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ORBITS OF PAIRS IN ABELIAN GROUPS

C. P. ANILKUMAR AND AMRITANSHU PRASAD

Abstract. We compute the number of orbits of pairs in a finitely
generated torsion module (more generally, a module of bounded
order) over a discrete valuation ring. The answer is found to be a
polynomial in the cardinality of the residue field whose coefficients
are integers which depend only on the elementary divisors of the
module, and not on the ring in question. The coefficients of these
polynomials are conjectured to be non-negative integers.

1. Introduction

Let R be a discrete valuation ring with maximal ideal P generated
by a uniformizing element π and residue field k = R/P . An R-module
M is said to be of bounded order if PNM = 0 for some positive integer
N . Let Λ denote the set of all sequences of the form

(1.1) λ = (λm1
1 , λm2

2 , . . . , λml

l ),

where λ1 > λ2 > . . . > λl is a strictly decreasing sequence of positive
integers and m1, m2, . . . , ml are non-zero cardinal numbers. We allow
the case where l = 0, resulting in the empty sequence, which we denote
by ∅. Every R-module of bounded order is, up to isomorphism, of the
form

(1.2) Mλ = (R/P λ1)⊕m1 ⊕ · · · ⊕ (R/P λl)⊕ml

for a unique λ ∈ Λ. We will, at times, wish to restrict ourselves to
those λ ∈ Λ for which all the cardinals m1, m2, . . . , ml are finite. We
denote by Λ0 this subset of Λ, which is the set of all partitions. The
R-module Mλ is of finite length if and only if λ ∈ Λ0.
Fix λ ∈ Λ, and writeM forMλ. Let G denote the group of R-module

automorphisms of M . Then G acts on Mn by the diagonal action

g · (x1, . . . , xn) = (g(x1), . . . , g(xn)) for xi ∈ M and g ∈ G.

For n = 1, this is just the action on M of its automorphism group.
A description of the orbits for this group action has been available for
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more than a hundred years (see Miller [11], Birkhoff [1], and Dutta and
Prasad [4]). Some qualitative results concerning G-orbits in Mn for
general n were obtained by Calvert, Dutta and Prasad in [2]. In this
paper we describe the set of G-orbits in Mn under the above action for
n = 2. For instance, we prove the following result (see Theorem 5.11).

Theorem. For every λ ∈ Λ, there exists a monic polynomial nλ(t) ∈
Z[t] of degree λ1 such that for every discrete valuation ring R with finite
residue field of order q, if M is the R-module defined by (1.2) and G
is the automorphism group of M , then

|G\(M ×M)| = nλ(q).

This general set-up includes two important special cases, namely,
finite Abelian p-groups and finite dimensional primary K[t]-modules
where K is a field (isomorphism classes of which correspond to simi-
larity classes of matrices with entries in K). The case of finite Abelian
p-groups arises when R is the ring of p-adic integers and λ ∈ Λ0. The
case of finite dimensional primary K[t]-modules arises when R is the
ring k[[u]] of formal power series with coefficients in k = K[t]/p(t) for
some irreducible polynomial p(t) ∈ K[t], and λ ∈ Λ0. The exact in-
terpretation of this problem in terms of linear algebra is explained in
Section 7. Specifically, the identities (7.4) and (7.5) relate the numbers
of G-orbits in M × M with the problem of counting the number of
isomorphism classes of representations of a certain quiver with certain
dimension vectors.
Our key result (Theorem 5.1) is a description of the G-orbit of a

pair in M × M . From this, when k is finite of order q and λ ∈ Λ0,
we are able to show that the cardinality of each orbit is a monic poly-
nomial in q (Theorem 5.4) with integer coefficients which do not de-
pend on R. Moreover, the number of orbits of a given cardinality is
also a monic polynomial in q with integer coefficients which do not
depend on R (Theorem 5.6). Theorem 5.6 gives an algorithm for com-
puting the number of G-orbits in M × M of a given cardinality as
a formal polynomial in q. In particular, we obtain an algorithm for
computing, for each λ ∈ Λ0, the polynomial nλ(t) ∈ Z[t] for which
nλ(q) is the number of G-orbits in M × M whenever R has residue
field of order q. By implementing this algorithm in Sage we have
computed nλ(q) for all partitions λ of integers up to 19 at the time
of writing. A sample of results obtained is given in Table 1. The
Sage program and a list of all nλ(q) are available from the web page
http://www.imsc.res.in/~amri/pairs/. Our data lead us to make
the following conjecture.

http://www.imsc.res.in/~amri/pairs/
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n = 1

(1) q + 2

n = 2

(2) q2 + 2q + 2
(1, 1) q + 3

n = 3

(3) q3 + 2q2 + 2q + 2
(2, 1) q2 + 5q + 5
(1, 1, 1) q + 3

n = 4

(4) q4 + 2q3 + 2q2 + 2q + 2
(3, 1) q3 + 5q2 + 7q + 4
(2, 2) q2 + 3q + 5
(2, 1, 1) q2 + 5q + 6
(1, 1, 1, 1) q + 3

n = 5

(5) q5 + 2q4 + 2q3 + 2q2 + 2q + 2
(4, 1) q4 + 5q3 + 7q2 + 6q + 4
(3, 2) q3 + 5q2 + 10q + 7
(3, 1, 1) q3 + 5q2 + 8q + 6
(2, 2, 1) q2 + 6q + 8
(2, 1, 1, 1) q2 + 5q + 6
(1, 1, 1, 1, 1) q + 3

Table 1. The polynomials nλ(q)

Conjecture. For each λ ∈ Λ, the polynomial nλ(t) has non-negative
coefficients.

We are able to refine the results described above: the total number
of G-orbits in M × M can be broken up into the sum of G-orbits in
A × B, as A and B run over G-orbits in M . The parametrization of
G-orbits in M is purely combinatorial and does not depend on R, or
even on q (see Dutta and Prasad [4]). The orbits are parametrized
by a certain set J (P)λ of order ideals in a lattice (see Section 2 for
details). For I ∈ J (P)λ, let M∗

I denote the orbit in M parametrized
by I. For each pair I, J ∈ J (P)λ, we are able to show (Theorem 6.3)
that the number of G-orbits in M∗

I ×M∗
J of any given cardinality is a

polynomial in q with integer coefficients which do not depend on R.
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Our analysis of stabilizers in G of elements of M allows us to show
that, for any λ ∈ Λ, the number of G-orbits in M ×M does not change
when λ ∈ Λ is replaced by the partition derived from λ by reducing each
of the multiplicities mi of (1.1) to min(mi, 2) (Corollary 4.5). Thus,
our calculations for the number of G-orbits in M∗

I ×M∗
J extend to all

λ ∈ Λ.

2. Orbits of elements

The G-orbits in M have been understood quite well for over a hun-
dred years (see Miller [11], Birkhoff [1], for λ ∈ Λ0, and relatively recent
work by Schwachhöfer and Stroppel [12], for general λ ∈ Λ). For the
present purposes, however, the combinatorial description of orbits due
to Dutta and Prasad [4] is more relevant. This section will be a quick
recapitulation of those results.
It turns out that for any module M of the form (1.2), the G-orbits

in M are in bijective correspondence with a certain class of ideals in a
poset P, which we call the fundamental poset. As a set,

P = {(v, k) | k is a positive integer, and 0 ≤ v < k}.

The partial order on P is defined by setting

(v, k) ≤ (v′, k′) if and only if v ≥ v′ and k − v ≤ k′ − v′.

The Hasse diagram of the fundamental poset P is shown in Figure 1.

Remark. In [4], the notation (pv, k) is used for the element (v, k) of P
defined above.

Let J (P) denote the lattice of order ideals in P. A typical element
of M from (1.2) is a vector of the form

(2.1) x = (xλi,ri),

where i runs over the set {1, . . . , l}, and, for each i, ri runs over a set
of cardinality mi. To x ∈ M we associate the order ideal I(x) ∈ J (P)
generated by the elements

(v(xλi,ri), λi)

for all pairs (i, ri) such that xλi,ri 6= 0 in R/P λi. Here, for any m ∈ M ,
v(m) denotes the largest k for which m ∈ P kM (in particular, v(0) =
∞).
Consider for example, in the finite Abelian p-group (or Zp-module)

(2.2) M = Z/p5Z⊕ Z/p4Z⊕ Z/p4Z⊕ Z/p2Z⊕ Z/pZ,

the order ideal I(0, up, p2, vp, 1), when u and v are coprime to p. This
order ideal is represented inside P by filled-in circles (both gray and
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Figure 1. The Fundamental Poset

Figure 2. The ideal I(0, up, p2, vp, 1)

black; the significance of the shades will be explained later) in Figure 2.
Since the labels of the vertices can be inferred from their positions, they
are omitted.
A key observation of [4] is the following theorem.
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Theorem 2.3. Let M and N be two R-modules of bounded order. An
element y ∈ N is a homomorphic image of x ∈ M (in other words,
there exists a homomorphism φ : M → N such that φ(x) = y) if and
only if I(y) ⊂ I(x).

It follows that, if y ∈ M lies in the G-orbit of x ∈ M , then I(x) =
I(y). It turns out that the converse is also true.

Theorem 2.4. If I(x) = I(y) for any x, y ∈ M , then x and y lie in
the same G-orbit.

Note that the orbit of 0 corresponds to the empty ideal.
For each λ ∈ Λ, let J (P)λ denote the sublattice of J (P) consisting

of ideals such that max I is contained in the set

Pλ = {(v, k) | k = λi for some 1 ≤ i ≤ l}.

Then the G-orbits in M are in bijective correspondence with this set
J (P)λ of order ideals1. For each order ideal I ∈ J (P)λ, we use the
notation

M∗
I = {x ∈ M | I(x) = I}

for the orbit corresponding to I.
A convenient way to think about ideals in P is in terms of what we

call their boundaries: for each positive integer k define the boundary
valuation of I at k to be

∂kI = min{v | (v, k) ∈ I}.

We denote the sequence {∂kI} of boundary valuations by ∂I and call
it the boundary of I. This is indeed the boundary of the region with
colored dots in Figure 2.
For each order ideal I ⊂ P, let max I denote its set of maximal

elements. The ideal I is completely determined by max I: in fact,
taking I to max I gives a bijection from the lattice J (P)λ to the set
of antichains in Pλ. For example, the maximal elements of the ideal in
Figure 2 are represented by gray circles.

Theorem 2.5. The orbit M∗
I consists of elements x = (xλi,ri) such

that v(xλi,ri) ≥ ∂λi
I for all λi and ri, and such that v(xλi,ri) = ∂λi

I for
at least one ri if (∂λi

I, λi) ∈ max I.

In other words, the elements of M∗
I are those elements all of whose

coordinates have valuations not less than the corresponding boundary
valuation, and at least one coordinate corresponding to each maximal

1The lattice J (P)λ is isomorphic to the lattice J (Pλ) of order ideals in the
induced subposet Pλ. In [4], J (Pλ) is used in place of J (P)λ.
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element of I has valuation exactly equal to the corresponding boundary
valuation.
In the running example with M as in (2.2) and I as in Figure 2, the

conditions for x = (x5,1, x4,1, x4,2, x2,1, x1,1) to be in M∗
I are:

• v(x5,1) ≥ 4,
• min(v(x4,1), v(x4,2)) = 1,
• v(x2,1) ≥ 1,
• v(x1,1) = 0.

For each I ∈ J (P)λ with

max I = {(v1, k1), . . . , (vs, ks)},

define an element γ(I) of M whose coordinates are given by

xλi,ri =

{

πvj , if λi = kj and rj = 1,

0, otherwise.

In other words, for each element (vj, kj) of max I, pick λi such that
λi = kj . In the summand (R/P λi)⊕mi , set the first coordinate of γ(I)
to πvj , and the remaining coordinates to 0. For example, in the finite
Abelian p-group of (2.2), and the ideal I of Figure 2,

γ(I) = (0, p, 0, 0, 1).

Theorem 2.6. Let M = Mλ be an R-module of bounded order as in
(1.2). The functions x 7→ I(x) and I 7→ γ(I) induce mutually inverse
bijections between the set of G-orbits in M and the set of order ideals
in J (P)λ.

For any ideal I ∈ J (P), define

MI =
∐

{J∈J (P)λ|J⊂I}

M∗
I .

This submodule, being a union of G-orbits, is G-invariant. The de-
scription of MI in terms of valuations of coordinates and boundary
valuations is very simple:

(2.7) MI = {x = (xλi,ri) | v(xλi,ri) ≥ ∂λi
I}.

Note that the map I 7→ MI is not injective on J (P). It becomes
injective when restricted to J (P)λ. For example, if J is the order ideal
in P generated by (2, 6), (1, 4) and (0, 1), then the ideal J is strictly
larger than the ideal I of Figure 2, but when M is as in (2.2), MI = MJ .
The G-orbits in M are parametrized by the finite distributive lattice

J (P)λ. Moreover, each order ideal I ∈ J (P)λ gives rise to a G-
invariant submodule MI of M . The lattice structure of J (P)λ gets
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reflected in the poset structure of the submodules MI when they are
partially ordered by inclusion.

Theorem 2.8. The map I 7→ MI gives an isomorphism from J (P)λ
to the poset of G-invariant submodules of M of the form MI .

In other words, for ideals I, J ∈ J (P)λ,

MI∪J = MI +MJ and MI∩J = MI ∩MJ .

In fact, when the residue field k of R has at least three elements,
every G-invariant submodule is of the form MI , therefore J (P)λ is
isomorphic to the lattice of G-invariant submodules (Kerby and Rode
[9]).
When M is a finite R-module (this happens when the residue field k

of R is finite and λ ∈ Λ0), then the G-orbits in M are also finite. The
cardinality of the orbit M∗

I is given by (see [4, Theorem 8.5])

(2.9) |M∗
I | = q[I]λ

∏

(vi,λi)∈max I

(1− q−mi).

Here [I]λ denotes the number of points in I ∩ Pλ counted with multi-
plicity,

[I]λ =

l
∑

i=1

∑

{v|(v,λi)∈I}

mi.

In particular, we have the following result.

Theorem 2.10. For every λ ∈ Λ0 and I ∈ J (P)λ, consider the monic
polynomial ωλ,I(t) ∈ Z[t] of degree [I]λ defined by

ωI,t(t) = t[I]λ
∏

(vi,λi)∈max I

(1− t−mi).

Then, for any discrete valuation ring R with finite residue field of order
q, if M is the R-module defined by (1.2), we have

|M∗
I | = ωλ,I(q).

The formula for the cardinality of the G-invariant submodule is much
simpler:

(2.11) |MI | = q[I]λ.
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3. Sum of orbits

This section proves a combinatorial lemma on the sum of two G-
orbits in M which will be needed in Section 4. Given order ideals
I, J ⊂ J (P)λ, the set

M∗
I +M∗

J = {x+ y | x ∈ M∗
I and y ∈ M∗

J}

is clearly G-invariant, and therefore a union of G-orbits. In this section,
we determine exactly which G-orbits occur in M∗

I +M∗
J .

Lemma 3.1. For I, J ∈ J (P)λ, every element (xλi,ri) of M∗
I + M∗

J

satisfies the conditions

(3.1.1) v(xλi,ri) ≥ min(∂λi
I, ∂λi

J).
(3.1.2) If (∂λi

I, λi) ∈ max I − J , then minri v(xλi,ri) = ∂λi
I.

(3.1.3) If (∂λi
J, λi) ∈ max J − I, then minri v(xλi,ri) = ∂λi

J .

If the residue field of R has at least three elements, then every element
of M satisfying these three conditions is in M∗

I +M∗
J .

To see why the condition on the residue field is necessary, consider
the case where M = Z/2Z and M∗

I is the non-zero orbit (corresponding
to the ideal I in P generated by (0, 1)), M∗

I +M∗
I consists only of 0. If,

on the other hand, the residue field has at least three elements, then
it has non-zero elements x and y such that x+ y is also non-zero, and
this phenomenon does not occur.

Proof of the lemma. Let M (i) denote the summand (R/P λi)⊕mi of M
in the decomposition (1.2). Let M (i)∗ = M (i)−πM (i). By Theorem 2.5
it suffices to show that

(3.2) πkM (i)∗ + πlM (i)∗ =

{

πmin(k,l)M (i)∗, if k 6= l,

πkM (i), if k = l and |R/P | ≥ 3.

This follows from the well-known non-Archimedean inequality

v(x+ y) ≥ min(v(x), v(y)),

and the fact that strict inequality is possible only if v(x) = v(y). �

Together with Theorem 2.5, the above lemma gives the following
description of the set of orbits which occur in M∗

I +M∗
J .

Theorem 3.3. Assume that the residue field of R has at least three
elements. For ideals I, J ∈ J (P)λ, we have

M∗
I +M∗

J =
∐

K⊂I∪J, maxK⊃(max I−J)∪(max J−I)

M∗
K .
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In the following lemma the restriction on the residue field of R in
Lemma 3.1 is not needed.

Lemma 3.4. For ideals I and J in J (P)λ, an element (xλi,ri) is in
M∗

I +MJ if and only if the following conditions are satisfied:

(3.4.1) v(xλi,ri) ≥ min(∂λi
I, ∂λi

J).
(3.4.2) If (∂λi

I, λi) ∈ max I − J , then minri v(xλi,ri) = ∂λi
I.

Proof. The proof is similar to that of Lemma 3.1, except that, instead
of (3.2), we use

πkM (i) + πlM (i)∗ =

{

πkM (i), if k ≤ l,

πlM (i)∗, if k > l.

�

The above lemma allows us to describe the sum of an orbit and a
characteristic submodule.

Theorem 3.5. For ideals I, J ∈ J (P)λ, we have

(3.6) M∗
I +MJ =

∐

K⊂I∪J, maxK⊃max I−J

M∗
K .

4. Stabilizers of γ(I)’s

By Theorem 2.6, every G-orbit of pairs of elements (x1, x2) ∈ M2

contains a pair of the form (γ(I), x), for some I ∈ J (P)λ and x ∈ M .
Now fix an ideal I ∈ J (P)λ. Let GI denote the stabilizer in G of γ(I).
Then the G-orbits of pairs in M2 which contain an element of the form
(γ(I), x) are in bijective correspondence with GI-orbits in M . In this
section, we give a description of GI which facilitates the classification
of GI-orbits in M .
The main idea here is to decompose M into a direct sum of two

R-modules (this decomposition depends on I):

(4.1) M = M ′ ⊕M ′′,

where M ′ consists of those cyclic summands in the decomposition (1.2)
of M where γ(I) has non-zero coordinates, and M ′′ consists of the
remaining cyclic summands. In the running example with M given by
(2.2) and I the ideal in Figure 2, we have

M ′ = Z/p4Z⊕ Z/pZ, M ′′ = Z/p5Z⊕ Z/p4Z⊕ Z/p2Z.

Note that γ(I) ∈ M ′. The reason for introducing this decomposition
is that the description of the stabilizer of γ(I) in the automorphism
group of M ′ is quite nice.
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Lemma 4.2. The stabilizer of γ(I) in AutR(M
′) is

G′
I = {idM ′ + u | u ∈ EndR M ′ satisfies u(γ(I)) = 0}.

Proof. Obviously, the elements of G′
I are all the elements of EndR M ′

which map γ(I) to itself. The only thing to check is that they are all
invertible. For this, it suffices to show that, if u(γ(I)) = 0, then u is
nilpotent, which will follow from Lemma 4.3 below. �

Lemma 4.3. For any R-module of the form

L = R/P µ1 ⊕ · · · ⊕ R/P µm ,

with µ1 > · · · > µm, and x = (πv1 , . . . , πvm) ∈ L such that the set

(v1, µ1), . . . , (vm, µm)

is an antichain in P, if u ∈ EndR L is such that u(x) = 0, then u is
nilpotent.

Proof. Write u as a matrix (uij), where uij : R/P λj → R/P λi. We have

u(πv1, . . . , πvm)i = uii(π
vi) +

∑

j 6=i

uij(π
vj ) = 0,

for 1 ≤ i ≤ m. If uii1 is a unit, then uiiπ
vi has valuation vi, hence

at least one of the summands uijπ
vj must have valuation vi or less. It

follows from Theorem 2.3 (applied to M = R/P µj and N = R/P µi)
that (vi, µi) ≤ (vj , µj) contradicting the antichain hypothesis. Thus,
for each i, uii(1) ∈ PR/P µi. It follows that u lies in the radical of
the ring EndR L (see Dubey, Prasad and Singla [3, Section 6]), and
therefore u is nilpotent. �

Every endomorphism of M can be written as a matrix

(

g11 g12
g21 g22

)

,

where g11 : M
′ → M ′, g22 : M

′′ → M ′, g21 : M
′′ → M ′, and g22 : M

′′ →
M ′′ are homomorphisms.
We are now ready to describe the stabilizer of γ(I) in M .

Theorem 4.4. The stabilizer of γ(I) in G consists of matrices of the
form

(

idM ′ + u g12
g21 g22

)

,

where u ∈ EndR M ′ satisfies u(γ(I)) = 0, g12 ∈ HomR(M
′′,M ′) is

arbitrary, g21 ∈ HomR(M
′,M ′′) satisfies g21(γ(I)) = 0, and g22 ∈

EndR(M
′′) is invertible.
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Proof. Clearly, all the endomorphisms of M which fix γ(I) are of the
form stated in the theorem, except that g22 need not be invertible.
We need to show that the invertibility of such an endomorphism is
equivalent to the invertibility of g22.
To begin with, consider the case where M = (R/P k)n for some

positive integer k and some cardinal n. Then, if γ(I) 6= 0 (the case
γ(I) = 0 is trivial), then M ′ = R/P k, and M ′′ = (R/P k)n−1. The
endomorphisms which fix γ(I) are represented by block matrices of the
form

(

1 + u g12
g21 g22

)

,

where u, and each coordinate of g21 lie in P . Such endomorphisms,
being block upper-triangular modulo P , are invertible if and only if g22
is invertible, proving the claim when M = (R/P k)n. In general, M is
a sum of such modules, and an endomorphism of M is invertible if and
only if its diagonal block corresponding to each of these summands is
invertible. Therefore the claim follows in general as well. �

Corollary 4.5 (Independence of multiplicities larger than two). Con-
sider the partition λ(m) derived from λ by

λ(m) = (λ
min(m1,m)
1 , λ

min(m2,m)
2 , . . . , λ

min(ml,m)
l ).

Let Mm denote the R-module corresponding to λ(m), with automor-
phism group Gm. Then the standard inclusion map M2 →֒ M induces
a bijection

(4.6) G2\(M2 ×M2) →̃ G\(M ×M).

Proof. We shall use the fact that the canonical forms γ(I) of Theo-
rem 2.6 lie in M1 ⊂ M . Thus, given a pair (x, y) ∈ M × M , we can
reduce x to γ(I) ∈ M1 using automorphisms of M . Theorem 4.4 shows
that, while preserving γ(I), automorphisms ofM can be used to further
reduce y to an element of M ′ ⊕M ′′

1 ⊂ M2. This proves the surjectivity
of the map in (4.6).
To see injectivity, suppose that two pairs (x1, y1) and (x2, y2) in M2×

M2 lie in the same G-orbit. Since M2 is a direct summand of M , we

can write M = M2 ⊕N . If g ∈ G has matrix

(

g11 g12
g21 g22

)

with respect

to this decomposition, then g11 ∈ G2 also maps (x1, y1) ∈ M2 ×M2 to
(x2, y2) ∈ M2 ×M2. �

Remark 4.7. Corollary 4.5 and its proof remain valid if we restrict
ourselves to G-orbits in M∗

I ×M∗
J for order ideals I, J ∈ J (P)λ.
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5. The stabilizer orbit of an element

Let GI denote the stabilizer of γ(I) ∈ M . Write each element x ∈ M
as x = (x′, x′′) with respect to the decomposition (4.1) of M . Also, for
any x′ ∈ M ′, let x̄′ denote the image of x′ in M ′/Rγ(I).
Theorem 4.4 allows us to describe the orbit of x under the action

of GI , which is the same as describing the G-orbits in M2 whose first
component lies in the orbit M∗

I of γ(I).

Theorem 5.1. Given x and y in M , y lies in the GI-orbit of x in M
if and only if the following conditions hold:

(5.1.1) y′ ∈ x′ +M ′
I(x̄′)∪I(x′′).

(5.1.2) y′′ ∈ M ′′∗
I(x′′) +M ′′

I(x̄′).

Proof. By Theorem 4.4, y lies in the GI-orbit of x if and only if

y′ = x′ + ū(x̄′) + g12(x
′′) and y′′ = ḡ21(x̄

′) + g22(x
′′)

for homomorphisms ū ∈ HomR(M
′/Rγ(I),M ′), g12 ∈ HomR(M

′′,M ′),
ḡ21 ∈ HomR(M

′/Rγ(I),M ′′), and g22 ∈ AutR(M
′′). By Theorems 2.3

and 2.4, this means

y′ ∈ x′ +M ′
I(x̄′) +M ′

I(x′′) and y′′ ∈ M ′′
I(x̄′) +M ′′∗

I(x′′).

By the remark following Theorem 2.8, M ′
I(x̄′) + M ′

I(x′′) = M ′
I(x̄′)∪I(x′′),

giving the conditions in the lemma. �

Given x = (x′, x′′) ∈ M , the ideals I(x̄′) and I(x′′) may be regarded
as combinatorial invariants of x. Suppose that the residue field k of
R is finite of order q. We can now show that, having fixed these com-
binatorial invariants, the cardinality of the orbit of x is a polynomial
in q whose coefficients are integers which do not depend on R. Also,
the number of elements of M having these combinatorial invariants is
a polynomial in q whose coefficients are integers which do not depend
on R. Using these observations, we will be able to conclude that the
number of orbits of pairs in M is a polynomial in q whose coefficients
are integers which do not depend on R.
Let λ′/I denote the partition corresponding to the isomorphism class

of M ′/Rγ(I). The partition λ′/I is completely determined by the
partition λ′ and the ideal I ∈ J (P)λ′, and is independent of R (see
Lemma 6.2).

Theorem 5.2. Fix J ∈ J (P)λ′/I and K ∈ J (P)λ′′. Then the cardi-
nality of the GI-orbit of any element x = (x′, x′′) such that I(x̄′) = J
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and I(x′′) = K is given by

(5.3) |M ′
J∪K |

(

∑

K ′⊂J∪K, maxK ′⊃maxK−J

|M ′′∗
K ′|

)

.

Proof. This is a direct consequence of Theorems 3.5 and 5.1. �

Applying Theorem 2.10 and (2.11) to Theorem 5.2, we obtain the
following result.

Theorem 5.4. For every λ ∈ Λ0, I ∈ J (P)λ, J ∈ J (P)λ′/I , and
K ∈ J (P)λ′′, there exists a monic polynomial αI,J,K(t) ∈ Z[t] of degree
[J ∪K]λ such that, for any discrete valuation ring R with residue field
of order q, if M is the R-module defined by (1.2), then the cardinality
of the GI-orbit of x ∈ M is of the form αI,J,K(q), where J = I(x̄′) and
K = I(x′′).

If the sets

XI,J,K = {(x′, x′′) ∈ M | I(x̄′) = J and I(x′′) = K}

were GI-stable, we could have concluded that XI,J,K consists of

|XI,J,K|

αI,J,K(q)

many orbits, each of cardinality αI,J,K(q). However, XI,J,K is not, in
general, GI-stable (this can be seen by viewing the condition (5.1.2) in
the context of Theorem 3.5). The following lemma gives us a way to
work around this problem.

Lemma 5.5. Let S be a finite set with a partition S =
∐N

i=1 Si (for
the application we have in mind, these will be the GI-orbits in M).

Suppose that S has another partition S =
∐Q

j=1 Tj, such that there exist

positive integers n1, n2, . . . , nQ for which, if x ∈ Tj ∩ Si, then |Si| = nj

(in our case, the Tj’s will be the sets XI,J,K). Then the number of
i ∈ {1, . . . , N} such that |Si| = n is given by

1

n

∑

{j|nj=n}

|Tj |.

Proof. Note that
∐

{j|nj=n}

|Tj|

is the union of all the Si’s for which |Si| = n. �
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By Theorem 2.10 and (2.11), we also know that there exists a poly-
nomial χI,J,K(t) ∈ Z[t] such that, whenever R is a discrete valuation
ring with residue field of order q, |XI,J,K| = χI,J,K(q).
Taking S to be the set M , the Si’s to be the GI-orbits in M , and the

Tj’s to be the sets XI,J,K in Lemma 5.5, we obtain the following result.

Theorem 5.6. Let α(t) ∈ Z[t] be a monic polynomial. Consider the
rational function

Nα(t) =
1

α(t)

∑

{(I,J,K)|αI,J,K(t)=α(t)}

χI,J,K(t).

Then, whenever R is a discrete valuation ring with residue field of order
q, the number of GI-orbits in M with cardinality α(q) is Nα(q).

The following lemma shows that it is in fact a polynomial in q with
integer coefficients.

Lemma 5.7. Let r(q) and s(q) be polynomials in q with integer coeffi-
cients. Suppose that r(q)/s(q) takes integer values for infinitely many
values of q. Then r(q)/s(q) is a polynomial in q with rational coeffi-
cients. If, in addition s(q) is monic, then this polynomial has integer
coefficients.

The proof, being fairly straightforward, is omitted.

Example 5.8. Consider an arbitrary λ ∈ Λ, and take I to be the maxi-
mal ideal in J (P)λ (this is the ideal in P generated by Pλ). Then, in
the notation of (1.1),

λ′ = (λ1), λ′′ = (λm1−1
1 , λm2

2 , . . . , λml

l ).

The element γ(I) is a generator of M ′, and so M ′/Rγ(I) = 0. It
follows that the only possibility for the ideal J ∈ J (P)λ′/I is J = ∅.
As a result, the only combinatorial invariant of a GI-orbits in M is
K ∈ J (P)λ′′ . We have

αI,∅,K(q) = |M ′
K ||M

′′∗
K |.

On the other hand,

|XI,∅,K| = qλ1|M ′′∗
K |.

Therefore, given a polynomial α(q), the number of GI-orbits of cardi-
nality α(q) is

∑

{K∈J (P)λ′′ |αI,∅,K=α(q)}

qλ1

|M ′
K |

.
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Cardinality Number of Orbits
1 q3

(q − 1)q7 (q − 1)q
(q − 1)q12 (q − 1)

q4 (q − 1)q2

(q − 1)2q11 1
(q − 1)2q8 q
(q − 1)2q10 1
(q − 1)q2 q2

(q − 1)2q6 q
(q − 1)2q3 q2

(q − 1)2q5 q
(q − 1) q3

(q − 1)q15 1
(q − 1)q5 q

q9 (q − 1)q
(q − 1)q8 q
(q − 1)q14 1
(q − 1)q11 (q − 1)
(q − 1)q6 q2

(q − 1)q4 (q − 1)q2

(q − 1)q3 2q2

(q − 1)q9 q2

(q − 1)q10 q

Table 2. Cardinalities and numbers of GI-orbits

Since K = ∅ is the only ideal in J (P)λ′′ for which |M ′
K | = 1, it turns

out that the total number of GI-orbits inMI×M is a monic polynomial
in q of degree λ1.
For example, if λ = (2, 1m2) and I is the maximal ideal in J (P)λ,

then the number of GI-orbits in M is q2 + q, and, if λ = (2m1 , 1m2)
with m1 > 1, then the number of GI-orbits in λ is q2 + 2q + 1.

Example 5.9. Now consider the case where λ = (5, 4, 4, 2, 1) and I is
the ideal of Figure 2. Then the first column of Table 5.9 gives all the
possible cardinalities for GI-orbits in M . The corresponding entry of
the second column is the number of orbits with that cardinality. The
total number of GI-orbits in M is given by the polynomial

4q3 + 6q2 + 6q + 2.
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These data were generated using a computer program written in Sage.
In general the total number of GI-orbits inM need not be a polynomial
with positive integer coefficients, for example, take λ = (2) (so M =
R/P 2R) and I the ideal generated by (1, 2) (the corresponding orbit
in M contains π). Then the number of GI-orbits in M is 2q − 1.

The above results can be summarized to give the following theorem.

Theorem 5.10. Fix λ ∈ Λ0 and an order ideal I ∈ J (P)λ. There
exist polynomials α1(t), . . . , αN(t), β1(t), . . . , βN(t) with integer coeffi-
cients such that, for every discrete valuation ring R with finite residue
field of order q, if M = Mλ is as in (1.2) and G is the group of R-
module automorphisms of M , then the decomposition of M∗

I ×M into
G-orbits consists of a disjoint union over i ∈ {1, . . . , N} of βi(q) orbits
of cardinality αi(q).

For the total number of orbits in M × M , we have the following
result.

Theorem 5.11. For every λ ∈ Λ, there exists a monic polynomial
nλ(t) ∈ Z[t] of degree λ1 such that, for any discrete valuation ring R
with finite residue field of order q, if M is the R-module defined in (1.2)
and G = AutR(M), then

|G\(M ×M)| = nλ(q).

Proof. The only thing that remains to be proved is the assertion about
the degree of nλ(q). By Theorem 5.6, we have

deg nλ(q) = max
I,J,K

(deg |XI,J,K| − degαI,J,K(q)).

Recalling the definitions of XI,J,K and αI,J,K(q), we find that we need
to show that

[J ∪K]λ′/I + logq |Rγ(I)|+ [K]λ′′ ≤ λ1 + [J ∪K]λ.

Observe that [J ∪K]λ = [J ∪K]λ′ + [J ∪K]λ′′ , and [K]λ′′ ≤ [J ∪K]λ′′ .
Moreover, it turns out that [J ∪ K]λ′/I ≤ [J ∪ K]λ′ (see Lemma 5.12
below). Therefore, the inequality to be proved reduces to logq |Rγ(I)| ≤
λ1, which is obviously true. Furthermore, if equality holds, then
logq |Rγ(I)| = λ1, which is only possible if I is the maximal ideal
in J (P)λ, which was considered in Example 5.8, where a monic poly-
nomial of degree λ1 was obtained. �

Lemma 5.12. For any ideal J ∈ J (P)λ′/I , we have

[J ]λ′/I ≤ [J ]λ′ .
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Proof. The partition λ′/I is described in Lemma 6.2. Observe that

k1 ≥ v1 + k2 − v2 ≥ k2 ≥ v2 + k3 − v2 ≥ · · · ≥ vs−1 + ks − vs ≥ vs.

In other words, the parts of λ′/I alternate with the parts of λ′. For
each ideal J ∈ J (P)λ′/I , the contribution of J to [J ]λ′/I in a given
chain (∗, vi + ki+1 − vi+1) ⊂ Pλ′/I (or (∗, vs) ⊂ Pλ′/I) is equal to its
contribution to [J ]λ′ in the chain (∗, ki) ⊂ Pλ′ (respectively (∗, ks) ⊂
Pλ′). It follows that [J ]λ′/I ≤ [J ]λ′ . �

6. Orbits in M∗
I ×M∗

L

In order to refine Theorem 5.10 to the enumeration of G-orbits in
M∗

I ×M∗
L for a pair of order ideals (I, L) ∈ J (P)2λ, we need to repeat

the calculations in Section 5 with XI,J,K replaced by its subset

XI,J,K,L = {x ∈ XI,J,K | x ∈ M∗
L}.

Thus our goal is to show that |XI,J,K,L| is a polynomial in q whose
coefficients are integers which do not depend on R. By using Möbius
inversion on the lattice J (P)λ, it suffices to show that

YI,J,K,L = {x ∈ XI,J,K | x ∈ ML}

has a cardinality given by a polynomial in q whose coefficients are inte-
gers which do not depend on R. This is easier, because x = (x′, x′′) ∈
ML if and only if x′ ∈ M ′

L and x′′ ∈ M ′′
L. If (x′, x′′) ∈ YI,J,K,L, we also

have that x′′ ∈ M ′′
K

∗. Thus YI,J,K,L = ∅ unless K ⊂ L. But, if K ⊂ L,
then

|YI,J,K,L| = |{x′ ∈ M ′
L | I(x̄′) = J}||M ′′

K
∗
|.

Therefore, it suffices to prove the following lemma.

Lemma 6.1. The cardinality of the set

{x′ ∈ M ′ | x′ ∈ M ′
L and I(x̄′) = J}

is a polynomial in q whose coefficients are integers which do not depend
on R.

Proof. Let M̄ ′ denote the quotient M ′/Rγ(I) (so M̄ ′ is isomorphic to
Mλ′/I in the notation of Section 5). Suppose that max I = {(v1, k1), . . . ,
(vs, ks)}. Then

M ′ = R/P k1 ⊕ · · · ⊕ R/P ks.

Lemma 6.2. Let λ′/I denote the partition given by

λ′/I = (v1 + k2 − v2, v2 + k3 − v3, . . . , vs−1 + ks − vs, vs),
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and let Mλ′/I be the corresponding R-module as given by (1.2). If Q is
the matrix

Q =

















1 −πv1−v2 0 · · · 0 0
0 1 −πv2−v3 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 −πvs−1−vs

0 0 0 · · · 0 1

















,

then the isomorphism Rs → Rs whose matrix is Q descends to a ho-
momorphism Q̄ : M ′ → Mλ′/I such that ker Q̄ ⊃ Rγ(I). The induced
homomorphism M ′/Rγ(I) → Mλ′/I is an isomorphism of R-modules.

Proof. Let e1, . . . , es denote the generators of M
′, and f1, . . . , fs denote

the generators of Mλ′/I . Then

Qẽj =

{

f̃1, for j = 1,

−πvj−1−vj f̃j−1 + f̃j , for 1 < j ≤ n.

Here ẽj (or f̃i) denotes the standard lift of ei (or fj) to R
s. By using the

inequalities kj > vj + kj+1 − vj+1 for 1 ≤ j < s and ks ≥ vs, one easily
verifies that Q(πkj ẽj) is 0 in Mλ′/I . Therefore Q induces a well-defined
R-module homomorphism Q̄ : M ′ → Mλ′/I . Now, we have

Q̄(γ(I)) = Q̄
(

∑

πvjej

)

= πv1f1 + (−πv2+v1−v2f1 + πv2f2) + (−πv3+v2−v3f2 + πv3f2)

+ · · ·+ (−πvs+vs−1−vsfs−1 + πvsfs)

= 0.

Therefore Q̄ induces a homomorphism M ′/Rγ(I) → Mλ′/I . Because
Q ∈ SLs(R), Q̄ is onto. When the residue field of R is finite, one easily
verifies that |Rγ(I)||Mλ′/I | = |M ′|, whereby Q̄ is an isomorphism. In-

deed, |Rγ(I)| = qk1−v1 , |M ′| = q|λ
′|, and |Mλ′/I | = q|λ

′/I| = qv1+k2+···+ks.
In general, this argument using cardinalities can be easily replaced by
an argument using the lengths of modules of R. �

We now return to the proof of Lemma 6.1. Using Möbius inversion
on the lattice J (Pλ′/I), in order to prove Lemma 6.1, it suffices to show
that the cardinality of the set

S = {x′ ∈ M ′ | x′ ∈ M ′
L and x̄′ ∈ (Mλ/I)J}

is a polynomial in q whose coefficients are integers which do not depend
on R. Write x′ ∈ M ′ as x′

1e1 + · · ·+ x′
ses, and y ∈ Mλ/I as y1f1 + · · ·+
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ysfs. By (2.7) and Lemma 6.2, S consists of elements m′ ∈ M ′ such
that

v(x′
i) ≥ ∂kiL for i = 1, . . . , s,

v(Q̄(x′)i) ≥ ∂vi+ki+1−vi+1
J for i = 1, . . . , s− 1, and

v(Q̄(x′)s) ≥ ∂vsJ,

which can be rewritten as

v(x′
i) ≥ ∂kiL for i = 1, . . . , s,

v(x′
i − πvi−vi+1x′

i+1) ≥ ∂vi+ki+1−vi+1
J for i = 1, . . . , s− 1, and

v(x′
s) ≥ ∂vsJ.

Therefore we are free to choose for xs any element of R/P ksR which
satisfies

v(x′
s) ≥ max(∂ksL, ∂vsJ).

Thus the number of possible choices of x′
s of any given valuation is a

polynomial in q with coefficients that are integers which do not depend
on R. Having fixed x′

s, we are free to choose x′
s−1 satisfying

v(x′
s−1) ≥ ∂ks−1L

v(x′
s−1 + πvs−1−vsm′

s) ≥ ∂vs−1+ks−vsJ.

Note that, for any z, w ∈ R/P kR and non-negative integers u, v, the
cardinality of the set

{z | v(z + w) ≥ v and v(z) = u}

is a polynomial in q with coefficients that are integers which do not de-
pend on R. This shows that, for each fixed valuation of x′

s, the number
of possible choices for x′

s−1 of a fixed valuation is again a polynomial in
q whose coefficients are integers that do not depend on R. Continuing
in this manner, we find that the cardinality of S is a polynomial in q
whose coefficients are integers which do not depend on R. �

Proceeding exactly as in the proof of Theorem 5.10, we obtain the
following refinement.

Theorem 6.3 (Main theorem). Let R be a discrete valuation ring with
finite residue field of order q. Fix λ ∈ Λ0 and take M as in (1.2). Let G
denote the group of R-module automorphisms of M . Fix order ideals
I, J ∈ J (P)λ (and hence G-orbits M∗

I and M∗
J in M). There exist

polynomials α1(t), . . . , αN(t), β1(t), . . . , βN(t) with integer coefficients
such that, for every discrete valuation ring R with finite residue field
of order q, if M = Mλ is as in (1.2) and G is the group of R-module
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automorphisms of M , then the decomposition of M∗
I × M∗

J into G-
orbits consists of a disjoint union over i ∈ {1, . . . , N} of βi(q) orbits of
cardinality αi(q).

If we are only interested in the number of orbits (and not the number
of orbits of a given cardinality), Corollary 4.5 allows us to reduce any
λ ∈ Λ to λ2 ∈ Λ0.

Theorem 6.4. For every λ ∈ Λ and for all order ideals I, J ∈ J (P)λ,
there exists a polynomial nλ,I,J(t) ∈ Z[t] such that, whenever R is a
discrete valuation ring with finite residue field of order q, M is the
R-module given by (1.2) and G = AutR(M), we have

|G\(M∗
I ×M∗

J )| = nλ,I,J(q).

7. Relation to representations of quivers

Consider the quiver Q represented by

1 2Ã
x̃

ỹ

To an n× n matrix A and two n-vectors x and y (all with coordinates
in a finite field Fq of order q), we may associate a representation of this
quiver with dimension vector (n, 1) by taking V1 = Fn

q , V2 = Fq, the

linear map corresponding to the arrow Ã given by A, the linear maps
corresponding to the arrows x̃ and ỹ being those which take the unit
in V2 = Fq to the vectors x and y, respectively. The representations
corresponding to triples (A, x, y) and (A, x′, y′) are isomorphic if and
only if there exists an element g ∈ GLn(Fq) such that

gAg−1 = A, gx = x′, gy = y′.

Thus, the isomorphism classes of representations of Q are in bijective
correspondence with triples (A, x, y) consisting of an n× n matrix and
two n-vectors up to a simultaneous change of basis.
If we view Fn

q as an Fq[t]-module MA where t acts via the matrix
A, then the number of isomorphism classes of representations of the
form (A, x, y) with A fixed may be interpreted as the number of GA =
Autk[t]M-orbits inMA×MA. The total number of isomorphism classes
of representations of Q with dimension vector (n, 1) is given by

(7.1) Rn,1(q) =
∑

A

|GA\(MA ×MA)|,
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where A runs over a set of representatives for the similarity classes
in Mn(k). This polynomial was introduced by Kac in [8], where he
asserted that, for any quiver, the number of isomorphism classes of
representations with a fixed dimension vector is a polynomial in q with
integer coefficients. He conjectured the non-negativity of a related poly-
nomial (which counts the number of isomorphism classes of absolutely
indecomposable representations) from which the non-negativity of co-
efficients of Rn,1(q) follows (see Hua [7]). Kac’s conjecture was proved
by Hausel, Letellier and Rodriguez-Villegas [6] recently.
We now explain how the results of this paper (together with Green’s

theory of types of matrices [5]) enable us to compute the right-hand side
of (7.1). Let IrrFq[t] denote the set of irreducible monic polynomials
in Fq[t]. Let Λ0 denote the subset of Λ consisting of elements λ of type
(1.1) for which all the cardinals mi are finite (this is just the set of
all partitions). For λ ∈ Λ0 as in (1.1), let |λ| =

∑

miλi. Recall that
similarity classes of n×n matrices with entries in Fq are parametrized
by functions

c : IrrFq[t] → Λ0

such that
∑

f∈IrrFq [t]

(deg f)|c(f)| = n.

The above condition imposes the constraint that c(f) is the empty
partition ∅ with |∅| = 0 for all but finitely many f ∈ IrrFq[t]. The
similarity classes parametrized by c and c′ are said to be of the same
type if there exists a degree-preserving bijection σ : IrrFq[t] → IrrFq[t]
such that c′ = c ◦ σ.
Given a function c : IrrFq[t] → Λ0 parametrizing a similarity class

of n× n matrices, let τc denote the multiset of pairs (c(f), deg f) as f
ranges over the set of irreducible polynomials in Fq[t] for which c(f) 6=
∅. Then c and c′ are of the same type if and only if τc = τc′. Thus,
the set of types of n×n matrices with entries in Fq is parametrized by
multisets of the form

(7.2) τ = {(λ(1), d1)
a1 , (λ(2), d2)

a2 , . . . }

such that

(7.3)
∑

i

aidi|λ
(i)| = n.

Let T (n) denote the set of multisets of pairs in Λ0 × Z>0 satisfying
(7.3). For example, T (2) has four elements given by:

• {((1, 1), 1)} (central type);
• {((2), 1)} (non-semisimple type);
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• {((1), 2)} (irreducible type);
• {((1), 1)2} (split regular semisimple type).

If A is an n × n matrix of type τ as in (7.2), then, by primary
decomposition,

nτ (q) = |GA\MA ×MA| =
∏

i

nλ(i)(qdi),

where nλ(q) denotes the cardinality of |Gλ\(Mλ×Mλ)| when the residue
field of R has cardinality q. It is also easy to enumerate the number
of similarity classes of a given type τ : for each positive integer d, let
md denote the number of times a pair of the form (λ, d) occurs in τ
(counted with multiplicity). Let Φd(q) denote the number of irreducible
polynomials in Fq[t] of degree d in Fq[t]. This is a polynomial in q with
rational coefficients,

Φd(q) =
1

d

∑

e|d

µ(d/e)qe,

where µ is the classical Möbius function. The number of similarity
classes of type τ is

cτ (q) =
1

∏

i ai!

∏

d

Φd(q)(Φd(q)− 1) · · · (Φd(q)−md + 1).

We obtain a formula for Rn,1(q),

(7.4) Rn,1(q) =
∑

τ∈T (n)

cτ (q)nτ (q),

which can also be expressed as a product expansion for the generating
function of Rn,1(q) in the spirit of Kung [10] and Stong [13]:

(7.5)

∞
∑

n=0

Rn,1(q)x
n =

∞
∏

d=1

(

∑

λ∈Λ0

nλ(q
d)xd|λ|

)Φd(q)

.

There is an alternative method for computing Rn,1(q), namely the
Kac–Stanley formula [8, p. 90], which is based on Burnside’s lemma
and a theory of types adapted to quivers (this formula is a way to
compute the number of isomorphism classes of representations of a
quiver with any dimension vector). A comparison of the values ob-
tained for Rn,1(q) using these two substantially different methods ver-
ifies the validity of our results. This has been carried out by com-
puter for values of n up to 18 (the code for this can be found at
http://www.imsc.res.in/~amri/pairs/).

http://www.imsc.res.in/~amri/pairs/
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