Cluster algebras and Lie theory, |

Bernard Leclerc
Université de Caen

Séminaire Lotharingien de Combinatoire 69
Strobl, 10 septembre 2012






local rule:



local rule:



Coxeter frieze patterns (1971)

local rule:

1+yz




Coxeter frieze patterns (1971)



Coxeter frieze patterns (1971)



Coxeter frieze patterns (1971)



Coxeter frieze patterns (1971)



Coxeter frieze patterns (1971)



Coxeter frieze patterns (1971)



Coxeter frieze patterns (1971)



Coxeter frieze patterns (1971)



Coxeter frieze patterns (1971)



Coxeter frieze patterns (1971)



Coxeter frieze patterns (1971)



Coxeter frieze patterns (1971)



Coxeter frieze patterns (1971)



Coxeter frieze patterns (1971)



Coxeter frieze patterns (1971)



Coxeter frieze patterns (1971)



Coxeter frieze patterns (1971)



Coxeter frieze patterns (1971)



Coxeter frieze patterns (1971)



Coxeter frieze patterns (1971)



Coxeter frieze patterns (1971)



Coxeter frieze patterns (1971)



Coxeter frieze patterns (1971)



Coxeter frieze patterns (1971)



Coxeter frieze patterns (1971)



Coxeter frieze patterns (1971)

1 1 1 1 1
1 2

1
1 2

1
1 2



Coxeter frieze patterns (1971)



Coxeter frieze patterns (1971)



Coxeter frieze patterns (1971)



Coxeter frieze patterns (1971)



Coxeter frieze patterns (1971)



Coxeter frieze patterns (1971)



Coxeter frieze patterns (1971)



Coxeter frieze patterns (1971)



Coxeter frieze patterns (1971)
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1 2 3 3 1

1 5 8 2 1
1 2 13 5 1
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@ Initial data: Xy =Xo = X3 = X4 = 1.
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@ Initial data : X1, Xo, X3, X4.

@ Recurrence :

2
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2
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7 pr—
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Somos sequence (1989)

0 X3 = (X3Xax$ +2X2XF X2 + BXEXoXEXS + X1 X] + BX1 Xo X3 X4 +
20342 | 42,6 3,4 4,202 5.3 | (2,5, 4
3X4 ;(2 X3 ;(4 +3x22x3 +3X5 X5 Xa + 3X5 X5 X5 + X3 X7 + X7 X5 X4 +
X1X5X3X} )/ X{ X5 X3 X4

@ xo = (XFXC+2x2X3X2 4+ 3x3xox3 X7 + XEXF + 3x1 X3 X3 X7 +
SXZXEXEX] +3XXIXS +AXIXEXF + TX1 X3X3X3 +
BXZXo X3 X2 + BXIXTXZ + BX1 XEX2 X2 + 3xZXEXZ +AXS xS x4 +
1294 2283491323324 143744 27374
3X1 X X4 Xa + X5 X5 + X1 X3 ) / X X5 X5 X4

@ We get Laurent polynomials with integer coefficients !
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Triangulations

Let T be a triangulation, D a diagonal of T.

Definition

We call mutation of T with respect to D the triangulation pp(T)
obtained by flipping D.

We can generate all triangulations by means of mutations:

@ We fix an initial triangulation Tjpj;
@ We mutate T, with respect to each of its diagonals D;
@ We mutate all the new triangulations;

@ erlc...
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Ptolemy’s theorem

D

If A, B, C, D lie on a circle:

AC-BD=AB-CD+AD-BC
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Back to Coxeter frieze patterns

@ Obtain other friezes using mutations of triangulations.

@ Study the connections between friezes and triangulations.
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Quiver mutation

Definition

For 1 < k < n, define u(Q) by :

(a) For every configuration / — k — j add a new arrow i — J;
(b) Erase the 2-cycles created by (a) (if any);

(c) Change the orientation of every arrow incident to K.
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Mutation of variables

[ Definiton |

For 1 <k <n and 1 <j < n, define uk(y;) by

w(y) =y if j#k;

[Tyvi+11y
=k k—j
(k) = —
2
_|_
Vi — o “1(y1):w
12X | '
3 3, .2
Y5 +Yiya
Yo <— V3 nu3(y3):¥

Y3
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Seed mutation

Definition

.uk(oﬂ (y17~--,}/n)) = (Hk(o)v(!lk(}ﬁ)y---aﬂk(}’n)))

)2 = Vo ﬁ‘_} Y§+Y2Y4

> 1

Every mutation iy is involutive. The result is again a seed.
~» We can iterate seed mutation.









Back to Somos sequence

14 2
b» X5+Xo X4 Xo
X1

1<

X4 <=— X3

X1 —— Xo

12X

X4 <— X3



Back to Somos sequence

Xi Xo M X2+XpX4 Xo K2 X2+Xp X4 Xo X3 Xa+X5+X1 X2
X1 X1 X1 X2
X4 <— X3

X4 <=— X3 Xg<— X3



Back to Somos sequence

2 2 3 2
X1 Xo ﬁl X5+Xo X4 Xo ﬁg} X§5+XoX4 Xp X3 X4+X3+X1 X§
X1 X1 X1 X2
Xl 1< >
X4 <— X
4 3 X4 <=— X3 Xg<— X3
J & X2+ Xp X4 Xo XaXg+X3+Xq X2
2 3 3 4
X1 X1 X2
X4 2XEX2 X4+ X1 XS X+ X2XZ+ XS X2+ Xp X+ X1 Xp X3 X2

X2XpX3



Back to Somos sequence

2 2 3 2
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X4 <— X
4 3 X4 <=— X3 Xg<— X3
J & X2+ Xp X4 Xo XaXg+X3+Xq X2
2 3 3 4
X1 X1 X2
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Cluster algebra : definition

Initial seed: X:=((Xy,...,Xn), Q)

@ cluster: n-tuple (y1,...,¥n) of variables of any seed obtained
from X via a sequence of mutations;

@ cluster variable: element of a cluster;

@ cluster algebra o7: subring of .7 generated by the cluster
variables.

Theorem (Fomin-Zelevinsky, “Laurent phenomenon”)

g CZXE ... xE




X1 — Xo < X3



1+X2
1
!\ﬂ) X-

X3
-
X2

-
X3

-
X2

_
X1



X3
-
X2
14+ X o
Hy . :
X3
Xo ) N
—> —
Xq N
U3
A

X3
X1



wmo 1+x
X1 — Xo«— X3~ X «— Xo < X3
1
s 1-|—X2 1-|—X2
~s — Xo —
X1 X3

o 1+xe  1T+xix3+2x+Xx5 14X
~S — —
Xq X1 X2X3 X3
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X1 — Xo«— X3~ X «— Xo < X3
1
s 1-|—X2 1-|—X2
~s — Xo —
X1 X3

o 1+xe  1T+xix3+2x+Xx5 14X
~S — —
Xq X1 X2X3 X3

iy 1+ Xo+ X1 X3 1+X1X3+2X2+X22 14+ X0+ X1 X3
~ — —
X2X3 X1X2X3 X1X2




wo 1+X

X1 — Xo < X3 ~ X «— Xo < X3
1
U3 14X 14+ X
~> — Xo —
Xq X3
o 14X 1+X1X3+2X2+X22 1+ X
~S — «—
X1 X1X2X3 X3
wus 1+Xe+xixs  T+X1x3+2%+X5 14+ X2+ X1X3
~ «— —
Xo X3 X1 X2X3 X1 X2

H2
A

14+ Xo + X1 X3 -~ 1+ Xx1X3 _ 14+ Xo + X1 X3

X2X3 X2

X1 X2



wo 1+X

X1 — Xo < X3 ~ X «— Xo < X3
1
U3 14X 14+ X
~> — Xo —
Xq X3

o 14X 1+X1X3+2X2+X22 1+ X
~S — «—
X1 X1X2X3 X3

wus 1+Xe+xixs  T+X1x3+2%+X5 14+ X2+ X1X3
~ «— —
Xo X3 X1 X2X3 X1 X2
U 14+ Xo + X1 X3 1+ Xx1X3 14+ Xo + X1 X3
~ — —
X2 X3 X2 X1 X2

M pa 1+ X1X3
~ ——

X
X2



o 1+X

X1 — Xo < X3 ~ X «— Xo < X3
1
U3 14X 14+ X
~> — Xo —
Xq X3
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~S — «—
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H2
A
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1
U3 14X 14+ X
~> — Xo —
Xq X3
o 14X 1+X1X3+2X2+X22 1+ X
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X1 X1X2X3 X3
wus 1+Xe+xixs  T+X1x3+2%+X5 14+ X2+ X1X3
~ «— —
Xo X3 X1 X2X3 X1 X2

H2
A

H1H3
A

14+ Xo + X1 X3 -~ 1+ Xx1X3 _ 14+ Xo + X1 X3

X2X3 X2

1+ X1X3 1
— — = X
X2

Only 9 cluster variables !!

X1 X2

1~ X3 — Xo < Xq
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Finite type classification

Theorem (Fomin-Zelevinsky)

@ %/ has a finite number of cluster variables iff the mutation class
of Q contains an orientation of an A, D, E Dynkin diagram

. 1:1 os
@ { cluster variables } «— { almost positive roots of Q }

1:1 q q .
@ { clusters } «— { vertices of generalized associahedron }

: Type As: x[—aj] = xi;
1+ 1+ X2+ X1 X3
X[(X‘]] = Xq 5 X[a1 +062] = T
1+ X1X3 1+ X1X3+2X + X2
xlop] = % Xloy+optoag] = X1 XaXs ;
1+X2 1+X2+X1X3
x[og] = ; Xlop+az] = —————=.

X3 X2X3



The associahedron of type A;

(07)
O + 03
o+ 0 »
o +0p+03
: 03
. ............................ Y
(041
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Generalizations

@ Can use valued quivers ~~ types B, C, F, G.

@ Can add coefficients (or frozen variables).
Q[SL(2)] =Qla,b,c,d | ad —bc =1].

Cluster algebra of type Aq:

@ 2 cluster variables: a, d.
@ 2 frozen variables: b, C.

@ | exchange relation: ad =1+ bc.

bsa—c 4% bedoc



Homework

Exercise

Show that the coordinate ring of the space of 2 x 3 matrices
a b c
d e f

has a cluster algebra structure of type Ay with

@ 5 cluster variables : a, b, e, f, g := af — cd.
@ 4 frozen variables : A:=ae—bd, B := bf — ec, c, d.
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Finite type classification

Theorem (Fomin-Zelevinsky)

@ %/ has a finite number of cluster variables iff the mutation class
of Q contains an orientation of an A, D, E Dynkin diagram

. 1:1 os
@ { cluster variables } «— { almost positive roots of Q }

1:1 q q .
@ { clusters } «— { vertices of generalized associahedron }

: Type As: x[—aj] = xi;
1+ 1+ X2+ X1 X3
X[(X‘]] = Xq 5 X[a1 +062] = T
1+ X1X3 1+ X1X3+2X + X2
xlop] = % Xloy+optoag] = X1 XaXs ;
1+X2 1+X2+X1X3
x[og] = ; Xlop+az] = —————=.

X3 X2X3



The associahedron of type A;

(07)
O + 03
o+ 0 »
o +0p+03
: 03
. ............................ Y
(041
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Generalizations

@ Can use skew symmetrizable matrices ~- types B, C, F, G.

@ Can add coefficients (or frozen variables).
Q[SL(2)] =Qla,b,c,d | ad —bc =1].

Cluster algebra of type Aq:

@ 2 cluster variables: a, d.
@ 2 frozen variables: b, C.

@ | exchange relation: ad =1+ bc.

bsa—c 4 bedoc



Homework

Exercise

Show that the coordinate ring of the space of 2 x 3 matrices
a b c
d e f

has a cluster algebra structure of type Ay with

@ 5 cluster variables : a, b, e, f, g := af — cd.
@ 4 frozen variables : A:=ae—bd, B := bf — ec, c, d.







Factorization problem

The unipotent group

1 a2 a;3 an

_ )0 1 ax ax
N= 0 O 1 asq
0 O 0 1

,8;€C

C SLy(C)



Factorization problem

The unipotent group

1 a2 a;3 an

_ 0 1 a3 anu )
N = 0 0 1 au , aj € C p C SL4(C)
0 0 O 1
is generated by the one-parameter subgroups

1 4 00 10 0O
01 00 01 6 O

(0)=19 o 1 o] *®=|0 0 1 0
0O 0 0 1 0 0 0 1
1.0 0 O
0100

xt)=1o 0 1 4| (t€C).
0 00 1
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Factorization problem

A generic element x € N has a unique factorization
X =X (l’1 )Xg(tg)X1 (tg)Xg(f4)X2(t5)X1 (tg).
The map (11, bo, t3, l4, 15, I5) + X is a birational isomorphism

Xi21321):C®—N.

Problem
Calculate explicitly the inverse rational map f(121321): N — CS.

Solved (for SLj, and any factorization pattern) by Berenstein, Fomin,
Zelevinsky (1996).
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Factorization problem

1 H+i+lsg Hbb+tils+1i3ls bl

0 1 b+t bt
X121321)(t,. . l6) = 0 0 21 ° 21‘44

0 0 0 1

e For J C {1,2,3,4}, denote by D; = D,(x) the minor of x taken on
the columns from J and the first rows. Then

D, Di4 _ D34Di24

b=t =gy 3R
"" Diy 7 Dipy’ ° DiayDyg

Di34 D234
t4 = Dioa, s=5—, lo=F—.
D24 Di34

e The {;’s are Laurent monomials in the 6 functions

Di24, D14, D134, Ds, D34, Do3s.
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Factorization problem

e Take another factorization pattern : (1,2,3,2,1,2). Then

D, D4
h=——, tb = =—, 3= Djoa,
D14 D124
_ Do3sDyy Doy _ Dz
h="—F7— b=b5—, =5—.
D4D124 D14 D>,

e The #;’s are Laurent monomials in the 6 functions

D124, D14, Do4, Ds, D34, Do3y.

e The function D34 is replaced by Doy4. They are related by

24D134 = D14 D234 + D124 D34
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Factorization problem

There are 8 factorization patterns.

Each of them gives a 6-tuple of functions.

Each 6-tuple contains the 3 functions Dy, D34, Do3g.
The remaining 8 triples are:

(Dj24,D14,D134),
(D23, Dy4,Ds4),
(D3,D1334,D5),

where

(D124,D14,D24),
(D3, D13 34,D134),

(D124, D13 34, D134),
(D23, D5, Dsy),

(D237 D27 D3)7
a3z as
D = )
13,34 1 as




Factorization problem

There are 8 factorization patterns.

Each of them gives a 6-tuple of functions.

Each 6-tuple contains the 3 functions Dy, D34, Do3g.
The remaining 8 triples are:

(D124,D14,D134), (D124,D14,D04),  (D124,D1334,D134),
(D23, D14,D54),  (D3,D1334,D134), (Do3,Do,D54),
(D3,D1334,D5), (D23, Ds,Ds),

where
a3z as
D = .
13,34 1 2
Put
:= Dj2a4, =Dy, 3:=Djz4, 4:=Dxy

:=Di334, 6:=Dp3, 7:=Ds, = Do.



(1,2,3)

N

(1,3,5) (1,2,4)
(3,5,7) (2,4,6)
(5,7,8) (4,6,8)

N

(6,7,8)



(1 ,é,8) (3,5,7) —

\
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Proposition

The assignment
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Let 7 be the cluster algebra with initial seed :

X1
PN
Xo ——— X3

LN SN

The blue variables are frozen.

Proposition

The assignment
Xy = Do, Xo+— D3, X3 — Do3, X4 — Dy, X5+ D4, X +— Dosy

extends to an isomorphism : .« ®7 C — C[N].

@ C[N] has finite cluster type As.
@ The cluster monomials coincide with the elements of Lusztig’s
dual canonical basis of C[N] (Berenstein-Zelevinsky).
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Notation

G a simple algebraic group of type Ap, D, Ep;

N C G a maximal unipotent subgroup;

X;(t) (1 <i< n) the one-parameter subgroups of N
corresponding to the simple roots.

C[N] the coordinate ring of N.
f € C[N] is determined by the polynomial functions :

(t,. b)) = F(xi, (B) -+ X, (1))

for all (i1,...,i).

W the Weyl group, W its longest element.
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Theorem (Berenstein-Fomin-Zelevinsky)

C[N] is a cluster algebra, with explicit initial seeds labelled by
reduced decompositions of Wp.

Lie type of G | Cluster type of C[N]
Ao Aq
A3 As
Ay D¢
others infinite

~~ preprojective algebra !!
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The preprojective algebra

@ Q, an orientation of the Dynkin diagram of G.

@ Q, the double quiver : for each arrow a: i — j of Q add a new
arrow a" : f — .

@ CQ, the path algebra of Q.

@ p=Y.olaa —aa) eCQ.

@ (p), the double-sided ideal of CQ generated by p.

Definition (Gelfand-Ponomarev)

:=CQ/(p), the preprojective algebra of Q.

@ A is finite-dimensional, selfinjective.
@ A has finite representation type iff Q has type A, (n < 4) !!
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Type A;

e Indecomposable projectives:

e Other indecomposables:

/N 4 N N /
1 3 2 2 3 2 1

e Recall that C[/V] has 3 frozen variables and 9 cluster variables !!
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Want a map : mod A — C[N] ...
C[N] is Hopf dual to U(n), where n = Lie(N).

Ringel, Lusztig : Geometric realization of Uy(n) via
constructible sheaves on varieties of CQ-modules.

Lusztig : Geometric realization of U(n) via constructible
functions on varieties of /A-modules.

Geiss-L-Schréer : Dualizing Lusztig’s construction, get a nice
map M — @ from mod A to C[N].
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The map M — ¢y

@ For M € mod A and i = (fy,...,Iy) let Z); be the variety of
composition series of M of type i:

{0}:MOCM1CM2C-"CMd:M

with M;/M;_4 = S;. (A projective variety.)
@ xwmi:= X(Zm;) € Z (Euler characteristic).

Theorem (Lusztig, Geiss-L-Schroer)

There exits a unique @y € C[N] such that for all j = (jy,...,Jk)

-k
om(xj, ()X, (5)) = Y xwmj ﬁ

€Nk

wherej :(j‘|,...,j1,---7jk7“"jk)
N—_—— N——







The map M — ¢y : type A3

o Indecomposable projectives:

1 — Doag, 2 — Day, 3 — Dy,
N ¥\ ¥
2 1 3 2
\ N /
3 2 1



The map M — ¢y, : type As

e Indecomposable projectives:

1 — Doag, 2 = Day, 3 — Dy,
N ¥\ ¥
2 1 3 2
N N ¥ ¥
3 2 1

e Other indecomposables:

2 — Dy334, 1 3 Doy, 1 — Dos,
¥\ N K N
1 3 2 2

2 — Dy3q, 3 — Dig, 2 +— Ds,
N\ ¥ ¥

1+ Do, 2+ Dys, 3 — Di24.
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@ How should we interpret mutations in mod A ?

D24 D134 = D14D234 + D124 D34

2 — 3D 1 — 1 3
N\ ¥ N N ¥
3 2 2 2

\
3
1 3 — 363 2 — 2
N ¥ N N
2 1 3 3
N ¥






Multiplicative properties of ¢

Theorem (Geiss-L-Schrder)
@ forevery M,L € mod A, ¢, = Qe
@ if dimExt' (M,L) =dimExt (L, M) =1 then

PvPL = Ox + Py,

where 0 - M —- X —-L—0and0 — L — Y — M — 0 are the
two non-split short exact sequences.
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Multiplicative properties of ¢

Theorem (Geiss-L-Schrder)
@ forevery M,L € mod A\, @, = Qo1
@ if dimExt' (M,L) =dimExt (L, M) =1 then

PvPL = Ox + Py,

where 0 - M —- X —-L—0and0 — L — Y — M — 0 are the
two non-split short exact sequences.

@ forevery M, L € mod A, dimExt | (M, L) = dimExt ! (L, M).

@ if dimExt! (M, L) > 1, there is a more complicated formula
involving all possible middle terms of non-split short exact
sequences with end terms M and L.
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Rigid /\-modules

Definition

M € mod A is rigid if Ext | (M, M) = 0.

e .= { positive roots of Q = dim N.

Theorem (Geiss-Schroer)

A rigid A-module has at most r non-isomorphic indecomposable
direct summands.

e A rigid A-module T with r non-isomorphic indecomposable direct
summands is called maximal rigid.
e Example in type Agz:

T=1&1 @ 2D 1 @ 2 ¥ 3

N ¥ N ¥ N\ s
2 1 2 1 3 2
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elet T=T{®---® T, be maximal rigid and B:=End , T.
Let I'7 be the Gabriel quiver of B.

Theorem (Geiss-L-Schroer)

7 has no loops nor 2-cycles.

e Example in type Agz:
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Rigid /\-modules

e Define X(T) := ((@7,,...,07.), I'T)

Theorem (Geiss-L-Schroer)

There exists an explicit maximal rigid module U such that X(U) is
one of the initial seeds of the BFZ cluster structure of C[N].

e Let T, be a non-projective indecomposable summand of T.

Theorem (Geiss-L-Schroer)

There exists a unique indecomposable T, * such that (T/T,) @ Ty™ is
rigid.

Define uy(T) := (T/Tx) @ Tx", the mutation of T in direction K.
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Rigid /\-modules

Theorem (Geiss-L-Schrder)
@ XL(uy(T)) = m(X(T)).

@ T +— X(T) gives a 1-to-1 correspondence between maximal rigid

modules in the mutation class of U and clusters of C[N].

@ Every cluster monomial belongs to the dual semicanonical basis
of C[N].

(1) Is every maximal rigid module T in the mutation class of U ?

(2) Does every cluster monomial belong to the dual basis of

C[N] ?
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Generalizations

@ Replace N by the unipotent radical Ny of a parabolic subgroup
Py. We get similar results where mod A is replaced by a certain
full additive subcategory ¢ .

@ Adding some frozen variables, we get a cluster structure in the
(multi)-homogeneous coordinate ring of the flag variety G/ P.

@ In a Kac-Moody setting, replace N by
N(w):=Nn(w 'N_w)

for w € W. We get similar results where mod A is replaced by a
certain full additive subcategory 4),. The categories 4, were
also introduced and studied independently by Buan, Iyama,
Reiten, Scott.
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The quantum algebra U,(Lg)

e g complex Lie algebra of type Ap, Dp, Ep.

\
/

U(g) Uq(Lg)
N 7
U(Lg)
e Uy(g) quantum enveloping algebra (g € C*, not a root of 1).
e Lg:=g®C[t, t~"] loop algebra.
e Uy(Lg) quantum loop algebra.

: Study the tensor category of finite-dimensional modules over

Ug(Lg).



o P =]  Zm; weight lattice of g.



Representations of Lg

o P =@}  Zw; weight lattice of g. Simple U(g)-modules L(1) are
labelled by A € P, = P} Naw;.



Representations of Lg

o P =@}  Zw; weight lattice of g. Simple U(g)-modules L(1) are
labelled by A € P, = P} Naw;.
e Fix z € C*. There is a homomorphism ev, : U(Lg) — U(g)

xoth—Zkx  (xeg, ke).



Representations of Lg

o P =@}  Zw; weight lattice of g. Simple U(g)-modules L(1) are
labelled by A € P, = P} Naw;.
e Fix z € C*. There is a homomorphism ev, : U(Lg) — U(g)

xoth—Zkx  (xeg, ke).

e Hence, Mc modU(g) ~» M][z] € modU(Lg).



Representations of Lg

o P =@}  Zw; weight lattice of g. Simple U(g)-modules L(1) are
labelled by A € P, = P} Naw;.
e Fix z € C*. There is a homomorphism ev, : U(Lg) — U(g)

kKx  (xeg, keZ).

X@ K z
e Hence, Mc modU(g) ~» M][z] € modU(Lg).

Theorem (Chari)
Every simple U(Lg)-module is of the form

Si[z1]® -+ ® Sk[2z4]

for some simple U(g)-modules Sy, ..., Sk, and pairwise distinct
Z1,...,2x € C*.




Representations of Lg

o P =@}  Zw; weight lattice of g. Simple U(g)-modules L(1) are
labelled by A € P, = P} Naw;.
e Fix z € C*. There is a homomorphism ev, : U(Lg) — U(g)

xoth—Zkx  (xeg, ke).
e Hence, Mc modU(g) ~» M][z] € modU(Lg).

Theorem (Chari)
Every simple U(Lg)-module is of the form

Si[z1]® -+ ® Sk[2z4]

for some simple U(g)-modules Sy, ..., Sk, and pairwise distinct
Z1,...,2x € C*.

o P= D,cc- D1 Z(wj, 2) lattice of [-weights.



Representations of Lg

o P =@}  Zw; weight lattice of g. Simple U(g)-modules L(1) are

labelled by A € P, = P} Naw;.

e Fix z € C*. There is a homomorphism ev, : U(Lg) — U(g)
xoth—Zkx  (xeg, ke).

e Hence, Mc modU(g) ~» M][z] € modU(Lg).

Theorem (Chari)
Every simple U(Lg)-module is of the form

Si[z1]® -+ ® Sk[2z4]

for some simple U(g)-modules Sy, ..., Sk, and pairwise distinct
Z1,...,2x € C*.

oP= D,cc- D1 Z(w;, z) lattice of /-weights. Simple modules

o~

over U(Lg) are labelled by P, = @, D1 N(@;, 2).
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Representations of U;(Lg)

e mod U(g) and mod Uy (g) are equivalent semisimple categories,
with isomorphic Grothendieck rings. Simple objects have the same
dimension.

e mod U(Lg) and mod Uy (Lg) are not semisimple, and not equivalent.
But

Theorem (Chari-Pressley)

Simple modules over Uy(Lg) are also labelled by P,.

:g=slp. Forlg,
L(®,z1)+(0,22)) = L(0,21)  L(B, 2p) <= 21 # 2.
For Uq(Lg),

LU(®,21) + (@, 22)) = L(B,21) @ L(B, 22) <= 21 # G2 2.
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g-characters

o M € mod Uy(Lg).
e Uy(Lg) has a large commutative subalgebra A ~~ decomposition
into generalized eigenspaces :

M= @ M;

lieP

Definition (Frenkel-Reshetikhin)

Xq(M) = Zﬁ cpdim M e is the g-character of M.

e %q(M) is a Laurent polynomial in the Y; , := €(@®?),
o SetAjz:=Yiq:Yig 1114 YZ, where [;] Cartan matrix of g.

Proposition (Frenkel-Reshetikhin)

o~

2g(L(A)) == et X L@)) is a polynomial in the A,’; with constant
term 1.
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g-characters

e No general formula for irreducible g-characters.
~+ Frenkel-Mukhin algorithm (for minuscule modules).
~» Nakajima geometric description in terms of quiver varieties:

@ Betti numbers of .Z*(V, W) give g-characters of standard
modules

@ Intersection cohomology methods give decomposition of
standard modules into simples
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Open problems

e “Many” simple Uy (Lg)-modules are tensor products of smaller
simples.

Problem

@ What are the prime simples ?
@ What is the prime factorization of an arbitrary simple ?

@ Which products of primes are simple ?

e Chari-Pressley (1991): full answer for Uy (Lsl2).
e Hernandez-L; Nakajima (2009): partial answer for Uy(Lg).
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The subcategory ¢

e QQ := sink-source orientation of Dynkin diagram of g.

e lp := {sinks}, Iy := {sources}, & = {? g;g ;O
]

° ﬁ+11 = @2(:0 @P:1 N(a)'i’ q§/+2k)

Definition
%1 is the full subcategory of mod Uq(Lg) whose ob]ects have all their

composition factors of the form L(l) with A € P+ 1.

N

Proposition (Hernandez-L.)

¢4 is closed under tensor products. Kp(%7) is the polynomial ring in
[L(@, g5 )] (0< k<1, 1<i<n).
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The subcategory ¢

e o simple roots of g

e Positiveroot B =Y i bja; ~~ S(B):=L (Z/ (@, q éi))

e Negative simple —; ~ S(—aj) =L (((Di’ q2—?§/)>
el1<i<n ~  Fi:i=1L <(a)'l qél) ((D‘ q§i+2))

Theorem (Hernandez-L.; Nakajima)

e Ko(%1) is a cluster algebra of finite type = the Dynkin type of g.
e [S(B)],[S(—a;)] cluster variables, [F;] coefficients.

o {[L(?L)] | 2e P 1 } = {cluster monomials}

: type As. %7 has 12 prime simple objects of dimensions
4,6,4,4,6,4,20,20,70,10,20,10

. . 1:1 . .
14 factorization patterns «—— vertices of Stasheff associahedron



o +0p+03




o +0p+03

S(Otg)®a® S(OC1 + a2)®b® S(Otg + Ot3)®c® F1 ®d® F2®e
is simple for any a,b,c,d,e € N.
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Truncated g-characters

e Modules S(f) can be very large.
: type Dq, B highest root, dim S(B) = 167327.

o For A € P, 1, 24(L()) = € Z4(L(X)). where %4(L(A)) is a
polynomial in the AI,—;@_ t1e2x (KEN).

Definition

Xq(L(/)\L))SQ is the sum of all monomials of &* iq(L(I)) involving
only variables v; := Ai_c;ii oy

: type Dy, B highest root. x4(S(B))<2 has only 14 monomials.

Proposition

Simple objects S of %7 are characterized by their truncated
g-character 4(S)<2.
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Quiver grassmannians and F-polynomials

e M arepresentation of Q, ¥ =Y, ¢j; a dimension vector,

~+ Gry(M) := Grassmannian of subrepresentations of M with
dimension vector 7, a projective variety.

Definition

Fu(vi,...,vn) := X, x(Gry(M))v”  (x Euler characteristic).

e f3 positive root ~~ indecomposable M[f] with dimension 3
~ Fp == Fup)

e —q; negative simple root ~ F_g =1

e 3 positive root ~ 7(B) := ([Tjcy, Si) (B)
—o if i€ Io

e —0; negative simple root ~ T(—0) 1= { o ifiel
i 1
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