n|g) = [n],K; (nlg)+

R.(n|q).



We can obtain the linearization coefficients of the Al-Salam Chihara g-Charlier

and g-Laguerre polynomials with similar methods but the proofs are more

technical. See

— Ismail, K. and Zeng, Separation of variables and combinatorics of lineari-
zation coefficients of orthogonal polynomials, 2011.

— K., Stanton and Jiang Zeng, The combinatorics of Al-Salam—Chihara ¢-
LLaguerre polynomials, 20009.
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