Cluster algebras and Lie theory, I

Bernard Leclerc Université de Caen

Séminaire Lotharingien de Combinatoire 69 Strobl, 10 septembre 2012

local rule:

local rule:

y

X

Z

local rule:

$$\begin{pmatrix} y \\ x \end{pmatrix} = \frac{1+yz}{x}$$


```
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1</t
```

```
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1</t
```

	1		1		1		1		1		1		1		1
1		2		3		3		1		2		3		3	
	1		5		8		2		1		5		8		2
1		2		13		5		1		2		13		5	
	1		5		8		2		1		5		8		2
1		2		3		3		1		2		3		3	
	1		1		1		1		1		1		1		1

```
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1</t
```

• We get integer numbers!

```
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1
    1</t
```

- We get integer numbers!
- It is periodic!

H. M. Coxeter 1907 – 2003

• Initial data : $x_1 = x_2 = x_3 = x_4 = 1$.

- Initial data : $x_1 = x_2 = x_3 = x_4 = 1$.
- Recurrence:

$$x_k = \frac{x_{k-3}x_{k-1} + x_{k-2}^2}{x_{k-4}}$$
 $(k \ge 5).$

- Initial data : $x_1 = x_2 = x_3 = x_4 = 1$.
- Recurrence:

$$x_k = \frac{x_{k-3}x_{k-1} + x_{k-2}^2}{x_{k-4}}$$
 $(k \ge 5).$

- Initial data : $x_1 = x_2 = x_3 = x_4 = 1$.
- Recurrence:

$$x_k = \frac{x_{k-3}x_{k-1} + x_{k-2}^2}{x_{k-4}} \qquad (k \ge 5).$$

• We get integer numbers!

• Initial data : x_1, x_2, x_3, x_4 .

- Initial data : x_1, x_2, x_3, x_4 .
- Recurrence:

$$x_k = \frac{x_{k-3}x_{k-1} + x_{k-2}^2}{x_{k-4}}$$
 $(k \ge 5).$

- Initial data : x_1, x_2, x_3, x_4 .
- Recurrence:

$$x_k = \frac{x_{k-3}x_{k-1} + x_{k-2}^2}{x_{k-4}}$$
 $(k \ge 5).$

•
$$x_5 = \frac{x_2x_4 + x_3^2}{x_1}$$

- Initial data : x_1, x_2, x_3, x_4 .
- Recurrence:

$$x_k = \frac{x_{k-3}x_{k-1} + x_{k-2}^2}{x_{k-4}}$$
 $(k \ge 5).$

•
$$x_5 = \frac{x_2 x_4 + x_3^2}{x_1}$$

• $x_6 = \frac{x_2 x_3 x_4 + x_3^3 + x_1 x_4^2}{x_1 x_2}$

- Initial data : x_1, x_2, x_3, x_4 .
- Recurrence:

$$x_k = \frac{x_{k-3}x_{k-1} + x_{k-2}^2}{x_{k-4}}$$
 $(k \ge 5).$

•
$$x_5 = \frac{x_2 x_4 + x_3^2}{x_1}$$

• $x_6 = \frac{x_2 x_3 x_4 + x_3^3 + x_1 x_4^2}{x_1 x_2}$
• $x_7 = \frac{2x_2^2 x_3^2 x_4 + x_1 x_3^3 x_4 + x_1^2 x_4^3 + x_2^3 x_4^2 + x_2 x_3^4 + x_1 x_2 x_3 x_4^2}{x_1^2 x_2 x_3}$

 $\bullet \ x_8 = (x_1^3 x_3 x_4^4 + 2 x_1^2 x_3^4 x_4^2 + 3 x_1^2 x_2 x_3^2 x_4^3 + x_1 x_3^7 + 3 x_1 x_2 x_3^5 x_4 + \\ 3 x_1 x_2^2 x_3^3 x_4^2 + x_2^2 x_3^6 + 3 x_2^3 x_3^4 x_4 + 3 x_2^4 x_3^2 x_4^2 + x_2^5 x_4^3 + x_1^2 x_2^2 x_4^4 + \\ x_1 x_2^3 x_3 x_4^3) / x_1^3 x_2^2 x_3 x_4$

- $\bullet \ x_8 = (x_1^3 x_3 x_4^4 + 2 x_1^2 x_3^4 x_4^2 + 3 x_1^2 x_2 x_3^2 x_4^3 + x_1 x_3^7 + 3 x_1 x_2 x_3^5 x_4 + 3 x_1 x_2^2 x_3^3 x_4^2 + x_2^2 x_3^6 + 3 x_2^3 x_3^4 x_4 + 3 x_2^4 x_3^2 x_4^2 + x_2^5 x_4^3 + x_1^2 x_2^2 x_4^4 + x_1 x_2^3 x_3 x_4^3) / x_1^3 x_2^2 x_3 x_4$
- $\begin{array}{l} \bullet \ \, x_9 = (x_1^4 x_4^6 + 2 x_1^2 x_2^3 x_4^5 + 3 x_1^3 x_2 x_3 x_4^5 + x_2^6 x_4^4 + 3 x_1 x_2^4 x_3 x_4^4 + \\ 5 x_1^2 x_2^2 x_3^2 x_4^4 + 3 x_1^3 x_3^3 x_4^4 + 4 x_2^5 x_3^2 x_4^3 + 7 x_1 x_2^3 x_3^3 x_4^3 + \\ 6 x_1^2 x_2 x_3^4 x_4^3 + 6 x_2^4 x_4^3 x_4^2 + 6 x_1 x_2^2 x_3^5 x_4^2 + 3 x_1^2 x_3^6 x_4^2 + 4 x_2^3 x_3^6 x_4 + \\ 3 x_1 x_2 x_3^7 x_4 + x_2^2 x_3^8 + x_1 x_3^9) / x_1^3 x_2^3 x_3^2 x_4 \end{array}$

- $\begin{array}{l} \bullet \ \, x_9 = (x_1^4x_4^6 + 2x_1^2x_2^3x_4^5 + 3x_1^3x_2x_3x_4^5 + x_2^6x_4^4 + 3x_1x_2^4x_3x_4^4 + \\ 5x_1^2x_2^2x_3^2x_4^4 + 3x_1^3x_3^3x_4^4 + 4x_2^5x_3^2x_4^3 + 7x_1x_2^3x_3^3x_4^3 + \\ 6x_1^2x_2x_3^4x_4^3 + 6x_2^4x_3^4x_4^2 + 6x_1x_2^2x_3^5x_4^2 + 3x_1^2x_3^6x_4^2 + 4x_2^3x_3^6x_4 + \\ 3x_1x_2x_3^7x_4 + x_2^2x_3^8 + x_1x_3^9)/x_1^3x_2^3x_3^2x_4 \end{array}$
- We get Laurent polynomials with integer coefficients!

Let T be a triangulation, D a diagonal of T.

Let T be a triangulation, D a diagonal of T.

Definition

We call **mutation** of T with respect to D the triangulation $\mu_D(T)$ obtained by flipping D.

Let T be a triangulation, D a diagonal of T.

Definition

We call **mutation** of T with respect to D the triangulation $\mu_D(T)$ obtained by flipping D.

We can generate all triangulations by means of mutations:

Let T be a triangulation, D a diagonal of T.

Definition

We call **mutation** of T with respect to D the triangulation $\mu_D(T)$ obtained by flipping D.

We can generate all triangulations by means of mutations:

• We fix an initial triangulation T_{init} ;

Let T be a triangulation, D a diagonal of T.

Definition

We call **mutation** of T with respect to D the triangulation $\mu_D(T)$ obtained by flipping D.

We can generate all triangulations by means of mutations:

- We fix an initial triangulation T_{init} ;
- We mutate T_{init} with respect to each of its diagonals D;

Let T be a triangulation, D a diagonal of T.

Definition

We call **mutation** of T with respect to D the triangulation $\mu_D(T)$ obtained by flipping D.

We can generate all triangulations by means of mutations:

- We fix an initial triangulation T_{init} ;
- We mutate T_{init} with respect to each of its diagonals D;
- We mutate all the new triangulations;

Triangulations

Let T be a triangulation, D a diagonal of T.

Definition

We call **mutation** of T with respect to D the triangulation $\mu_D(T)$ obtained by flipping D.

We can generate all triangulations by means of mutations:

- We fix an initial triangulation T_{init} ;
- We mutate T_{init} with respect to each of its diagonals D;
- We mutate all the new triangulations;
- etc...

Ptolemy's theorem

Ptolemy's theorem

Ptolemy's theorem

If A, B, C, D lie on a circle:

$$AC \cdot BD = AB \cdot CD + AD \cdot BC$$


```
1 1 1 1 1 1 1 1 1
1 2 3
1 5
1 2 3
1 1 1 1 1 1 1 1
```

```
1 1 1 1 1 1 1 1
1 2 3
1 5 2
1 2 3
1 1 1 1 1 1 1 1
```

```
1 1 1 1 1 1 1 1
1 2 3 1
1 5 2
1 2 3
1 1 1 1 1 1 1 1
```

```
1 1 1 1 1 1 1 1
1 2 3 1
1 5 2
1 2 3 1
1 1 1 1 1 1 1 1
```

```
1 1 1 1 1 1 1 1
1 2 3 1
1 5 2 1
1 2 3 1
1 1 1 1 1 1 1 1
```


Exercise

• Obtain other friezes using mutations of triangulations.

	1		1		1		1		1		1		1		1
1		2		3		1		2		3		1		2	
	1		5		2		1		5		2		1		5
1		2		3		1		2		3		1		2	
	1		1		1		1		1		1		1		1

Exercise

- Obtain other friezes using mutations of triangulations.
- Study the connections between friezes and triangulations.

Quiver of a triangulation : mutation

Quiver of a triangulation : mutation

Quiver of a triangulation: mutation

Quiver of a triangulation : mutation

Quiver of a triangulation : mutation

Quiver of a triangulation: mutation

Quiver of a triangulation: mutation

Quiver of a triangulation : mutation

Quiver of a triangulation: mutation

Mutation: general definition (2000)

Mutation: general definition (2000)

Andrei Zelevinsky

Sergey Fomin

 $\mathscr{F} = \mathbb{Q}(x_1, \dots, x_n)$: ambiant field.

$$\mathscr{F} = \mathbb{Q}(x_1, \dots, x_n)$$
: ambiant field.

Definition

 $(Q, (y_1, y_2, ..., y_n))$, where

$$\mathscr{F} = \mathbb{Q}(x_1, \dots, x_n)$$
: ambiant field.

Definition

- $(Q, (y_1, y_2, ..., y_n))$, where
 - Q is a quiver with *n* vertices, no loop, no 2-cycle;

$$\mathscr{F} = \mathbb{Q}(x_1, \dots, x_n)$$
: ambiant field.

Definition

- $(Q, (y_1, y_2, ..., y_n))$, where
 - Q is a quiver with n vertices, no loop, no 2-cycle;
 - the y_i ("variables") are a free generating set of \mathscr{F} .

$$\mathscr{F} = \mathbb{Q}(x_1, \dots, x_n)$$
: ambiant field.

Definition

 $(Q, (y_1, y_2, ..., y_n))$, where

- Q is a quiver with n vertices, no loop, no 2-cycle;
- the y_i ("variables") are a free generating set of \mathscr{F} .

Quiver mutation

Quiver mutation

Definition

For $1 \le k \le n$, define $\mu_k(Q)$ by :

Quiver mutation

Definition

For $1 \le k \le n$, define $\mu_k(Q)$ by :

(a) For every configuration $i \to k \to j$ add a new arrow $i \to j$;

Quiver mutation

Definition

For $1 \le k \le n$, define $\mu_k(Q)$ by :

- (a) For every configuration $i \to k \to j$ add a new arrow $i \to j$;
- (b) Erase the 2-cycles created by (a) (if any);

Quiver mutation

Definition

For $1 \le k \le n$, define $\mu_k(Q)$ by :

- (a) For every configuration $i \to k \to j$ add a new arrow $i \to j$;
- (b) Erase the 2-cycles created by (a) (if any);
- (c) Change the orientation of every arrow incident to k.

Quiver mutation

Definition

For $1 \le k \le n$, define $\mu_k(Q)$ by :

- (a) For every configuration $i \to k \to j$ add a new arrow $i \to j$;
- (b) Erase the 2-cycles created by (a) (if any);
- (c) Change the orientation of every arrow incident to k.

Definition

Definition

$$\mu_{\mathbf{k}}(y_j) = y_j \quad \text{if } j \neq \mathbf{k};$$

Definition

$$\mu_{k}(y_{j}) = y_{j} \quad \text{if} \quad j \neq k;$$

$$\mu_{\mathbf{k}}(\mathbf{y}_{\mathbf{k}}) = \frac{\prod\limits_{i \to \mathbf{k}} \mathbf{y}_i + \prod\limits_{\mathbf{k} \to j} \mathbf{y}_j}{\mathbf{y}_{\mathbf{k}}}.$$

Definition

$$\mu_{\mathbf{k}}(\mathbf{y}_{j}) = \mathbf{y}_{j} \quad \text{if } j \neq \mathbf{k};$$

$$\mu_k(y_k) = \frac{\prod_{i \to k} y_i + \prod_{k \to j} y_j}{y_k}.$$

Definition

$$\mu_{\mathbf{k}}(\mathbf{y}_{j}) = \mathbf{y}_{j} \quad \text{if } j \neq \mathbf{k};$$

$$\mu_k(y_k) = \frac{\prod_{i \to k} y_i + \prod_{k \to j} y_j}{y_k}.$$

$$\begin{array}{cccc}
y_1 & \longrightarrow & y_2 \\
\downarrow & & \downarrow & \\
\downarrow & & \downarrow & \\
y_4 & \longleftarrow & y_3
\end{array}$$

$$\mu_1(y_1) = \frac{y_3^2 + y_2 y_4}{y_1}$$

Definition

$$\mu_{\mathbf{k}}(y_j) = y_j \quad \text{if } j \neq \mathbf{k};$$

$$\mu_k(y_k) = \frac{\prod_{i \to k} y_i + \prod_{k \to j} y_j}{y_k}.$$

$$y_1 \longrightarrow y_2$$
 $\downarrow \frac{y_1}{y_2} \qquad \mu_1(y_1) = \frac{y_3^2 + y_2 y_4}{y_1}$
 $\mu_3(y_3) = \frac{y_2^3 + y_1^2 y_4}{y_3}$

Definition

$$\mu_{k}(Q,(y_{1},...,y_{n})) = (\mu_{k}(Q),(\mu_{k}(y_{1}),...,\mu_{k}(y_{n})))$$

Definition

$$\mu_{k}(Q,(y_{1},...,y_{n})) = (\mu_{k}(Q),(\mu_{k}(y_{1}),...,\mu_{k}(y_{n})))$$

Definition

$$\mu_{k}(Q, (y_{1}, ..., y_{n})) = (\mu_{k}(Q), (\mu_{k}(y_{1}), ..., \mu_{k}(y_{n})))$$

Every mutation μ_k is involutive.

Definition

$$\mu_{k}(Q,(y_{1},...,y_{n})) = (\mu_{k}(Q),(\mu_{k}(y_{1}),...,\mu_{k}(y_{n})))$$

Every mutation μ_k is involutive. The result is again a seed.

Definition

$$\mu_k(Q, (y_1, ..., y_n)) = (\mu_k(Q), (\mu_k(y_1), ..., \mu_k(y_n)))$$

Every mutation μ_k is involutive. The result is again a seed.

→ We can iterate seed mutation.

Initial seed: $\Sigma := ((x_1, \dots, x_n), \mathbb{Q})$

Initial seed: $\Sigma := ((x_1, \dots, x_n), \mathbf{Q})$

Definition

• cluster: n-tuple (y_1, \ldots, y_n) of variables of any seed obtained from Σ via a sequence of mutations;

Initial seed: $\Sigma := ((x_1, \dots, x_n), \mathbf{Q})$

Definition

- cluster: *n*-tuple $(y_1, ..., y_n)$ of variables of any seed obtained from Σ via a sequence of mutations;
- cluster variable: element of a cluster;

Initial seed: $\Sigma := ((x_1, \dots, x_n), \mathbb{Q})$

Definition

- cluster: n-tuple $(y_1, ..., y_n)$ of variables of any seed obtained from Σ via a sequence of mutations;
- cluster variable: element of a cluster;
- cluster algebra \mathcal{A}_Q : subring of \mathscr{F} generated by the cluster variables.

Initial seed: $\Sigma := ((x_1, \dots, x_n), \mathbb{Q})$

Definition

- cluster: *n*-tuple $(y_1, ..., y_n)$ of variables of any seed obtained from Σ via a sequence of mutations;
- cluster variable: element of a cluster;
- cluster algebra \(\mathscr{Q}_{\text{Q}} \): subring of \(\mathscr{F} \) generated by the cluster variables.

Theorem (Fomin-Zelevinsky, "Laurent phenomenon")

$$\mathscr{A}_{\mathbf{Q}} \subset \mathbb{Z}[x_1^{\pm 1}, \dots, x_n^{\pm 1}]$$

 $x_1 \rightarrow x_2 \leftarrow x_3$

$$x_1 \rightarrow x_2 \leftarrow x_3 \quad \stackrel{\mu_1}{\leadsto} \quad \frac{1+x_2}{x_1} \leftarrow x_2 \leftarrow x_3$$

$$x_1 \to x_2 \leftarrow x_3 \quad \stackrel{\mu_1}{\leadsto} \quad \frac{1 + x_2}{x_1} \leftarrow x_2 \leftarrow x_3$$

$$\stackrel{\mu_3}{\leadsto} \quad \frac{1 + x_2}{x_1} \leftarrow x_2 \to \frac{1 + x_2}{x_3}$$

$$x_{1} \rightarrow x_{2} \leftarrow x_{3} \quad \stackrel{\mu_{1}}{\leadsto} \quad \frac{1 + x_{2}}{x_{1}} \leftarrow x_{2} \leftarrow x_{3}$$

$$\stackrel{\mu_{3}}{\leadsto} \quad \frac{1 + x_{2}}{x_{1}} \leftarrow x_{2} \rightarrow \frac{1 + x_{2}}{x_{3}}$$

$$\stackrel{\mu_{2}}{\leadsto} \quad \frac{1 + x_{2}}{x_{1}} \rightarrow \frac{1 + x_{1}x_{3} + 2x_{2} + x_{2}^{2}}{x_{1}x_{2}x_{3}} \leftarrow \frac{1 + x_{2}}{x_{3}}$$

$$x_{1} \to x_{2} \leftarrow x_{3} \quad \stackrel{\mu_{1}}{\Longrightarrow} \quad \frac{1 + x_{2}}{x_{1}} \leftarrow x_{2} \leftarrow x_{3}$$

$$\stackrel{\mu_{3}}{\Longrightarrow} \quad \frac{1 + x_{2}}{x_{1}} \leftarrow x_{2} \to \frac{1 + x_{2}}{x_{3}}$$

$$\stackrel{\mu_{2}}{\Longrightarrow} \quad \frac{1 + x_{2}}{x_{1}} \to \frac{1 + x_{1}x_{3} + 2x_{2} + x_{2}^{2}}{x_{1}x_{2}x_{3}} \leftarrow \frac{1 + x_{2}}{x_{3}}$$

$$\stackrel{\mu_{1}\mu_{3}}{\Longrightarrow} \quad \frac{1 + x_{2} + x_{1}x_{3}}{x_{2}x_{3}} \leftarrow \frac{1 + x_{1}x_{3} + 2x_{2} + x_{2}^{2}}{x_{1}x_{2}x_{3}} \to \frac{1 + x_{2} + x_{1}x_{3}}{x_{1}x_{2}}$$

$$x_{1} \rightarrow x_{2} \leftarrow x_{3} \qquad \stackrel{\mu_{1}}{\Longrightarrow} \qquad \frac{1 + x_{2}}{x_{1}} \leftarrow x_{2} \leftarrow x_{3}$$

$$\stackrel{\mu_{3}}{\Longrightarrow} \qquad \frac{1 + x_{2}}{x_{1}} \leftarrow x_{2} \rightarrow \frac{1 + x_{2}}{x_{3}}$$

$$\stackrel{\mu_{2}}{\Longrightarrow} \qquad \frac{1 + x_{2}}{x_{1}} \rightarrow \frac{1 + x_{1}x_{3} + 2x_{2} + x_{2}^{2}}{x_{1}x_{2}x_{3}} \leftarrow \frac{1 + x_{2}}{x_{3}}$$

$$\stackrel{\mu_{1}\mu_{3}}{\Longrightarrow} \qquad \frac{1 + x_{2} + x_{1}x_{3}}{x_{2}x_{3}} \leftarrow \frac{1 + x_{1}x_{3} + 2x_{2} + x_{2}^{2}}{x_{1}x_{2}x_{3}} \rightarrow \frac{1 + x_{2} + x_{1}x_{3}}{x_{1}x_{2}}$$

$$\stackrel{\mu_{2}}{\Longrightarrow} \qquad \frac{1 + x_{2} + x_{1}x_{3}}{x_{2}x_{3}} \rightarrow \frac{1 + x_{1}x_{3}}{x_{2}} \leftarrow \frac{1 + x_{2} + x_{1}x_{3}}{x_{1}x_{2}}$$

$$\stackrel{\mu_{1}\mu_{3}}{\Longrightarrow} \qquad x_{3} \leftarrow \frac{1 + x_{1}x_{3}}{x_{2}} \rightarrow x_{1}$$

$$x_{1} \to x_{2} \leftarrow x_{3} \quad \stackrel{\mu_{1}}{\leadsto} \quad \frac{1 + x_{2}}{x_{1}} \leftarrow x_{2} \leftarrow x_{3}$$

$$\stackrel{\mu_{3}}{\leadsto} \quad \frac{1 + x_{2}}{x_{1}} \leftarrow x_{2} \to \frac{1 + x_{2}}{x_{3}}$$

$$\stackrel{\mu_{2}}{\leadsto} \quad \frac{1 + x_{2}}{x_{1}} \to \frac{1 + x_{1}x_{3} + 2x_{2} + x_{2}^{2}}{x_{1}x_{2}x_{3}} \leftarrow \frac{1 + x_{2}}{x_{3}}$$

$$\stackrel{\mu_{1}\mu_{3}}{\leadsto} \quad \frac{1 + x_{2} + x_{1}x_{3}}{x_{2}x_{3}} \leftarrow \frac{1 + x_{1}x_{3} + 2x_{2} + x_{2}^{2}}{x_{1}x_{2}x_{3}} \to \frac{1 + x_{2} + x_{1}x_{3}}{x_{1}x_{2}}$$

$$\stackrel{\mu_{2}}{\leadsto} \quad \frac{1 + x_{2} + x_{1}x_{3}}{x_{2}x_{3}} \to \frac{1 + x_{1}x_{3}}{x_{2}} \leftarrow \frac{1 + x_{2} + x_{1}x_{3}}{x_{1}x_{2}}$$

$$\stackrel{\mu_{1}\mu_{3}}{\leadsto} \quad x_{3} \leftarrow \frac{1 + x_{1}x_{3}}{x_{2}} \to x_{1} \quad \stackrel{\mu_{2}}{\leadsto} \quad x_{3} \to x_{2} \leftarrow x_{1}$$

Only 9 cluster variables !!

Theorem (Fomin-Zelevinsky)

• \mathcal{A}_Q has a finite number of cluster variables iff the mutation class of Q contains an orientation of an A, D, E Dynkin diagram

- \mathcal{A}_Q has a finite number of cluster variables iff the mutation class of Q contains an orientation of an A, D, E Dynkin diagram
- { cluster variables } $\stackrel{\text{1:1}}{\longleftrightarrow}$ { almost positive roots of Q }

- \mathcal{A}_Q has a finite number of cluster variables iff the mutation class of Q contains an orientation of an A, D, E Dynkin diagram
- { cluster variables } $\stackrel{\text{1:1}}{\longleftrightarrow}$ { almost positive roots of \mathbb{Q} }
- $\{ \text{clusters} \} \stackrel{\text{1:1}}{\longleftrightarrow} \{ \text{vertices of generalized associahedron} \}$

- \mathcal{A}_Q has a finite number of cluster variables iff the mutation class of Q contains an orientation of an A, D, E Dynkin diagram
- { cluster variables } $\stackrel{1:1}{\longleftrightarrow}$ { almost positive roots of Q }
- $\{ \text{ clusters } \} \stackrel{\text{1:1}}{\longleftrightarrow} \{ \text{ vertices of generalized associahedron } \}$

Example: Type
$$A_3$$
: $x[-\alpha_i] = x_i$;
 $x[\alpha_1] = \frac{1+x_2}{x_1}$; $x[\alpha_1+\alpha_2] = \frac{1+x_2+x_1x_3}{x_1x_2}$;
 $x[\alpha_2] = \frac{1+x_1x_3}{x_2}$; $x[\alpha_1+\alpha_2+\alpha_3] = \frac{1+x_1x_3+2x_2+x_2^2}{x_1x_2x_3}$;
 $x[\alpha_3] = \frac{1+x_2}{x_3}$; $x[\alpha_2+\alpha_3] = \frac{1+x_2+x_1x_3}{x_2x_3}$.

The associahedron of type A_3

• Can use valued quivers \rightsquigarrow types B, C, F, G.

- Can use valued quivers \rightsquigarrow types B, C, F, G.
- Can add coefficients (or frozen variables).

- Can use valued quivers \rightsquigarrow types B, C, F, G.
- Can add coefficients (or frozen variables).

Example:
$$\mathbb{Q}[SL(2)] = \mathbb{Q}[a, b, c, d \mid ad - bc = 1].$$

- Can use valued quivers \rightsquigarrow types B, C, F, G.
- Can add coefficients (or frozen variables).

Example:
$$\mathbb{Q}[SL(2)] = \mathbb{Q}[a, b, c, d \mid ad - bc = 1].$$

- Can use valued quivers \rightsquigarrow types B, C, F, G.
- Can add coefficients (or frozen variables).

Example:
$$\mathbb{Q}[SL(2)] = \mathbb{Q}[a, b, c, d \mid ad - bc = 1].$$

Cluster algebra of type A_1 :

• 2 cluster variables: a, d.

- Can use valued quivers \rightsquigarrow types B, C, F, G.
- Can add coefficients (or frozen variables).

Example:
$$\mathbb{Q}[SL(2)] = \mathbb{Q}[a, b, c, d \mid ad - bc = 1].$$

- 2 cluster variables: a, d.
- 2 frozen variables: b, c.

- Can use valued quivers \rightsquigarrow types B, C, F, G.
- Can add coefficients (or frozen variables).

Example:
$$\mathbb{Q}[SL(2)] = \mathbb{Q}[a, b, c, d \mid ad - bc = 1].$$

- 2 cluster variables: a, d.
- 2 frozen variables: b, c.
- 1 exchange relation: ad = 1 + bc.

- Can use valued quivers \rightsquigarrow types B, C, F, G.
- Can add coefficients (or frozen variables).

Example:
$$\mathbb{Q}[SL(2)] = \mathbb{Q}[a, b, c, d \mid ad - bc = 1].$$

- 2 cluster variables: a, d.
- 2 frozen variables: b, c.
- 1 exchange relation: ad = 1 + bc.

$$b \rightarrow a \leftarrow c \quad \stackrel{\mu}{\leadsto} \quad b \leftarrow d \rightarrow c$$

Homework

Exercise

Show that the coordinate ring of the space of 2×3 matrices

$$\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$$

has a cluster algebra structure of type A_2 with

- 5 cluster variables : a, b, e, f, g := af cd.
- 4 frozen variables : A := ae bd, B := bf ec, c, d.

References

- S. Fomin, A. Zelevinsky, *Cluster algebras I: Foundations*, J. Amer. Math. Soc. **15** (2002), 497–529.
- S. Fomin, A. Zelevinsky, *Cluster algebras II: Finite type classification*, Invent. Math. **154** (2003), 63–121.
- A. Zelevinsky, What is a cluster algebra?, Notices of the AMS 54, 11, (2007), 1494–1495.
- S. Fomin, Cluster algebra portal, http://www.math.lsa.umich.edu/~fomin

Cluster algebras and Lie theory, II

Bernard Leclerc, Université de Caen

Séminaire Lotharingien de Combinatoire 69 Strobl, 11 septembre 2012

Theorem (Fomin-Zelevinsky)

• \mathcal{A}_Q has a finite number of cluster variables iff the mutation class of Q contains an orientation of an A, D, E Dynkin diagram

- \mathcal{A}_Q has a finite number of cluster variables iff the mutation class of Q contains an orientation of an A, D, E Dynkin diagram
- { cluster variables } $\stackrel{\text{1:1}}{\longleftrightarrow}$ { almost positive roots of Q }

- \mathcal{A}_Q has a finite number of cluster variables iff the mutation class of Q contains an orientation of an A, D, E Dynkin diagram
- { cluster variables } $\stackrel{\text{1:1}}{\longleftrightarrow}$ { almost positive roots of \mathbb{Q} }
- $\{ \text{clusters} \} \stackrel{\text{1:1}}{\longleftrightarrow} \{ \text{vertices of generalized associahedron} \}$

- \mathcal{A}_Q has a finite number of cluster variables iff the mutation class of Q contains an orientation of an A, D, E Dynkin diagram
- { cluster variables } $\stackrel{1:1}{\longleftrightarrow}$ { almost positive roots of Q }
- $\{ \text{ clusters } \} \stackrel{\text{1:1}}{\longleftrightarrow} \{ \text{ vertices of generalized associahedron } \}$

Example: Type
$$A_3$$
: $x[-\alpha_i] = x_i$;
 $x[\alpha_1] = \frac{1+x_2}{x_1}$; $x[\alpha_1+\alpha_2] = \frac{1+x_2+x_1x_3}{x_1x_2}$;
 $x[\alpha_2] = \frac{1+x_1x_3}{x_2}$; $x[\alpha_1+\alpha_2+\alpha_3] = \frac{1+x_1x_3+2x_2+x_2^2}{x_1x_2x_3}$;
 $x[\alpha_3] = \frac{1+x_2}{x_3}$; $x[\alpha_2+\alpha_3] = \frac{1+x_2+x_1x_3}{x_2x_3}$.

The associahedron of type A_3

• Can use skew symmetrizable matrices \rightsquigarrow types B, C, F, G.

- Can use skew symmetrizable matrices \rightsquigarrow types B, C, F, G.
- Can add coefficients (or frozen variables).

- Can use skew symmetrizable matrices \rightsquigarrow types B, C, F, G.
- Can add coefficients (or frozen variables).

Example:
$$\mathbb{Q}[SL(2)] = \mathbb{Q}[a, b, c, d \mid ad - bc = 1].$$

- Can use skew symmetrizable matrices \rightsquigarrow types B, C, F, G.
- Can add coefficients (or frozen variables).

Example:
$$\mathbb{Q}[SL(2)] = \mathbb{Q}[a, b, c, d \mid ad - bc = 1].$$

- Can use skew symmetrizable matrices \rightsquigarrow types B, C, F, G.
- Can add coefficients (or frozen variables).

Example:
$$\mathbb{Q}[SL(2)] = \mathbb{Q}[a, b, c, d \mid ad - bc = 1].$$

Cluster algebra of type A_1 :

• 2 cluster variables: a, d.

- Can use skew symmetrizable matrices \rightsquigarrow types B, C, F, G.
- Can add coefficients (or frozen variables).

Example:
$$\mathbb{Q}[SL(2)] = \mathbb{Q}[a, b, c, d \mid ad - bc = 1].$$

- 2 cluster variables: a, d.
- 2 frozen variables: b, c.

- Can use skew symmetrizable matrices \rightsquigarrow types B, C, F, G.
- Can add coefficients (or frozen variables).

Example:
$$\mathbb{Q}[SL(2)] = \mathbb{Q}[a, b, c, d \mid ad - bc = 1].$$

- 2 cluster variables: a, d.
- 2 frozen variables: b, c.
- 1 exchange relation: ad = 1 + bc.

- Can use skew symmetrizable matrices \rightsquigarrow types B, C, F, G.
- Can add coefficients (or frozen variables).

Example:
$$\mathbb{Q}[SL(2)] = \mathbb{Q}[a, b, c, d \mid ad - bc = 1].$$

- 2 cluster variables: a, d.
- 2 frozen variables: b, c.
- 1 exchange relation: ad = 1 + bc.

$$b \rightarrow a \leftarrow c \quad \stackrel{\mu}{\leadsto} \quad b \leftarrow d \rightarrow c$$

Homework

Exercise

Show that the coordinate ring of the space of 2×3 matrices

$$\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$$

has a cluster algebra structure of type A_2 with

- 5 cluster variables : a, b, e, f, g := af cd.
- 4 frozen variables : A := ae bd, B := bf ec, c, d.

Factorization problem

The unipotent group

$$N = \left\{ \begin{pmatrix} 1 & a_{12} & a_{13} & a_{14} \\ 0 & 1 & a_{23} & a_{24} \\ 0 & 0 & 1 & a_{34} \\ 0 & 0 & 0 & 1 \end{pmatrix}, \ a_{ij} \in \mathbb{C} \right\} \subset SL_4(\mathbb{C})$$

The unipotent group

$$\textit{N} = \left\{ \begin{pmatrix} 1 & \textit{a}_{12} & \textit{a}_{13} & \textit{a}_{14} \\ 0 & 1 & \textit{a}_{23} & \textit{a}_{24} \\ 0 & 0 & 1 & \textit{a}_{34} \\ 0 & 0 & 0 & 1 \end{pmatrix}, \; \textit{a}_{ij} \in \mathbb{C} \right\} \subset \textit{SL}_4(\mathbb{C})$$

is generated by the one-parameter subgroups

$$x_{1}(t_{1}) = \begin{pmatrix} 1 & t_{1} & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad x_{2}(t_{2}) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & t_{2} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$x_3(t_3) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & t_3 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \qquad (t_i \in \mathbb{C})$$

A generic element $x \in N$ has a unique factorization

$$x = x_1(t_1)x_2(t_2)x_1(t_3)x_3(t_4)x_2(t_5)x_1(t_6).$$

A generic element $x \in N$ has a unique factorization

$$x = x_1(t_1)x_2(t_2)x_1(t_3)x_3(t_4)x_2(t_5)x_1(t_6).$$

The map $(t_1, t_2, t_3, t_4, t_5, t_6) \mapsto X$ is a birational isomorphism

$$X_{(1,2,1,3,2,1)}:\mathbb{C}^6\to N.$$

A generic element $x \in N$ has a unique factorization

$$x = x_1(t_1)x_2(t_2)x_1(t_3)x_3(t_4)x_2(t_5)x_1(t_6).$$

The map $(t_1, t_2, t_3, t_4, t_5, t_6) \mapsto X$ is a birational isomorphism

$$x_{(1,2,1,3,2,1)}:\mathbb{C}^6\to N.$$

Problem

Calculate explicitly the inverse rational map $t_{(1,2,1,3,2,1)}: N \to \mathbb{C}^6$.

A generic element $x \in N$ has a unique factorization

$$x = x_1(t_1)x_2(t_2)x_1(t_3)x_3(t_4)x_2(t_5)x_1(t_6).$$

The map $(t_1, t_2, t_3, t_4, t_5, t_6) \mapsto X$ is a birational isomorphism

$$X_{(1,2,1,3,2,1)}:\mathbb{C}^6\to N.$$

Problem

Calculate explicitly the inverse rational map $t_{(1,2,1,3,2,1)}: N \to \mathbb{C}^6$.

Solved (for SL_n and any factorization pattern) by Berenstein, Fomin, Zelevinsky (1996).

$$x_{(1,2,1,3,2,1)}(t_1,\ldots,t_6) = \begin{pmatrix} 1 & t_1 + t_3 + t_6 & t_1 t_2 + t_1 t_5 + t_3 t_5 & t_1 t_2 t_4 \\ 0 & 1 & t_2 + t_5 & t_2 t_4 \\ 0 & 0 & 1 & t_4 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$x_{(1,2,1,3,2,1)}(t_1,\ldots,t_6) = \begin{pmatrix} 1 & t_1 + t_3 + t_6 & t_1 t_2 + t_1 t_5 + t_3 t_5 & t_1 t_2 t_4 \\ 0 & 1 & t_2 + t_5 & t_2 t_4 \\ 0 & 0 & 1 & t_4 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

• For $J \subseteq \{1,2,3,4\}$, denote by $D_J = D_J(x)$ the minor of x taken on the columns from J and the first rows.

$$X_{(1,2,1,3,2,1)}(t_1,\ldots,t_6) = \begin{pmatrix} 1 & t_1 + t_3 + t_6 & t_1 t_2 + t_1 t_5 + t_3 t_5 & t_1 t_2 t_4 \\ 0 & 1 & t_2 + t_5 & t_2 t_4 \\ 0 & 0 & 1 & t_4 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

• For $J \subseteq \{1,2,3,4\}$, denote by $D_J = D_J(x)$ the minor of x taken on the columns from J and the first rows. Then

$$\begin{split} & \textbf{t_1} = \frac{D_4}{D_{14}}, \quad \textbf{t_2} = \frac{D_{14}}{D_{124}}, \quad \textbf{t_3} = \frac{D_{34}D_{124}}{D_{134}D_{14}}, \\ & \textbf{t_4} = D_{124}, \quad \textbf{t_5} = \frac{D_{134}}{D_{124}}, \quad \textbf{t_6} = \frac{D_{234}}{D_{134}}. \end{split}$$

$$x_{(1,2,1,3,2,1)}(t_1,\ldots,t_6) = \begin{pmatrix} 1 & t_1 + t_3 + t_6 & t_1 t_2 + t_1 t_5 + t_3 t_5 & t_1 t_2 t_4 \\ 0 & 1 & t_2 + t_5 & t_2 t_4 \\ 0 & 0 & 1 & t_4 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

• For $J \subseteq \{1,2,3,4\}$, denote by $D_J = D_J(x)$ the minor of x taken on the columns from J and the first rows. Then

$$egin{aligned} & t_1 = rac{D_4}{D_{14}}, & t_2 = rac{D_{14}}{D_{124}}, & t_3 = rac{D_{34}D_{124}}{D_{134}D_{14}}, \ & t_4 = D_{124}, & t_5 = rac{D_{134}}{D_{124}}, & t_6 = rac{D_{234}}{D_{134}}. \end{aligned}$$

• The t_i 's are Laurent monomials in the 6 functions

$$D_{124}$$
, D_{14} , D_{134} , D_4 , D_{34} , D_{234} .

• Take another factorization pattern : (1,2,3,2,1,2).

• Take another factorization pattern : (1,2,3,2,1,2). Then

$$\begin{split} & \textbf{t_1} = \frac{D_4}{D_{14}}, & \textbf{t_2} = \frac{D_{14}}{D_{124}}, & \textbf{t_3} = D_{124}, \\ & \textbf{t_4} = \frac{D_{234}D_{14}}{D_{24}D_{124}}, & \textbf{t_5} = \frac{D_{24}}{D_{14}}, & \textbf{t_6} = \frac{D_{34}}{D_{24}}. \end{split}$$

• Take another factorization pattern : (1,2,3,2,1,2). Then

$$\begin{split} & \textbf{t_1} = \frac{D_4}{D_{14}}, & \textbf{t_2} = \frac{D_{14}}{D_{124}}, & \textbf{t_3} = D_{124}, \\ & \textbf{t_4} = \frac{D_{234}D_{14}}{D_{24}D_{124}}, & \textbf{t_5} = \frac{D_{24}}{D_{14}}, & \textbf{t_6} = \frac{D_{34}}{D_{24}}. \end{split}$$

• The t_i 's are Laurent monomials in the 6 functions

$$D_{124}, D_{14}, D_{24}, D_{4}, D_{34}, D_{234}.$$

• Take another factorization pattern : (1,2,3,2,1,2). Then

$$\begin{split} & \textbf{t_1} = \frac{D_4}{D_{14}}, & \textbf{t_2} = \frac{D_{14}}{D_{124}}, & \textbf{t_3} = D_{124}, \\ & \textbf{t_4} = \frac{D_{234}D_{14}}{D_{24}D_{124}}, & \textbf{t_5} = \frac{D_{24}}{D_{14}}, & \textbf{t_6} = \frac{D_{34}}{D_{24}}. \end{split}$$

• The t_i 's are Laurent monomials in the 6 functions

$$D_{124}, D_{14}, D_{24}, D_{4}, D_{34}, D_{234}.$$

• The function D_{134} is replaced by D_{24} .

• Take another factorization pattern : (1,2,3,2,1,2). Then

$$\begin{split} & \textbf{t_1} = \frac{D_4}{D_{14}}, & \textbf{t_2} = \frac{D_{14}}{D_{124}}, & \textbf{t_3} = D_{124}, \\ & \textbf{t_4} = \frac{D_{234}D_{14}}{D_{24}D_{124}}, & \textbf{t_5} = \frac{D_{24}}{D_{14}}, & \textbf{t_6} = \frac{D_{34}}{D_{24}}. \end{split}$$

• The t_i 's are Laurent monomials in the 6 functions

$$D_{124}, D_{14}, D_{24}, D_{4}, D_{34}, D_{234}.$$

• The function D_{134} is replaced by D_{24} . They are related by

$$D_{24}D_{134} = D_{14}D_{234} + D_{124}D_{34}$$

There are 8 factorization patterns.

There are 8 factorization patterns. Each of them gives a 6-tuple of functions.

There are 8 factorization patterns.

Each of them gives a 6-tuple of functions.

Each 6-tuple contains the 3 functions D_4 , D_{34} , D_{234} .

There are 8 factorization patterns.

Each of them gives a 6-tuple of functions.

Each 6-tuple contains the 3 functions D_4 , D_{34} , D_{234} .

The remaining 8 triples are:

$$\begin{array}{lll} (D_{124},D_{14},D_{134}), & (D_{124},D_{14},D_{24}), & (D_{124},D_{13,34},D_{134}), \\ (D_{23},D_{14},D_{24}), & (D_{3},D_{13,34},D_{134}), & (D_{23},D_{2},D_{24}), \\ (D_{3},D_{13,34},D_{2}), & (D_{23},D_{2},D_{3}), \end{array}$$

where

$$D_{13,34} = \begin{vmatrix} a_{13} & a_{14} \\ 1 & a_{34} \end{vmatrix}.$$

There are 8 factorization patterns.

Each of them gives a 6-tuple of functions.

Each 6-tuple contains the 3 functions D_4 , D_{34} , D_{234} .

The remaining 8 triples are:

$$\begin{split} &(D_{124},D_{14},D_{134}), \quad (D_{124},D_{14},D_{24}), \qquad (D_{124},D_{13,34},D_{134}), \\ &(D_{23},D_{14},D_{24}), \qquad (D_{3},D_{13,34},D_{134}), \quad (D_{23},D_{2},D_{24}), \\ &(D_{3},D_{13,34},D_{2}), \qquad (D_{23},D_{2},D_{3}), \end{split}$$

where

$$D_{13,34} = \begin{vmatrix} a_{13} & a_{14} \\ 1 & a_{34} \end{vmatrix}.$$

Put

$$1 := D_{124},$$
 $2 := D_{14},$ $3 := D_{134},$ $4 := D_{24}$
 $5 := D_{13.34},$ $6 := D_{23},$ $7 := D_{3},$ $8 := D_{2}.$

Let \mathcal{A} be the cluster algebra with initial seed :

Let \(\square\) be the cluster algebra with initial seed:

The blue variables are frozen.

Let \(\text{ be the cluster algebra with initial seed} :

The blue variables are frozen.

Proposition

The assignment

$$x_1 \mapsto D_2, \ x_2 \mapsto D_3, \ x_3 \mapsto D_{23}, \ x_4 \mapsto D_4, \ x_5 \mapsto D_{34}, \ x_6 \mapsto D_{234}$$

extends to an isomorphism : $\mathscr{A} \otimes_{\mathbb{Z}} \mathbb{C} \to \mathbb{C}[N]$.

Let \(\text{ be the cluster algebra with initial seed} : \)

The blue variables are frozen.

Proposition

The assignment

$$x_1 \mapsto D_2, \ x_2 \mapsto D_3, \ x_3 \mapsto D_{23}, \ x_4 \mapsto D_4, \ x_5 \mapsto D_{34}, \ x_6 \mapsto D_{234}$$

extends to an isomorphism : $\mathscr{A} \otimes_{\mathbb{Z}} \mathbb{C} \to \mathbb{C}[N]$.

• $\mathbb{C}[N]$ has finite cluster type A_3 .

Let \(\text{ be the cluster algebra with initial seed} : \)

The blue variables are frozen.

Proposition

The assignment

$$x_1 \mapsto D_2, \ x_2 \mapsto D_3, \ x_3 \mapsto D_{23}, \ x_4 \mapsto D_4, \ x_5 \mapsto D_{34}, \ x_6 \mapsto D_{234}$$

extends to an isomorphism : $\mathscr{A} \otimes_{\mathbb{Z}} \mathbb{C} \to \mathbb{C}[N]$.

- $\mathbb{C}[N]$ has finite cluster type A_3 .
- The cluster monomials coincide with the elements of Lusztig's dual canonical basis of $\mathbb{C}[N]$ (Berenstein-Zelevinsky).

• G a simple algebraic group of type A_n , D_n , E_n ;

- G a simple algebraic group of type A_n , D_n , E_n ;
- $N \subset G$ a maximal unipotent subgroup;

- G a simple algebraic group of type A_n , D_n , E_n ;
- $N \subset G$ a maximal unipotent subgroup;
- $x_i(t)$ $(1 \le i \le n)$ the one-parameter subgroups of N corresponding to the simple roots.

- G a simple algebraic group of type A_n , D_n , E_n ;
- $N \subset G$ a maximal unipotent subgroup;
- $x_i(t)$ $(1 \le i \le n)$ the one-parameter subgroups of N corresponding to the simple roots.
- $\mathbb{C}[N]$ the coordinate ring of N.

- G a simple algebraic group of type A_n , D_n , E_n ;
- $N \subset G$ a maximal unipotent subgroup;
- $x_i(t)$ $(1 \le i \le n)$ the one-parameter subgroups of N corresponding to the simple roots.
- $\mathbb{C}[N]$ the coordinate ring of N.
- $f \in \mathbb{C}[N]$ is determined by the polynomial functions :

$$(t_1,\ldots,t_k)\mapsto f(x_{i_1}(t_1)\cdots x_{i_k}(t_k))$$

for all (i_1, \ldots, i_k) .

- G a simple algebraic group of type A_n , D_n , E_n ;
- $N \subset G$ a maximal unipotent subgroup;
- $x_i(t)$ $(1 \le i \le n)$ the one-parameter subgroups of N corresponding to the simple roots.
- $\mathbb{C}[N]$ the coordinate ring of N.
- $f \in \mathbb{C}[N]$ is determined by the polynomial functions :

$$(t_1,\ldots,t_k)\mapsto f(x_{i_1}(t_1)\cdots x_{i_k}(t_k))$$

for all (i_1, \ldots, i_k) .

• W the Weyl group, W_0 its longest element.

Theorem (Berenstein-Fomin-Zelevinsky)

 $\mathbb{C}[N]$ is a cluster algebra, with explicit initial seeds labelled by reduced decompositions of w_0 .

Theorem (Berenstein-Fomin-Zelevinsky)

 $\mathbb{C}[N]$ is a cluster algebra, with explicit initial seeds labelled by reduced decompositions of w_0 .

Lie type of <i>G</i>	Cluster type of $\mathbb{C}[N]$

Lie type of <i>G</i>	Cluster type of $\mathbb{C}[N]$
A_2	A ₁

Lie type of <i>G</i>	Cluster type of $\mathbb{C}[N]$
A ₂	A ₁
A ₃	A ₃

Lie type of <i>G</i>	Cluster type of $\mathbb{C}[N]$
A_2	A_1
A_3	A_3
A_4	D_6

Lie type of <i>G</i>	Cluster type of $\mathbb{C}[N]$
A_2	A ₁
A_3	A_3
A_4	D_6
others	infinite

 $\mathbb{C}[N]$ is a cluster algebra, with explicit initial seeds labelled by reduced decompositions of w_0 .

Lie type of <i>G</i>	Cluster type of $\mathbb{C}[N]$
A_2	A_1
A_3	A_3
A_4	D_6
others	infinite

→ preprojective algebra !!

• Q, an orientation of the Dynkin diagram of G.

- Q, an orientation of the Dynkin diagram of G.
- \overline{Q} , the double quiver :

- Q, an orientation of the Dynkin diagram of G.
- \overline{Q} , the double quiver: for each arrow $a: i \to j$ of Q add a new arrow $a^*: j \to i$.

- Q, an orientation of the Dynkin diagram of G.
- \overline{Q} , the double quiver : for each arrow $a: i \to j$ of Q add a new arrow $a^*: j \to i$.
- $\mathbb{C}\overline{Q}$, the path algebra of \overline{Q} .

- Q, an orientation of the Dynkin diagram of G.
- \overline{Q} , the double quiver : for each arrow $a: i \to j$ of Q add a new arrow $a^*: j \to i$.
- $\mathbb{C}\overline{Q}$, the path algebra of \overline{Q} .
- $\bullet \ \rho = \sum_{a \in \mathbf{Q}} (aa^* a^*a) \in \mathbb{C}\overline{\mathbf{Q}}.$

- Q, an orientation of the Dynkin diagram of G.
- \overline{Q} , the double quiver : for each arrow $a: i \to j$ of Q add a new arrow $a^*: j \to i$.
- $\mathbb{C}\overline{Q}$, the path algebra of \overline{Q} .
- $\rho = \sum_{a \in \mathbf{Q}} (aa^* a^*a) \in \mathbb{C}\overline{\mathbf{Q}}$.
- (ρ) , the double-sided ideal of $\mathbb{C}\overline{\mathbb{Q}}$ generated by ρ .

- Q, an orientation of the Dynkin diagram of G.
- \overline{Q} , the double quiver: for each arrow $a: i \to j$ of Q add a new arrow $a^*: j \to i$.
- $\mathbb{C}\overline{Q}$, the path algebra of \overline{Q} .
- $\rho = \sum_{a \in Q} (aa^* a^*a) \in \mathbb{C}\overline{Q}$.
- (ρ) , the double-sided ideal of $\mathbb{C}\overline{\mathbb{Q}}$ generated by ρ .

Definition (Gelfand-Ponomarev)

 $\Lambda := \mathbb{C}\overline{\mathbb{Q}}/(\rho)$, the preprojective algebra of \mathbb{Q} .

- Q, an orientation of the Dynkin diagram of G.
- \overline{Q} , the double quiver: for each arrow $a: i \to j$ of Q add a new arrow $a^*: j \to i$.
- $\mathbb{C}\overline{Q}$, the path algebra of \overline{Q} .
- $\rho = \sum_{a \in Q} (aa^* a^*a) \in \mathbb{C}\overline{Q}$.
- (ρ) , the double-sided ideal of $\mathbb{C}\overline{Q}$ generated by ρ .

Definition (Gelfand-Ponomarev)

 $\Lambda := \mathbb{C}\overline{Q}/(\rho)$, the preprojective algebra of Q.

 \bullet Λ is finite-dimensional, selfinjective.

- Q, an orientation of the Dynkin diagram of G.
- \overline{Q} , the double quiver: for each arrow $a: i \to j$ of Q add a new arrow $a^*: j \to i$.
- $\mathbb{C}\overline{Q}$, the path algebra of \overline{Q} .
- $\rho = \sum_{a \in Q} (aa^* a^*a) \in \mathbb{C}\overline{Q}$.
- (ρ) , the double-sided ideal of $\mathbb{C}\overline{Q}$ generated by ρ .

Definition (Gelfand-Ponomarev)

 $\Lambda := \mathbb{C}\overline{\mathbb{Q}}/(\rho)$, the preprojective algebra of \mathbb{Q} .

- \bullet Λ is finite-dimensional, selfinjective.
- Λ has finite representation type iff Q has type $A_n (n \le 4)$!!

• Indecomposable projectives:

• Indecomposable projectives:

• Other indecomposables:

• Indecomposable projectives:

• Other indecomposables:

• Recall that $\mathbb{C}[N]$ has 3 frozen variables and 9 cluster variables!!

 $\bullet \ \ \text{Want a map}: \mathsf{mod} \, \Lambda \to \mathbb{C}[\textbf{\textit{N}}] \; ...$

- Want a map : $\operatorname{mod} \Lambda \to \mathbb{C}[N] \dots$
- $\mathbb{C}[N]$ is Hopf dual to $U(\mathfrak{n})$, where $\mathfrak{n} = \text{Lie}(N)$.

- Want a map : $\operatorname{mod} \Lambda \to \mathbb{C}[N] \dots$
- $\mathbb{C}[N]$ is Hopf dual to $U(\mathfrak{n})$, where $\mathfrak{n} = \text{Lie}(N)$.
- Ringel, Lusztig : Geometric realization of $U_q(n)$ via constructible sheaves on varieties of $\mathbb{C}Q$ -modules.

- Want a map : $\operatorname{mod} \Lambda \to \mathbb{C}[N] \dots$
- $\mathbb{C}[N]$ is Hopf dual to $U(\mathfrak{n})$, where $\mathfrak{n} = \text{Lie}(N)$.
- Ringel, Lusztig : Geometric realization of $U_q(\mathfrak{n})$ via constructible sheaves on varieties of $\mathbb{C}Q$ -modules.
- Lusztig : Geometric realization of U(n) via constructible functions on varieties of Λ -modules.

- Want a map : $\operatorname{mod} \Lambda \to \mathbb{C}[N] \dots$
- $\mathbb{C}[N]$ is Hopf dual to $U(\mathfrak{n})$, where $\mathfrak{n} = \text{Lie}(N)$.
- Ringel, Lusztig: Geometric realization of $U_q(\mathfrak{n})$ via constructible sheaves on varieties of $\mathbb{C}Q$ -modules.
- Lusztig : Geometric realization of U(n) via constructible functions on varieties of Λ -modules.
- Geiss-L-Schröer: Dualizing Lusztig's construction, get a nice map $M \mapsto \varphi_M$ from mod Λ to $\mathbb{C}[N]$.

• For $M \in \text{mod } \Lambda$ and $\mathbf{i} = (i_1, ..., i_d)$ let $\mathscr{F}_{M, \mathbf{i}}$ be the variety of composition series of M of type \mathbf{i} :

$$\{0\}=\textit{M}_0\subset\textit{M}_1\subset\textit{M}_2\subset\cdots\subset\textit{M}_d=\textit{M}$$

with $M_j/M_{j-1} \cong S_{i_j}$. (A projective variety.)

• For $M \in \text{mod } \Lambda$ and $\mathbf{i} = (i_1, ..., i_d)$ let $\mathscr{F}_{M, \mathbf{i}}$ be the variety of composition series of M of type \mathbf{i} :

$$\{0\}=\textit{M}_0\subset\textit{M}_1\subset\textit{M}_2\subset\cdots\subset\textit{M}_d=\textit{M}$$

with $M_j/M_{j-1} \cong S_{i_j}$. (A projective variety.)

• $\chi_{M,i} := \chi(\mathscr{F}_{M,i}) \in \mathbb{Z}$ (Euler characteristic).

• For $M \in \text{mod } \Lambda$ and $\mathbf{i} = (i_1, \dots, i_d)$ let $\mathscr{F}_{M, \mathbf{i}}$ be the variety of composition series of M of type \mathbf{i} :

$$\{0\}=M_0\subset M_1\subset M_2\subset \cdots \subset M_d=M$$

with $M_j/M_{j-1} \cong S_{i_j}$. (A projective variety.)

• $\chi_{M,i} := \chi(\mathscr{F}_{M,i}) \in \mathbb{Z}$ (Euler characteristic).

Theorem (Lusztig, Geiss-L-Schröer)

There exits a unique $\varphi_M \in \mathbb{C}[N]$ such that for all $\mathbf{j} = (j_1, \dots, j_k)$

$$\varphi_{M}(x_{j_{1}}(t_{1})\cdots x_{j_{k}}(t_{k})) = \sum_{\mathbf{a}\in\mathbb{N}^{k}}\chi_{M,\mathbf{j}^{\mathbf{a}}}\frac{t_{1}^{\mathbf{a}_{1}}\cdots t_{k}^{\mathbf{a}_{k}}}{a_{1}!\cdots a_{k}!}$$

where
$$\mathbf{j}^{\mathbf{a}} = (\underbrace{j_1, \dots, j_1}_{a_1}, \dots, \underbrace{j_k, \dots, j_k}_{a_k})$$

The map $M \mapsto \varphi_M$: type A_3

The map $M \mapsto \varphi_M$: type A_3

• Indecomposable projectives:

The map $M \mapsto \varphi_M$: type A_3

• Indecomposable projectives:

Other indecomposables:

• How should we interpret mutations in $mod \Lambda$?

• How should we interpret mutations in $mod \Lambda$?

$$D_{24}D_{134} = D_{14}D_{234} + D_{124}D_{34}$$

• How should we interpret mutations in $\operatorname{mod} \Lambda$?

$$D_{24}D_{134} = D_{14}D_{234} + D_{124}D_{34}$$

• How should we interpret mutations in $\operatorname{mod} \Lambda$?

$$D_{24}D_{134} = D_{14}D_{234} + D_{124}D_{34}$$

• We have two short exact sequences:

• How should we interpret mutations in $\operatorname{mod} \Lambda$?

$$D_{24}D_{134} = D_{14}D_{234} + D_{124}D_{34}$$

• We have two short exact sequences:

Theorem (Geiss-L-Schröer)

- for every $M, L \in \text{mod } \Lambda$, $\varphi_M \varphi_L = \varphi_{M \oplus L}$
- if dim Ext $_{\Lambda}^{1}(M, L) = \dim \operatorname{Ext}_{\Lambda}^{1}(L, M) = 1$ then

$$\varphi_{M}\varphi_{L}=\varphi_{X}+\varphi_{Y},$$

where $0 \to M \to X \to L \to 0$ and $0 \to L \to Y \to M \to 0$ are the two non-split short exact sequences.

Theorem (Geiss-L-Schröer)

- for every $M, L \in \text{mod } \Lambda$, $\varphi_M \varphi_L = \varphi_{M \oplus L}$
- if dim Ext $_{\Lambda}^{1}(M, L) = \dim \operatorname{Ext}_{\Lambda}^{1}(L, M) = 1$ then

$$\phi_{M}\phi_{L}=\phi_{\textcolor{red}{X}}+\phi_{\textcolor{red}{Y}},$$

where $0 \to M \to X \to L \to 0$ and $0 \to L \to Y \to M \to 0$ are the two non-split short exact sequences.

• for every $M, L \in \text{mod } \Lambda$, dim $\text{Ext } \Lambda^{1}(M, L) = \dim \text{Ext } \Lambda^{1}(L, M)$.

Theorem (Geiss-L-Schröer)

- for every $M, L \in \text{mod } \Lambda$, $\varphi_M \varphi_L = \varphi_{M \oplus L}$
- if dim Ext $_{\Lambda}^{1}(M, L) = \dim \operatorname{Ext}_{\Lambda}^{1}(L, M) = 1$ then

$$\varphi_{M}\varphi_{L} = \varphi_{X} + \varphi_{Y},$$

where $0 \to M \to X \to L \to 0$ and $0 \to L \to Y \to M \to 0$ are the two non-split short exact sequences.

- for every $M, L \in \text{mod } \Lambda$, dim $\text{Ext } \Lambda^{1}(M, L) = \text{dim Ext } \Lambda^{1}(L, M)$.
- if dim Ext $_{\Lambda}^{1}(M, L) > 1$, there is a more complicated formula involving all possible middle terms of non-split short exact sequences with end terms M and L.

Definition

 $M \in \operatorname{mod} \Lambda$ is rigid if $\operatorname{Ext} \Lambda^{1}(M, M) = 0$.

Definition

 $M \in \operatorname{mod} \Lambda$ is rigid if $\operatorname{Ext} \Lambda(M, M) = 0$.

• $r := \sharp$ positive roots of $Q = \dim N$.

Definition

 $M \in \operatorname{mod} \Lambda$ is rigid if $\operatorname{Ext} \Lambda^{1}(M, M) = 0$.

• $r := \sharp$ positive roots of $Q = \dim N$.

Theorem (Geiss-Schröer)

A rigid Λ -module has at most r non-isomorphic indecomposable direct summands.

Definition

 $M \in \operatorname{mod} \Lambda$ is rigid if $\operatorname{Ext} \Lambda^{1}(M, M) = 0$.

• $r := \sharp$ positive roots of $Q = \dim N$.

Theorem (Geiss-Schröer)

A rigid Λ -module has at most r non-isomorphic indecomposable direct summands.

• A rigid Λ -module T with r non-isomorphic indecomposable direct summands is called maximal rigid.

Definition

 $M \in \operatorname{mod} \Lambda$ is rigid if $\operatorname{Ext} \Lambda^{1}(M, M) = 0$.

• $r := \sharp$ positive roots of $Q = \dim N$.

Theorem (Geiss-Schröer)

A rigid Λ -module has at most r non-isomorphic indecomposable direct summands.

- A rigid Λ -module T with r non-isomorphic indecomposable direct summands is called maximal rigid.
- Example in type A_3 :

• Let $T = T_1 \oplus \cdots \oplus T_r$ be maximal rigid and $B := \text{End}_{\Lambda} T$.

• Let $T = T_1 \oplus \cdots \oplus T_r$ be maximal rigid and $B := \operatorname{End}_{\Lambda} T$. Let Γ_T be the Gabriel quiver of B.

• Let $T = T_1 \oplus \cdots \oplus T_r$ be maximal rigid and $B := \operatorname{End}_{\Lambda} T$. Let Γ_T be the Gabriel quiver of B.

Theorem (Geiss-L-Schröer)

 Γ_T has no loops nor 2-cycles.

• Let $T = T_1 \oplus \cdots \oplus T_r$ be maximal rigid and $B := \operatorname{End}_{\Lambda} T$. Let Γ_T be the Gabriel quiver of B.

Theorem (Geiss-L-Schröer)

 Γ_T has no loops nor 2-cycles.

• Example in type A₃:

• Define
$$\Sigma(T) := ((\varphi_{T_1}, \dots, \varphi_{T_r}), \Gamma_T)$$

• Define $\Sigma(T) := ((\varphi_{T_1}, \dots, \varphi_{T_r}), \Gamma_T)$

Theorem (Geiss-L-Schröer)

There exists an explicit maximal rigid module U such that $\Sigma(U)$ is one of the initial seeds of the BFZ cluster structure of $\mathbb{C}[N]$.

• Define $\Sigma(T) := ((\varphi_{T_1}, \dots, \varphi_{T_r}), \Gamma_T)$

Theorem (Geiss-L-Schröer)

There exists an explicit maximal rigid module U such that $\Sigma(U)$ is one of the initial seeds of the BFZ cluster structure of $\mathbb{C}[N]$.

• Let T_k be a non-projective indecomposable summand of T.

• Define $\Sigma(T) := ((\varphi_{T_1}, \dots, \varphi_{T_r}), \Gamma_T)$

Theorem (Geiss-L-Schröer)

There exists an explicit maximal rigid module U such that $\Sigma(U)$ is one of the initial seeds of the BFZ cluster structure of $\mathbb{C}[N]$.

• Let T_k be a non-projective indecomposable summand of T.

Theorem (Geiss-L-Schröer)

There exists a unique indecomposable T_k^* such that $(T/T_k) \oplus T_k^*$ is rigid.

• Define $\Sigma(T) := ((\varphi_{T_1}, \dots, \varphi_{T_r}), \Gamma_T)$

Theorem (Geiss-L-Schröer)

There exists an explicit maximal rigid module U such that $\Sigma(U)$ is one of the initial seeds of the BFZ cluster structure of $\mathbb{C}[N]$.

• Let T_k be a non-projective indecomposable summand of T.

Theorem (Geiss-L-Schröer)

There exists a unique indecomposable T_k^* such that $(T/T_k) \oplus T_k^*$ is rigid.

Define $\mu_k(T) := (T/T_k) \oplus T_k^*$, the mutation of T in direction k.

Theorem (Geiss-L-Schröer)

$$\bullet \ \Sigma(\mu_k(T)) = \mu_k(\Sigma(T)).$$

Theorem (Geiss-L-Schröer)

- $\bullet \ \Sigma(\mu_k(T)) = \mu_k(\Sigma(T)).$
- $T \mapsto \Sigma(T)$ gives a 1-to-1 correspondence between maximal rigid modules in the mutation class of U and clusters of $\mathbb{C}[N]$.

Theorem (Geiss-L-Schröer)

- $\bullet \ \Sigma(\mu_k(T)) = \mu_k(\Sigma(T)).$
- $T \mapsto \Sigma(T)$ gives a 1-to-1 correspondence between maximal rigid modules in the mutation class of U and clusters of $\mathbb{C}[N]$.
- Every cluster monomial belongs to the dual semicanonical basis of $\mathbb{C}[N]$.

Theorem (Geiss-L-Schröer)

- $\bullet \ \Sigma(\mu_k(T)) = \mu_k(\Sigma(T)).$
- $T \mapsto \Sigma(T)$ gives a 1-to-1 correspondence between maximal rigid modules in the mutation class of U and clusters of $\mathbb{C}[N]$.
- Every cluster monomial belongs to the dual semicanonical basis of $\mathbb{C}[N]$.

Open problems:

Theorem (Geiss-L-Schröer)

- $\bullet \ \Sigma(\mu_k(T)) = \mu_k(\Sigma(T)).$
- $T \mapsto \Sigma(T)$ gives a 1-to-1 correspondence between maximal rigid modules in the mutation class of U and clusters of $\mathbb{C}[N]$.
- Every cluster monomial belongs to the dual semicanonical basis of $\mathbb{C}[N]$.

Open problems:

(1) Is every maximal rigid module T in the mutation class of U?

Theorem (Geiss-L-Schröer)

- $\bullet \ \Sigma(\mu_k(T)) = \mu_k(\Sigma(T)).$
- $T \mapsto \Sigma(T)$ gives a 1-to-1 correspondence between maximal rigid modules in the mutation class of U and clusters of $\mathbb{C}[N]$.
- Every cluster monomial belongs to the dual semicanonical basis of $\mathbb{C}[N]$.

Open problems:

- (1) Is every maximal rigid module T in the mutation class of U?
- (2) Does every cluster monomial belong to the dual canonical basis of $\mathbb{C}[N]$?

• Replace *N* by the unipotent radical N_K of a parabolic subgroup P_K .

• Replace N by the unipotent radical N_K of a parabolic subgroup P_K . We get similar results where mod Λ is replaced by a certain full additive subcategory \mathscr{C}_K .

- Replace N by the unipotent radical N_K of a parabolic subgroup P_K . We get similar results where mod Λ is replaced by a certain full additive subcategory \mathscr{C}_K .
- Adding some frozen variables, we get a cluster structure in the (multi)-homogeneous coordinate ring of the flag variety G/P_K .

- Replace N by the unipotent radical N_K of a parabolic subgroup P_K . We get similar results where mod Λ is replaced by a certain full additive subcategory \mathscr{C}_K .
- Adding some frozen variables, we get a cluster structure in the (multi)-homogeneous coordinate ring of the flag variety G/P_K .
- In a Kac-Moody setting, replace N by

$$N(w) := N \cap (w^{-1}N_-w)$$

for $w \in W$.

- Replace N by the unipotent radical N_K of a parabolic subgroup P_K . We get similar results where mod Λ is replaced by a certain full additive subcategory \mathscr{C}_K .
- Adding some frozen variables, we get a cluster structure in the (multi)-homogeneous coordinate ring of the flag variety G/P_K .
- In a Kac-Moody setting, replace N by

$$N(w) := N \cap (w^{-1}N_-w)$$

for $w \in W$. We get similar results where mod Λ is replaced by a certain full additive subcategory \mathscr{C}_{w} .

- Replace N by the unipotent radical N_K of a parabolic subgroup P_K . We get similar results where mod Λ is replaced by a certain full additive subcategory \mathscr{C}_K .
- Adding some frozen variables, we get a cluster structure in the (multi)-homogeneous coordinate ring of the flag variety G/P_K .
- In a Kac-Moody setting, replace N by

$$N(w) := N \cap (w^{-1}N_-w)$$

for $w \in W$. We get similar results where mod Λ is replaced by a certain full additive subcategory \mathscr{C}_w . The categories \mathscr{C}_w were also introduced and studied independently by Buan, Iyama, Reiten, Scott.

Cluster algebras and Lie theory, III

Bernard Leclerc, Université de Caen

Séminaire Lotharingien de Combinatoire 69 Strobl, 12 septembre 2012

The quantum algebra $U_q(L\mathfrak{g})$

The quantum algebra $U_{\mathbf{q}}(L\mathfrak{g})$

• \mathfrak{g} complex Lie algebra of type A_n, D_n, E_n .

The quantum algebra $U_{\mathbf{q}}(L\mathfrak{g})$

• \mathfrak{g} complex Lie algebra of type A_n, D_n, E_n .

• \mathfrak{g} complex Lie algebra of type A_n, D_n, E_n .

• $U_q(\mathfrak{g})$ quantum enveloping algebra ($q \in \mathbb{C}^*$, not a root of 1).

• \mathfrak{g} complex Lie algebra of type A_n, D_n, E_n .

- $U_{\mathbf{q}}(\mathfrak{g})$ quantum enveloping algebra ($\mathbf{q} \in \mathbb{C}^*$, not a root of 1).
- $L\mathfrak{g} := \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}]$ loop algebra.

• \mathfrak{g} complex Lie algebra of type A_n, D_n, E_n .

- $U_q(\mathfrak{g})$ quantum enveloping algebra ($q \in \mathbb{C}^*$, not a root of 1).
- $L\mathfrak{g} := \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}]$ loop algebra.
- $U_q(L\mathfrak{g})$ quantum loop algebra.

• \mathfrak{g} complex Lie algebra of type A_n, D_n, E_n .

- $U_{\mathbf{q}}(\mathfrak{g})$ quantum enveloping algebra ($\mathbf{q} \in \mathbb{C}^*$, not a root of 1).
- $L\mathfrak{g} := \mathfrak{g} \otimes \mathbb{C}[t, t^{-1}]$ loop algebra.
- $U_q(L\mathfrak{g})$ quantum loop algebra.

Aim: Study the tensor category of finite-dimensional modules over $U_q(L\mathfrak{g})$.

Representations of $L\mathfrak{g}$

• $P = \bigoplus_{i=1}^{n} \mathbb{Z} \overline{\omega}_{i}$ weight lattice of \mathfrak{g} .

• $P = \bigoplus_{i=1}^{n} \mathbb{Z} \overline{\omega}_{i}$ weight lattice of \mathfrak{g} . Simple $U(\mathfrak{g})$ -modules $L(\lambda)$ are labelled by $\lambda \in P_{+} = \bigoplus_{i=1}^{n} \mathbb{N} \overline{\omega}_{i}$.

- $P = \bigoplus_{i=1}^{n} \mathbb{Z} \overline{\omega}_{i}$ weight lattice of \mathfrak{g} . Simple $U(\mathfrak{g})$ -modules $L(\lambda)$ are labelled by $\lambda \in P_{+} = \bigoplus_{i=1}^{n} \mathbb{N} \overline{\omega}_{i}$.
- Fix $z \in \mathbb{C}^*$. There is a homomorphism $ev_z : U(L\mathfrak{g}) \to U(\mathfrak{g})$

$$x \otimes t^k \mapsto z^k x$$
 $(x \in \mathfrak{g}, k \in \mathbb{Z}).$

- $P = \bigoplus_{i=1}^{n} \mathbb{Z} \overline{\omega}_{i}$ weight lattice of \mathfrak{g} . Simple $U(\mathfrak{g})$ -modules $L(\lambda)$ are labelled by $\lambda \in P_{+} = \bigoplus_{i=1}^{n} \mathbb{N} \overline{\omega}_{i}$.
- Fix $z \in \mathbb{C}^*$. There is a homomorphism $ev_z : U(L\mathfrak{g}) \to U(\mathfrak{g})$

$$x \otimes t^k \mapsto z^k x$$
 $(x \in \mathfrak{g}, k \in \mathbb{Z}).$

• Hence, $M \in \text{mod } U(\mathfrak{g}) \longrightarrow M[z] \in \text{mod } U(L\mathfrak{g})$.

- $P = \bigoplus_{i=1}^{n} \mathbb{Z} \overline{\omega}_{i}$ weight lattice of \mathfrak{g} . Simple $U(\mathfrak{g})$ -modules $L(\lambda)$ are labelled by $\lambda \in P_{+} = \bigoplus_{i=1}^{n} \mathbb{N} \overline{\omega}_{i}$.
- Fix $z \in \mathbb{C}^*$. There is a homomorphism $ev_z : U(L\mathfrak{g}) \to U(\mathfrak{g})$

$$x \otimes t^k \mapsto z^k x$$
 $(x \in \mathfrak{g}, k \in \mathbb{Z}).$

• Hence, $M \in \text{mod } U(\mathfrak{g}) \longrightarrow M[z] \in \text{mod } U(L\mathfrak{g}).$

Theorem (Chari)

Every simple $U(L\mathfrak{g})$ -module is of the form

$$S_1[z_1] \otimes \cdots \otimes S_k[z_k]$$

for some simple $U(\mathfrak{g})$ -modules S_1, \ldots, S_k , and pairwise distinct $Z_1, \ldots, Z_k \in \mathbb{C}^*$.

- $P = \bigoplus_{i=1}^{n} \mathbb{Z} \overline{\omega}_{i}$ weight lattice of \mathfrak{g} . Simple $U(\mathfrak{g})$ -modules $L(\lambda)$ are labelled by $\lambda \in P_{+} = \bigoplus_{i=1}^{n} \mathbb{N} \overline{\omega}_{i}$.
- Fix $z \in \mathbb{C}^*$. There is a homomorphism $ev_z : U(L\mathfrak{g}) \to U(\mathfrak{g})$

$$x \otimes t^k \mapsto z^k x$$
 $(x \in \mathfrak{g}, k \in \mathbb{Z}).$

• Hence, $M \in \text{mod } U(\mathfrak{g}) \longrightarrow M[z] \in \text{mod } U(L\mathfrak{g}).$

Theorem (Chari)

Every simple $U(L\mathfrak{g})$ -module is of the form

$$S_1[z_1] \otimes \cdots \otimes S_k[z_k]$$

for some simple $U(\mathfrak{g})$ -modules S_1, \ldots, S_k , and pairwise distinct $Z_1, \ldots, Z_k \in \mathbb{C}^*$.

• $\widehat{P} = \bigoplus_{z \in \mathbb{C}^*} \bigoplus_{i=1}^n \mathbb{Z}(\overline{\omega}_i, z)$ lattice of *I*-weights.

- $P = \bigoplus_{i=1}^{n} \mathbb{Z} \overline{\omega}_{i}$ weight lattice of \mathfrak{g} . Simple $U(\mathfrak{g})$ -modules $L(\lambda)$ are labelled by $\lambda \in P_{+} = \bigoplus_{i=1}^{n} \mathbb{N} \overline{\omega}_{i}$.
- Fix $z \in \mathbb{C}^*$. There is a homomorphism $ev_z : U(L\mathfrak{g}) \to U(\mathfrak{g})$

$$x \otimes t^k \mapsto z^k x$$
 $(x \in \mathfrak{g}, k \in \mathbb{Z}).$

• Hence, $M \in \text{mod } U(\mathfrak{g}) \longrightarrow M[z] \in \text{mod } U(L\mathfrak{g}).$

Theorem (Chari)

Every simple $U(L\mathfrak{g})$ -module is of the form

$$S_1[z_1] \otimes \cdots \otimes S_k[z_k]$$

for some simple $U(\mathfrak{g})$ -modules S_1, \ldots, S_k , and pairwise distinct $Z_1, \ldots, Z_k \in \mathbb{C}^*$.

• $\widehat{P} = \bigoplus_{z \in \mathbb{C}^*} \bigoplus_{i=1}^n \mathbb{Z}(\overline{\omega}_i, z)$ lattice of *I*-weights. Simple modules over $U(L\mathfrak{g})$ are labelled by $\widehat{P}_+ = \bigoplus_{z \in \mathbb{C}^*} \bigoplus_{i=1}^n \mathbb{N}(\overline{\omega}_i, z)$.

• mod $U(\mathfrak{g})$ and mod $U_q(\mathfrak{g})$ are equivalent semisimple categories, with isomorphic Grothendieck rings.

• mod $U(\mathfrak{g})$ and mod $U_q(\mathfrak{g})$ are equivalent semisimple categories, with isomorphic Grothendieck rings. Simple objects have the same dimension.

- mod $U(\mathfrak{g})$ and mod $U_q(\mathfrak{g})$ are equivalent semisimple categories, with isomorphic Grothendieck rings. Simple objects have the same dimension.
- mod $U(L\mathfrak{g})$ and mod $U_q(L\mathfrak{g})$ are not semisimple, and not equivalent.

- mod $U(\mathfrak{g})$ and mod $U_q(\mathfrak{g})$ are equivalent semisimple categories, with isomorphic Grothendieck rings. Simple objects have the same dimension.
- mod $U(L\mathfrak{g})$ and mod $U_q(L\mathfrak{g})$ are not semisimple, and not equivalent. But

Theorem (Chari-Pressley)

Simple modules over $U_q(L\mathfrak{g})$ are also labelled by \widehat{P}_+ .

- mod $U(\mathfrak{g})$ and mod $U_q(\mathfrak{g})$ are equivalent semisimple categories, with isomorphic Grothendieck rings. Simple objects have the same dimension.
- mod $U(L\mathfrak{g})$ and mod $U_q(L\mathfrak{g})$ are not semisimple, and not equivalent. But

Theorem (Chari-Pressley)

Simple modules over $U_q(L\mathfrak{g})$ are also labelled by \widehat{P}_+ .

Ex: $\mathfrak{g} = \mathfrak{sl}_2$.

- mod $U(\mathfrak{g})$ and mod $U_q(\mathfrak{g})$ are equivalent semisimple categories, with isomorphic Grothendieck rings. Simple objects have the same dimension.
- mod $U(L\mathfrak{g})$ and mod $U_q(L\mathfrak{g})$ are not semisimple, and not equivalent. But

Theorem (Chari-Pressley)

Simple modules over $U_q(L\mathfrak{g})$ are also labelled by \widehat{P}_+ .

Ex:
$$g = \mathfrak{sl}_2$$
. For Lg ,

$$L((\boldsymbol{\varpi}, z_1) + (\boldsymbol{\varpi}, z_2)) \cong L(\boldsymbol{\varpi}, z_1) \otimes L(\boldsymbol{\varpi}, z_2) \Longleftrightarrow z_1 \neq z_2.$$

- mod $U(\mathfrak{g})$ and mod $U_q(\mathfrak{g})$ are equivalent semisimple categories, with isomorphic Grothendieck rings. Simple objects have the same dimension.
- mod $U(L\mathfrak{g})$ and mod $U_q(L\mathfrak{g})$ are not semisimple, and not equivalent. But

Theorem (Chari-Pressley)

Simple modules over $U_{\mathbf{q}}(L\mathfrak{g})$ are also labelled by \widehat{P}_{+} .

Ex:
$$g = \mathfrak{sl}_2$$
. For Lg ,

$$L((\boldsymbol{\varpi},z_1)+(\boldsymbol{\varpi},z_2))\cong L(\boldsymbol{\varpi},z_1)\otimes L(\boldsymbol{\varpi},z_2)\Longleftrightarrow z_1\neq z_2.$$

For
$$U_{\mathbf{q}}(L\mathfrak{g})$$
,

$$L((\boldsymbol{\varpi}, \boldsymbol{z}_1) + (\boldsymbol{\varpi}, \boldsymbol{z}_2)) \cong L(\boldsymbol{\varpi}, \boldsymbol{z}_1) \otimes L(\boldsymbol{\varpi}, \boldsymbol{z}_2) \Longleftrightarrow \boldsymbol{z}_1 \neq \boldsymbol{q}^{\pm 2} \boldsymbol{z}_2.$$

• $M \in \text{mod } U_q(L\mathfrak{g})$.

- $M \in \text{mod } U_{\mathbf{q}}(L\mathfrak{g})$.
- $U_q(L\mathfrak{g})$ has a large commutative subalgebra A

- $M \in \text{mod } U_q(L\mathfrak{g})$.
- $U_q(L\mathfrak{g})$ has a large commutative subalgebra $A \leadsto$ decomposition into generalized eigenspaces :

$$M = \bigoplus_{\widehat{\mu} \in \widehat{P}} M_{\widehat{\mu}}$$

- $M \in \text{mod } U_{\mathbf{q}}(L\mathfrak{g}).$
- $U_q(L\mathfrak{g})$ has a large commutative subalgebra $A \rightsquigarrow$ decomposition into generalized eigenspaces :

$$M = \bigoplus_{\widehat{\mu} \in \widehat{P}} M_{\widehat{\mu}}$$

Definition (Frenkel-Reshetikhin)

 $\chi_{\mathbf{q}}(M) := \sum_{\widehat{\mu} \in \widehat{P}} \dim M_{\widehat{\mu}} e^{\widehat{\mu}}$ is the \mathbf{q} -character of M.

- $M \in \text{mod } U_{\mathbf{q}}(L\mathfrak{g}).$
- $U_q(L\mathfrak{g})$ has a large commutative subalgebra $A \leadsto$ decomposition into generalized eigenspaces :

$$M = \bigoplus_{\widehat{\mu} \in \widehat{P}} M_{\widehat{\mu}}$$

Definition (Frenkel-Reshetikhin)

 $\chi_{\mathbf{q}}(M) := \sum_{\widehat{\mu} \in \widehat{P}} \dim M_{\widehat{\mu}} e^{\widehat{\mu}}$ is the \mathbf{q} -character of M.

• $\chi_{\mathbf{q}}(M)$ is a Laurent polynomial in the $Y_{i,z} := \mathbf{e}^{(\overline{\omega}_i,z)}$.

- $M \in \text{mod } U_{\mathbf{q}}(L\mathfrak{g})$.
- $U_q(L\mathfrak{g})$ has a large commutative subalgebra $A \rightsquigarrow$ decomposition into generalized eigenspaces :

$$M = \bigoplus_{\widehat{\mu} \in \widehat{P}} M_{\widehat{\mu}}$$

Definition (Frenkel-Reshetikhin)

 $\chi_{\mathbf{q}}(M) := \sum_{\widehat{\mu} \in \widehat{P}} \dim M_{\widehat{\mu}} e^{\widehat{\mu}}$ is the **q**-character of M.

- $\chi_{\mathbf{q}}(M)$ is a Laurent polynomial in the $Y_{i,z} := \mathbf{e}^{(\overline{\omega}_i,z)}$.
- Set $A_{i,z} := Y_{i,qz} Y_{i,q^{-1}z} \prod_{j \neq i} Y_{j,z}^{c_{ij}}$, where $[c_{ij}]$ Cartan matrix of \mathfrak{g} .

- $M \in \text{mod } U_q(L\mathfrak{g})$.
- $U_q(L\mathfrak{g})$ has a large commutative subalgebra $A \rightsquigarrow$ decomposition into generalized eigenspaces :

$$M = \bigoplus_{\widehat{\mu} \in \widehat{P}} M_{\widehat{\mu}}$$

Definition (Frenkel-Reshetikhin)

 $\chi_{\mathbf{q}}(M) := \sum_{\widehat{\mu} \in \widehat{\mathbf{p}}} \dim M_{\widehat{\mu}} e^{\widehat{\mu}}$ is the **q**-character of M.

- $\chi_{\alpha}(M)$ is a Laurent polynomial in the $Y_{i,z} := e^{(\overline{\omega}_i,z)}$.
- Set $A_{i,z} := Y_{i,qz} Y_{i,q-1} \prod_{j \neq i} Y_{i,z}^{c_{ij}}$, where $[c_{ij}]$ Cartan matrix of \mathfrak{g} .

Proposition (Frenkel-Reshetikhin)

 $\widetilde{\chi}_{q}(L(\widehat{\lambda})) := e^{-\widehat{\lambda}} \chi_{q}(L(\widehat{\lambda}))$ is a polynomial in the $A_{i,z}^{-1}$ with constant term 1.

• No general formula for irreducible *q*-characters.

• No general formula for irreducible *q*-characters.

→ Frenkel-Mukhin algorithm (for minuscule modules).

- No general formula for irreducible *q*-characters.
- → Frenkel-Mukhin algorithm (for minuscule modules).
- Nakajima geometric description in terms of quiver varieties:

- No general formula for irreducible *q*-characters.
- → Frenkel-Mukhin algorithm (for minuscule modules).
- → Nakajima geometric description in terms of quiver varieties:
 - Betti numbers of $\mathcal{L}^{\bullet}(V, W)$ give q-characters of standard modules

- No general formula for irreducible *q*-characters.
- → Frenkel-Mukhin algorithm (for minuscule modules).
- Nakajima geometric description in terms of quiver varieties:
 - Betti numbers of $\mathcal{L}^{\bullet}(V, W)$ give q-characters of standard modules
 - Intersection cohomology methods give decomposition of standard modules into simples

Open problems

Open problems

 \bullet "Many" simple $U_q(L\mathfrak{g})\text{-modules}$ are tensor products of smaller simples.

Open problems

• "Many" simple $U_q(L\mathfrak{g})$ -modules are tensor products of smaller simples.

Problem

• What are the prime simples?

• "Many" simple $U_q(L\mathfrak{g})$ -modules are tensor products of smaller simples.

- What are the prime simples?
- What is the prime factorization of an arbitrary simple?

• "Many" simple $U_q(L\mathfrak{g})$ -modules are tensor products of smaller simples.

- What are the prime simples?
- What is the prime factorization of an arbitrary simple?
- Which products of primes are simple?

• "Many" simple $U_q(L\mathfrak{g})$ -modules are tensor products of smaller simples.

- What are the prime simples?
- What is the prime factorization of an arbitrary simple?
- Which products of primes are simple?
- Chari-Pressley (1991): full answer for $U_q(L\mathfrak{sl}_2)$.

• "Many" simple $U_q(L\mathfrak{g})$ -modules are tensor products of smaller simples.

- What are the prime simples?
- What is the prime factorization of an arbitrary simple?
- Which products of primes are simple?
- Chari-Pressley (1991): full answer for $U_q(L\mathfrak{sl}_2)$.
- Hernandez-L; Nakajima (2009): partial answer for $U_{\mathbf{q}}(L\mathfrak{g})$.

• Q :=sink-source orientation of Dynkin diagram of \mathfrak{g} .

- Q :=sink-source orientation of Dynkin diagram of \mathfrak{g} .
- $I_0 := \{ sinks \}, I_1 := \{ sources \},$

- Q :=sink-source orientation of Dynkin diagram of \mathfrak{g} .
- $I_0 := \{\text{sinks}\}, I_1 := \{\text{sources}\}, \ \xi_i = \begin{cases} 0 & \text{if } i \in I_0 \\ 1 & \text{if } i \in I_1 \end{cases}$

- Q :=sink-source orientation of Dynkin diagram of \mathfrak{g} .
- $I_0 := \{\text{sinks}\}, I_1 := \{\text{sources}\}, \ \xi_i = \begin{cases} 0 & \text{if } i \in I_0 \\ 1 & \text{if } i \in I_1 \end{cases}$
- $ullet \widehat{P}_{+,1} := igoplus_{k=0}^1 igoplus_{i=1}^n \mathbb{N}(oldsymbol{\varpi}_i, rac{oldsymbol{q}^{\xi_i+2k}}{oldsymbol{q}})$

- Q :=sink-source orientation of Dynkin diagram of \mathfrak{g} .
- $I_0 := \{\text{sinks}\}, I_1 := \{\text{sources}\}, \ \xi_i = \begin{cases} 0 & \text{if } i \in I_0 \\ 1 & \text{if } i \in I_1 \end{cases}$
- $ullet \widehat{P}_{+,1} := igoplus_{k=0}^1 igoplus_{i=1}^n \mathbb{N}(oldsymbol{\varpi}_i, rac{oldsymbol{q}^{\xi_i+2k}}{oldsymbol{q}})$

Definition

 \mathscr{C}_1 is the full subcategory of mod $U_q(L\mathfrak{g})$ whose objects have all their composition factors of the form $L(\widehat{\lambda})$ with $\widehat{\lambda} \in \widehat{P}_{+,1}$.

- Q :=sink-source orientation of Dynkin diagram of \mathfrak{g} .
- $I_0 := \{\text{sinks}\}, I_1 := \{\text{sources}\}, \ \xi_i = \begin{cases} 0 & \text{if } i \in I_0 \\ 1 & \text{if } i \in I_1 \end{cases}$
- $ullet \widehat{P}_{+,1} := igoplus_{k=0}^1 igoplus_{i=1}^n \mathbb{N}(oldsymbol{\varpi}_i, rac{oldsymbol{q}^{\xi_i+2k}}{oldsymbol{q}})$

Definition

 \mathscr{C}_1 is the full subcategory of mod $U_q(L\mathfrak{g})$ whose objects have all their composition factors of the form $L(\widehat{\lambda})$ with $\widehat{\lambda} \in \widehat{P}_{+,1}$.

Proposition (Hernandez-L.)

 \mathscr{C}_1 is closed under tensor products.

- Q :=sink-source orientation of Dynkin diagram of \mathfrak{g} .
- $I_0 := \{\text{sinks}\}, I_1 := \{\text{sources}\}, \ \xi_i = \begin{cases} 0 & \text{if } i \in I_0 \\ 1 & \text{if } i \in I_1 \end{cases}$
- $ullet \widehat{P}_{+,1} := igoplus_{k=0}^1 igoplus_{i=1}^n \mathbb{N}(oldsymbol{\varpi}_i, rac{oldsymbol{q}^{\xi_i+2k}}{oldsymbol{q}})$

Definition

 \mathscr{C}_1 is the full subcategory of mod $U_q(L\mathfrak{g})$ whose objects have all their composition factors of the form $L(\widehat{\lambda})$ with $\widehat{\lambda} \in \widehat{P}_{+,1}$.

Proposition (Hernandez-L.)

 \mathscr{C}_1 is closed under tensor products. $K_0(\mathscr{C}_1)$ is the polynomial ring in $[L(\varpi_i, \mathbf{q}^{\xi_i+2k}))]$ $(0 \le k \le 1, \ 1 \le i \le n)$.

• α_i simple roots of \mathfrak{g}

- α_i simple roots of \mathfrak{g}
- Positive root $\beta = \sum_i b_i \alpha_i$

- α_i simple roots of \mathfrak{g}
- Positive root $\beta = \sum_i b_i \alpha_i \rightsquigarrow S(\beta) := L\left(\sum_i b_i(\overline{\omega}_i, \mathbf{q}^{3\xi_i})\right)$

- α_i simple roots of \mathfrak{g}
- Positive root $\beta = \sum_i b_i \alpha_i \rightsquigarrow S(\beta) := L\left(\sum_i b_i(\overline{\omega}_i, \mathbf{q}^{3\xi_i})\right)$
- Negative simple $-\alpha_i$

- α_i simple roots of \mathfrak{g}
- Positive root $\beta = \sum_i b_i \alpha_i \rightsquigarrow S(\beta) := L\left(\sum_i b_i(\varpi_i, \mathbf{q}^{3\xi_i})\right)$
- Negative simple $-\alpha_i \longrightarrow S(-\alpha_i) := L\left((\varpi_i, \mathbf{q}^{2-\xi_i})\right)$

- α_i simple roots of \mathfrak{g}
- Positive root $\beta = \sum_i b_i \alpha_i \rightsquigarrow S(\beta) := L\left(\sum_i b_i(\overline{\omega}_i, \mathbf{q}^{3\xi_i})\right)$
- Negative simple $-\alpha_i \longrightarrow S(-\alpha_i) := L\left((\boldsymbol{\varpi}_i, \boldsymbol{q}^{2-\xi_i})\right)$
- 1 ≤ i ≤ n

- α_i simple roots of \mathfrak{g}
- Positive root $\beta = \sum_i b_i \alpha_i \rightsquigarrow S(\beta) := L\left(\sum_i b_i(\overline{\omega}_i, \mathbf{q}^{3\xi_i})\right)$
- Negative simple $-\alpha_i \longrightarrow S(-\alpha_i) := L\left((\boldsymbol{\varpi}_i, \boldsymbol{q}^{2-\xi_i})\right)$
- $1 \le i \le n$ $\longrightarrow F_i := L\left((\boldsymbol{\varpi}_i, \mathbf{q}^{\xi_i}) + (\boldsymbol{\varpi}_i, \mathbf{q}^{\xi_i+2})\right)$

- α_i simple roots of \mathfrak{g}
- Positive root $\beta = \sum_i b_i \alpha_i \rightsquigarrow S(\beta) := L\left(\sum_i b_i(\overline{\omega}_i, \mathbf{q}^{3\xi_i})\right)$
- Negative simple $-\alpha_i \longrightarrow S(-\alpha_i) := L\left((\overline{\omega}_i, \mathbf{q}^{2-\xi_i})\right)$
- 1 $\leq i \leq n$ \leadsto $F_i := L\left((\boldsymbol{\varpi}_i, \mathbf{q}^{\xi_i}) + (\boldsymbol{\varpi}_i, \mathbf{q}^{\xi_i+2})\right)$

Theorem (Hernandez-L.; Nakajima)

• $K_0(\mathcal{C}_1)$ is a cluster algebra of finite type = the Dynkin type of \mathfrak{g} .

- α_i simple roots of \mathfrak{g}
- Positive root $\beta = \sum_i b_i \alpha_i \rightsquigarrow S(\beta) := L\left(\sum_i b_i(\overline{\omega}_i, \mathbf{q}^{3\xi_i})\right)$
- Negative simple $-\alpha_i \qquad \rightsquigarrow \quad S(-\alpha_i) := L\left((\overline{\omega}_i, \mathbf{q}^{2-\xi_i})\right)$
- 1 $\leq i \leq n$ \Rightarrow $F_i := L\left((\boldsymbol{\varpi}_i, \mathbf{q}^{\xi_i}) + (\boldsymbol{\varpi}_i, \mathbf{q}^{\xi_i+2})\right)$

- $K_0(\mathscr{C}_1)$ is a cluster algebra of finite type = the Dynkin type of \mathfrak{g} .
- $[S(\beta)], [S(-\alpha_i)]$ cluster variables, $[F_i]$ coefficients.

- α_i simple roots of \mathfrak{g}
- Positive root $\beta = \sum_i b_i \alpha_i \rightsquigarrow S(\beta) := L\left(\sum_i b_i(\overline{\omega}_i, \mathbf{q}^{3\xi_i})\right)$
- Negative simple $-\alpha_i \longrightarrow S(-\alpha_i) := L\left((\boldsymbol{\varpi}_i, \boldsymbol{q}^{2-\xi_i})\right)$
- 1 $\leq i \leq n$ \Rightarrow $F_i := L\left((\boldsymbol{\varpi}_i, \mathbf{q}^{\xi_i}) + (\boldsymbol{\varpi}_i, \mathbf{q}^{\xi_i+2})\right)$

- $K_0(\mathscr{C}_1)$ is a cluster algebra of finite type = the Dynkin type of \mathfrak{g} .
- $[S(\beta)], [S(-\alpha_i)]$ cluster variables, $[F_i]$ coefficients.
- $\left\{ [L(\widehat{\lambda})] \mid \widehat{\lambda} \in P_{+,1} \right\} = \{ \text{cluster monomials} \}$

- α_i simple roots of \mathfrak{g}
- Positive root $\beta = \sum_i b_i \alpha_i \rightsquigarrow S(\beta) := L\left(\sum_i b_i(\overline{\omega}_i, \mathbf{q}^{3\xi_i})\right)$
- Negative simple $-\alpha_i \longrightarrow S(-\alpha_i) := L\left((\boldsymbol{\varpi}_i, \boldsymbol{q}^{2-\xi_i})\right)$
- 1 $\leq i \leq n$ \leadsto $F_i := L\left((\boldsymbol{\varpi}_i, \mathbf{q}^{\xi_i}) + (\boldsymbol{\varpi}_i, \mathbf{q}^{\xi_i+2})\right)$

Theorem (Hernandez-L.; Nakajima)

- $K_0(\mathscr{C}_1)$ is a cluster algebra of finite type = the Dynkin type of \mathfrak{g} .
- $[S(\beta)], [S(-\alpha_i)]$ cluster variables, $[F_i]$ coefficients.
- $\left\{ [L(\widehat{\lambda})] \mid \widehat{\lambda} \in P_{+,1} \right\} = \{ \text{cluster monomials} \}$

Ex: type A_3 . \mathcal{C}_1 has 12 prime simple objects of dimensions

- α_i simple roots of \mathfrak{g}
- Positive root $\beta = \sum_i b_i \alpha_i \rightsquigarrow S(\beta) := L\left(\sum_i b_i(\overline{\omega}_i, \mathbf{q}^{3\xi_i})\right)$
- Negative simple $-\alpha_i \longrightarrow S(-\alpha_i) := L\left((\boldsymbol{\varpi}_i, \boldsymbol{q}^{2-\xi_i})\right)$
- 1 $\leq i \leq n$ \leadsto $F_i := L\left((\boldsymbol{\varpi}_i, \mathbf{q}^{\xi_i}) + (\boldsymbol{\varpi}_i, \mathbf{q}^{\xi_i+2})\right)$

Theorem (Hernandez-L.; Nakajima)

- $K_0(\mathscr{C}_1)$ is a cluster algebra of finite type = the Dynkin type of \mathfrak{g} .
- $[S(\beta)], [S(-\alpha_i)]$ cluster variables, $[F_i]$ coefficients.
- $\left\{ [L(\widehat{\lambda})] \mid \widehat{\lambda} \in P_{+,1} \right\} = \{ \text{cluster monomials} \}$

Ex: type A_3 . \mathscr{C}_1 has 12 prime simple objects of dimensions

14 factorization patterns ^{1:1} vertices of Stasheff associahedron

 $S(\alpha_2)^{\otimes \textbf{\textit{a}}} \otimes S(\alpha_1 + \alpha_2)^{\otimes \textbf{\textit{b}}} \otimes S(\alpha_2 + \alpha_3)^{\otimes \textbf{\textit{c}}} \otimes F_1^{\otimes \textbf{\textit{d}}} \otimes F_2^{\otimes \textbf{\textit{e}}}$ is simple for any $\textbf{\textit{a}}, \textbf{\textit{b}}, \textbf{\textit{c}}, \textbf{\textit{d}}, \textbf{\textit{e}} \in \mathbb{N}$.

• Modules $S(\beta)$ can be very large.

• Modules $S(\beta)$ can be very large.

Ex: type D_4 , β highest root, dim $S(\beta) = 167327$.

• Modules $S(\beta)$ can be very large.

Ex: type D_4 , β highest root, dim $S(\beta) = 167327$.

• For $\widehat{\lambda} \in P_{+,1}$, $\chi_{q}(L(\widehat{\lambda})) = e^{\widehat{\lambda}} \, \widetilde{\chi}_{q}(L(\widehat{\lambda}))$, where $\widetilde{\chi}_{q}(L(\widehat{\lambda}))$ is a polynomial in the $A_{i,q^{\xi_{i+1+2k}}}^{-1} \, (k \in \mathbb{N})$.

• Modules $S(\beta)$ can be very large.

Ex: type D_4 , β highest root, dim $S(\beta) = 167327$.

• For $\widehat{\lambda} \in P_{+,1}$, $\chi_q(L(\widehat{\lambda})) = e^{\widehat{\lambda}} \widetilde{\chi}_q(L(\widehat{\lambda}))$, where $\widetilde{\chi}_q(L(\widehat{\lambda}))$ is a polynomial in the $A_{i,q^{\xi_i+1+2k}}^{-1}$ $(k \in \mathbb{N})$.

Definition

 $\chi_q(L(\widehat{\lambda}))_{\leq 2}$ is the sum of all monomials of $e^{\widehat{\lambda}} \widetilde{\chi}_q(L(\widehat{\lambda}))$ involving only variables $v_i := A_{i,q^{\xi_i+1}}^{-1}$.

• Modules $S(\beta)$ can be very large.

Ex: type D_4 , β highest root, dim $S(\beta) = 167327$.

• For $\widehat{\lambda} \in P_{+,1}$, $\chi_q(L(\widehat{\lambda})) = e^{\widehat{\lambda}} \, \widetilde{\chi}_q(L(\widehat{\lambda}))$, where $\widetilde{\chi}_q(L(\widehat{\lambda}))$ is a polynomial in the $A^{-1}_{i,q^{\xi_i+1+2k}} \, (k \in \mathbb{N})$.

Definition

 $\chi_q(L(\widehat{\lambda}))_{\leq 2}$ is the sum of all monomials of $e^{\widehat{\lambda}} \widetilde{\chi}_q(L(\widehat{\lambda}))$ involving only variables $v_i := A_{i,q^{\xi_i+1}}^{-1}$.

Ex: type D_4 , β highest root. $\chi_q(S(\beta))_{<2}$ has only 14 monomials.

• Modules $S(\beta)$ can be very large.

Ex: type D_4 , β highest root, dim $S(\beta) = 167327$.

• For $\widehat{\lambda} \in P_{+,1}$, $\chi_q(L(\widehat{\lambda})) = e^{\widehat{\lambda}} \widetilde{\chi}_q(L(\widehat{\lambda}))$, where $\widetilde{\chi}_q(L(\widehat{\lambda}))$ is a polynomial in the $A_{i,q^{\xi_{j+1}+2k}}^{-1}$ $(k \in \mathbb{N})$.

Definition

 $\chi_q(L(\widehat{\lambda}))_{\leq 2}$ is the sum of all monomials of $e^{\widehat{\lambda}} \widetilde{\chi}_q(L(\widehat{\lambda}))$ involving only variables $v_i := A_{i,q^{\xi_i+1}}^{-1}$.

Ex: type D_4 , β highest root. $\chi_q(S(\beta))_{<2}$ has only 14 monomials.

Proposition

Simple objects S of \mathscr{C}_1 are characterized by their truncated q-character $\chi_q(S)_{\leq 2}$.

• *M* a representation of Q, $\gamma = \sum_i c_i \alpha_i$ a dimension vector,

• M a representation of Q, $\gamma = \sum_i c_i \alpha_i$ a dimension vector, \leadsto $Gr_{\gamma}(M)$:= Grassmannian of subrepresentations of M with dimension vector γ , a projective variety.

• M a representation of Q, $\gamma = \sum_i c_i \alpha_i$ a dimension vector, \leadsto $Gr_{\gamma}(M)$:= Grassmannian of subrepresentations of M with dimension vector γ , a projective variety.

$$F_M(v_1,...,v_n) := \sum_{\gamma} \chi(\operatorname{Gr}_{\gamma}(M)) \mathbf{v}^{\gamma}$$
 (χ Euler characteristic).

• M a representation of Q, $\gamma = \sum_i c_i \alpha_i$ a dimension vector, \leadsto $Gr_{\gamma}(M)$:= Grassmannian of subrepresentations of M with dimension vector γ , a projective variety.

Definition

$$F_M(v_1, ..., v_n) := \sum_{\gamma} \chi(\operatorname{Gr}_{\gamma}(M)) \mathbf{v}^{\gamma}$$
 (χ Euler characteristic).

• β positive root \leadsto indecomposable $M[\beta]$ with dimension β \leadsto $F_{\beta} := F_{M[\beta]}$

• M a representation of Q, $\gamma = \sum_i c_i \alpha_i$ a dimension vector, \leadsto $Gr_{\gamma}(M)$:= Grassmannian of subrepresentations of M with dimension vector γ , a projective variety.

$$F_M(v_1, \dots, v_n) := \sum_{\gamma} \chi(\operatorname{Gr}_{\gamma}(M)) \mathbf{v}^{\gamma}$$
 (χ Euler characteristic).

- β positive root \leadsto indecomposable $M[\beta]$ with dimension β \leadsto $F_{\beta} := F_{M[\beta]}$
- $-\alpha_i$ negative simple root $\leadsto F_{-\alpha_i} := 1$

• M a representation of Q, $\gamma = \sum_i c_i \alpha_i$ a dimension vector, \leadsto $Gr_{\gamma}(M)$:= Grassmannian of subrepresentations of M with dimension vector γ , a projective variety.

$$F_M(v_1, \dots, v_n) := \sum_{\gamma} \chi(\operatorname{Gr}_{\gamma}(M)) \mathbf{v}^{\gamma}$$
 (χ Euler characteristic).

- β positive root \leadsto indecomposable $M[\beta]$ with dimension β \leadsto $F_{\beta} := F_{M[\beta]}$
- $-\alpha_i$ negative simple root $\leadsto F_{-\alpha_i} := 1$
- β positive root $\leadsto \tau(\beta) := (\prod_{i \in I_1} s_i)(\beta)$

• M a representation of Q, $\gamma = \sum_i c_i \alpha_i$ a dimension vector, \leadsto $Gr_{\gamma}(M)$:= Grassmannian of subrepresentations of M with dimension vector γ , a projective variety.

$$F_M(v_1, \ldots, v_n) := \sum_{\gamma} \chi(\operatorname{Gr}_{\gamma}(M)) \mathbf{v}^{\gamma}$$
 (χ Euler characteristic).

- β positive root \leadsto indecomposable $M[\beta]$ with dimension β \leadsto $F_{\beta} := F_{M[\beta]}$
- $-\alpha_i$ negative simple root $\leadsto F_{-\alpha_i} := 1$
- β positive root $\leadsto \tau(\beta) := \left(\prod_{i \in I_1} s_i\right)(\beta)$
- $-\alpha_i$ negative simple root $\leadsto \tau(-\alpha_i) := \begin{cases} -\alpha_i & \text{if } i \in I_0 \\ \alpha_i & \text{if } i \in I_1 \end{cases}$

•
$$\Phi_{\geq -1} = \{ \text{positive roots} \} \sqcup \{ -\alpha_i \mid 1 \leq i \leq n \}$$

•
$$\Phi_{\geq -1} = \{ \text{positive roots} \} \sqcup \{ -\alpha_i \mid 1 \leq i \leq n \}$$

For
$$\beta \in \Phi_{\geq -1}$$
, $\widetilde{\chi}_{\mathbf{q}}(\mathcal{S}(\beta))_{\leq 2} = F_{\tau(\beta)}$.

• $\Phi_{\geq -1} = \{ \text{positive roots} \} \sqcup \{ -\alpha_i \mid 1 \leq i \leq n \}$

$$\text{For } \beta \in \Phi_{\geq -1}, \quad \widetilde{\chi}_{\textcolor{red}{q}}(\mathcal{S}(\beta))_{\leq 2} = \textit{\textbf{F}}_{\tau(\beta)}.$$

Ex: type
$$A_3$$
, $Q = 2$, $I_0 = \{1,3\}$, $I_1 = \{2\}$.

• $\Phi_{\geq -1} = \{ \text{positive roots} \} \sqcup \{ -\alpha_i \mid 1 \leq i \leq n \}$

$$\text{For } \beta \in \Phi_{\geq -1}, \quad \widetilde{\chi}_{\textcolor{red}{q}}(\mathcal{S}(\beta))_{\leq 2} = \digamma_{\tau(\beta)}.$$

Ex: type
$$A_3$$
, $Q = 2$, $I_0 = \{1,3\}$, $I_1 = \{2\}$.

$$\bullet \; \beta = \alpha_1 + \alpha_2, \, \tau(\beta) = \alpha_1 \; \rightsquigarrow \chi_{\textbf{q}}(S(\beta))_{\leq 2} = Y_{1,\textbf{q}^0} Y_{2,\textbf{q}^3} (1 + \textbf{v}_1)$$

• $\Phi_{\geq -1} = \{ \text{positive roots} \} \sqcup \{ -\alpha_i \mid 1 \leq i \leq n \}$

$$\text{For } \beta \in \Phi_{\geq -1}, \quad \widetilde{\chi}_{\textcolor{red}{q}}(\mathcal{S}(\beta))_{\leq 2} = \textit{\textbf{F}}_{\tau(\beta)}.$$

Ex: type
$$A_3$$
, $Q = 2$, $I_0 = \{1,3\}$, $I_1 = \{2\}$.

$$\bullet \; \beta = \alpha_1 + \alpha_2, \, \tau(\beta) = \alpha_1 \; \rightsquigarrow \chi_{\textcolor{red}{q}}(\mathcal{S}(\beta))_{\leq 2} = Y_{\textcolor{blue}{1, \textcolor{red}{q}^0}} Y_{\textcolor{blue}{2, \textcolor{red}{q}^3}} (1 + v_1)$$

•
$$\beta = \alpha_1 + \alpha_2 + \alpha_3$$
, $\tau(\beta) = \beta$ \Rightarrow $\chi_q(S(\beta))_{\leq 2} = Y_{1,q^0} Y_{2,q^3} Y_{3,q^0} (1 + v_1 + v_3 + v_1 v_3 + v_1 v_2 v_3)$