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JACK POLYNOMIALS

AND ORIENTABILITY GENERATING SERIES OF MAPS

MACIEJ DOŁĘGA, VALENTIN FÉRAY, AND PIOTR ŚNIADY

ABSTRACT. We study Jack characters, which are the coefficients of the
power-sum expansion of Jack symmetric functions with a suitable nor-
malization. These quantities have been introduced by Lassalle who for-
mulated some challenging conjectures about them. We conjecture the
existence of a weight on non-oriented maps (i.e., graphs drawn on non-
oriented surfaces) which allows to express any given Jack character as a
weighted sum of some simple functions indexed by maps. We provide a
candidate for this weight which gives a positive answer to our conjecture
in some, but unfortunately not all, cases. In particular, it gives a positive
answer for Jack characters specialized to Young diagrams of rectangu-
lar shape. This candidate weight attempts to measure, in a sense, the
non-orientability of a given map.

1. INTRODUCTION

1.1. Jack polynomials and Macdonald polynomials. Jack [Jac71] intro-
duced a family of symmetric polynomials — which are now known as Jack

polynomials J
(α)
π — indexed by a partition and a deformation parameter

α. From the contemporary point of view, probably the main motivation
for studying Jack polynomials comes from the fact that they are a special
case of the celebrated Macdonald polynomials which “have found applica-

tions in special function theory, representation theory, algebraic geometry,

group theory, statistics and quantum mechanics” [GR05]. Indeed, some
surprising features of Jack polynomials [Sta89] have led in the past to the
discovery of Macdonald polynomials [Mac95], and Jack polynomials have
been regarded as a relatively easy case [LV95], which later allowed the un-
derstanding of the more difficult case of Macdonald polynomials [LV97].
A brief overview of Macdonald polynomials (and their relationship to Jack
polynomials) is given in [GR05].
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Figure 1.1. Example of an oriented map. The map is drawn
on a torus: the left side of the square should be glued to
the right side, as well as bottom to top, as indicated by the
arrows.

Jack polynomials are also interesting in their own right, for instance in the
context of Selberg integrals [Kad97] and in theoretical physics [FJMM02,
BH08].

1.2. Jack polynomials, Schur polynomials and zonal polynomials. For
some special choices of the deformation parameter α, Jack polynomials
coincide (up to some simple normalization constants) with some very es-
tablished families of symmetric polynomials. In particular, the case α = 1
corresponds to Schur polynomials, α = 2 corresponds to zonal polynomi-

als, and α = 1
2

corresponds to symplectic zonal polynomials; see [Mac95,
Chapter 1 and Chapter 7] for more information about these functions. For
these special values of the deformation parameter, Jack polynomials are
particularly nice because they have some additional structures and features
(usually related to algebra and representation theory), and for this reason
they are much better understood.

1.3. Jack polynomials and maps. Roughly speaking, a map is a graph
drawn on a surface, see Figure 1.1. In this article we will investigate the
relationship between the combinatorics of Jack polynomials and the enu-
meration of maps.

In the special cases of Schur polynomials (α = 1) and zonal polynomials
(α = 2 and α = 1

2
) this relationship is already well-understood. The generic

case is much more mysterious and we will be only able to present some
partial results.
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1.4. Normalized characters. The irreducible character χλ(π) of the sym-
metric group is usually considered as a function of the partition π, with the
Young diagram λ fixed. It was a brilliant observation of Kerov and Ol-
shanski [KO94] that for several problems in the asymptotic representation
theory it is convenient to do the opposite: keep the partition π fixed and let
the Young diagram λ vary. It should be stressed that in this approach the
Young diagram λ is arbitrary, in particular there are no restrictions on the
number of boxes of λ. In this way it is possible to study the structure of the
series of the symmetric groups S1 ⊂ S2 ⊂ · · · and their representations in
a uniform way. This concept is sometimes referred to as dual approach to
the characters of the symmetric groups.

In order for this idea to be successful, one has to replace the usual char-
acters χλ(π) by the normalized characters Chπ(λ). Namely, for a partition
π of size k and a Young diagram λ with n boxes we define

(1.1) Chπ(λ) =

{
(n)k

χλ(π∪1n−k)
χλ(id)

, if k ≤ n,

0, otherwise,

whereχλ(π∪1n−k) is the character of the irreducible representation indexed
by λ evaluated at a permutation of cycle-type π ∪ 1n−k and

(n)k := n(n− 1) · · · (n− k + 1)

denotes the falling factorial.
This choice of normalization is justified by the fact that the so defined

characters Chπ belong to the algebra of polynomial functions on the set of

Young diagrams [KO94], which in the last two decades turned out to be
essential for several asymptotic and enumerative problems of the represen-
tation theory of the symmetric groups [Bia98, IO02, DFŚ10].

1.5. Jack characters. Lassalle [Las08a, Las09] initiated the investigation
of a kind of dual approach to Jack polynomials. Roughly speaking, it is the
investigation (as a function of λ, with π being fixed) of the coefficient of
pπ,1,1,...,1 in the expansion of the Jack symmetric polynomial J (α)

λ in the ba-
sis of power-sum symmetric functions. This coefficient, with some appropri-
ate normalization factor given in Section 2.2, will be denoted by Ch(α)

π (λ).
This normalization factor is chosen in such a way that in the important

special case of the Schur polynomials (α = 1) one recovers the normalized
characters Ch(1)

π = Chπ given by (1.1), which already proved to have a rich
and fascinating structure. The cases of zonal polynomials, symplectic zonal
polynomials, and general Jack polynomials give rise to some new quan-
tities for which in [FŚ11b] we coined the names zonal characters Ch(2)

π ,
symplectic zonal characters Ch(1/2)

π , and general Jack characters Ch(α)
π .
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Figure 1.2. (a) Example of a bicolored graph (drawn on the
torus) and (b) an example of its embedding F into the Young
diagram (3, 1); this embedding is given by F (Σ) = α,
F (Π) = β, F (V ) = a, F (W ) = c, F (1) = F (4) = (aβ),
F (2) = F (5) = (aα), F (3) = (cα). The white vertices
of the graph were labeled by capital Latin letters, the black
vertices by capital Greek letters, and the edges by Arabic
numbers. The columns of the Young diagram were indexed
by small Latin letters, the rows by small Greek letters.

Another motivation for studying Jack characters Ch(α)
π comes from the

observation that they form a linear basis of the algebra of α-polynomial

functions on the set of Young diagrams (which is a simple deformation of
the algebra of polynomial functions mentioned above). This fact is far from
being trivial and was established by Lassalle [Las08a, Proposition 2].

The main goal of this paper is to understand the combinatorial structure

of Jack characters Ch(α)
π . In the following we will give more details about

this problem.

1.6. Embeddings of bicolored graphs. A bicolored graphG is defined as
a bipartite graph together with the choice of the coloring of its vertex set
V = V(G); we denote by V• = V•(G) and V◦ = V◦(G) the sets of black
and white vertices of G, respectively.

An embedding F of a bicolored graph G into a Young diagram λ is a
function which maps V◦ to the set of columns of λ, maps V• to the set of
rows of λ, and maps the edge set E(G) of G to the set of boxes of λ, see
Figure 1.2. We also require that an embedding preserves the relation of
incidence, i.e., a vertex v ∈ V(G) and an incident edge e ∈ E(G) should be
mapped to a row or column F (v) which contains the box F (e).
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We denote by NG(λ) the number of such embeddings of G into λ. The
quantities NG(λ) were introduced in the paper [FŚ11a], and they proved to
be very useful for studying various asymptotic and enumerative problems
of the representation theory of the symmetric groups, see [FŚ11a, DFŚ10].

When dealing with Jack polynomials, it will be convenient to consider
the following slightly deformed version:

(1.2) N
(α)
G (λ) :=

(
1√
α

)|V•(G)| (√
α
)|V◦(G)|

NG(λ).

Note that N (1)
G (λ) = NG(λ).

1.7. Stanley formulas. We will recall some formulas that express Jack
characters Ch(α)

π in terms of functions N (α)
G in the special cases where

α ∈
{

1
2
, 1, 2

}
. Formulas of this type are called Stanley formulas after Stan-

ley, who found such a formula for α = 1 as a conjecture [Sta06].

1.7.1. Stanley formula for α = 1 and oriented maps. Roughly speaking,
an oriented map M is defined as a bicolored graph drawn on an oriented

surface, see Figure 1.1. Since oriented maps are not in the focus of this
article, we do not present all necessary definitions and for the details we
refer the reader to [FŚ11a].

It has been observed in [FŚ11a] that a certain formula conjectured by
Stanley [Sta06] and proved by the second author [Fér10] for the normalized
characters of the symmetric groups can be expressed as the sum

(1.3) Ch(1)
π (λ) = Chπ(λ) = (−1)ℓ(π)

∑

M

(−1)|V•(M)| N (1)
M (λ)

over all oriented bicolored maps M with face-type π. Here and throughout
the paper, N (α)

M denotes the function N (α) indexed by the underlying graph
of the map M while ℓ(π) denotes the number of parts of the partition π.

1.7.2. Stanley formula for α ∈ {2, 1
2
} and non-oriented maps. Roughly

speaking, a non-oriented map — or, for short, map — is a bicolored graph
drawn on a surface. For a precise definition (and the definition of the face-
type) we refer the reader to Section 3.2.
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In [FŚ11b] it has been proved that

Ch(2)
π (λ) = (−1)ℓ(π)

∑

M

(−1)|V•(M)| ·
(
− 1√

2

)|π|+ℓ(π)−|V(M)|
N

(2)
M (λ),

(1.4)

Ch(1/2)
π (λ) = (−1)ℓ(π)

∑

M

(−1)|V•(M)| ·
(

1√
2

)|π|+ℓ(π)−|V(M)|
N

(1/2)
M (λ),

(1.5)

where the sums run over all non-oriented maps M with face-type π.
The notations and the normalizations in [FŚ11b] are a bit different, so in

Section 5.1 we make the link between the statements above and the results
of [FŚ11b].

1.8. The main conjecture. Based on the special cases above, on the the-
oretical results of this paper, and some computer exploration, we dare to
formulate the following conjecture.

Main Conjecture 1.1. To each non-oriented map M one can associate

some weight wtM(γ) such that:

• for every λ and π, we have

(1.6) Ch(α)
π (λ) = (−1)ℓ(π)

∑

M

(−1)|V•(G)| wtM

(
1− α√

α

)
N

(α)
M (λ),

where the sum runs over all non-oriented mapsM with face-type π;

• wtM(γ) is a polynomial in variable γ with non-negative rational

coefficients, of degree (at most)

d(M) := 2 · (number of connected components of M)− χ(M),

where

χ(M) := |V(M)| − |E(M)|+ |F(M)|
is the Euler characteristic of M . Moreover, the polynomial wtM(γ)
is an even (respectively odd) polynomial if and only if the Euler

characteristic χ(M) is an even number (respectively an odd num-

ber).

Throughout the paper, we shall denote the argument of wtM in (1.6) by

(1.7) γ = γ(α) :=
1− α√

α
.
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Remark 1.2. Let us explain a bit more the meaning of our conjecture. We
know that for each partition π there exists a collection of polynomials cG(γ)
indexed by bicolored graphs such that

(1.8) Ch(α)
π (λ) =

∑

G

cG(γ) N
(α)
G (λ)

holds true for an arbitrary Young diagram λ — see Proposition 2.3.
Since the functionsN (α)

G , seen as functions on the set of Young diagrams,
are not linearly independent [Fér09, Proposition 2.2.1], the expansion (1.8)
is not unique. Also, as there might be several maps which correspond to a
given graph, indexing the sum by maps (instead of graphs) gives even more
freedom on the coefficients. Therefore our conjecture should be understood
as a claim about the existence of a particularly nice expansion of Ch(α)

π in
terms of the functions N (α)

M .

1.9. Our (unsuccessful) candidate for the weight wtM(γ). As we have
seen above, the case α = 1 corresponds to a summation over oriented maps

(Eq. (1.3)), while the cases α = 2 and α = 1
2

correspond to a summation
over non-oriented maps (Eqs. (1.4), (1.5)) with some simple coefficients
which depend only on some general features of the map, such as the number
of the vertices. Thus one can expect that the hypothetical weight wtM(γ)
should be interpreted as a kind of measure of non-orientability of a given

map M .
This notion of measure of non-orientability is not very well defined. For

example, one could require that for α = 1 the corresponding coefficient
wtM(0) is equal to 1 ifM is orientable and zero otherwise; and that for α ∈{

1
2
, 2
}

(which corresponds to γ(α) = ± 1√
2
) the coefficient wtM

(
± 1√

2

)

takes some fixed value on all (orientable and non-orientable) maps.
In Section 3.9 we will define some quantity monM = monM(γ) which

attempts to measure the non-orientability of a given map M . Note that
monM depends on γ(α), and thus implicitly on α as well, but we drop this
dependence in the notation. Roughly speaking, monM is defined as follows:
we remove the edges of the map M one after another in a random order.
For each edge which is to be removed we check the type of this edge (for
example, an edge may be twisted if, in some sense, it is a part of a Möbius

band). We multiply the factors corresponding to the types of all edges. The
quantity monM is defined as the mean value of this product.

One could complain that this is a weak measure of non-orientability of
a map; in particular for α = 1 the corresponding weight monM does not
vanish on non-orientable maps. Nevertheless, as we shall see, this weight
monM gives a positive answer to our Main Conjecture 1.1 in many (but,
regretfully, not all!) cases.
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1.10. Orientability generating series Ĉh
(α)

π (λ). We define the orientabil-

ity generating series as the formula (1.6) from Main Conjecture 1.1 in which
the hypothetical weight wtM has been substituted by the weight monM to
be defined in Section 3.9:

(1.9) Ĉh
(α)

π (λ) := (−1)ℓ(π)
∑

M

(−1)|V•(M)| monM(γ) N
(α)
M (λ),

where the sum runs over all non-oriented maps M with face-type π.
Now it is natural to ask the following question.

Question 1.3. Does the weight monM give a positive answer to Main Con-

jecture 1.1?

In other words, is it true that for any partition π and any Young diagram

λ the corresponding Jack character and the orientability generating series

coincide:

(1.10) Ch(α)
π (λ) = Ĉh

(α)

π (λ)?

Regretfully, the answer to this question is NO: with extensive computer
calculations we were able to find some concrete counterexamples, see Sec-
tion 7 for more details. Nevertheless, as we shall discuss in the following,
it seems that the formula (1.9) predicts some properties of Jack characters
surprisingly well. For this reason we hope that the investigation of the quan-
tity (1.9) might shed some light on the problem and eventually lead to the
correct solution of Main Conjecture 1.1.

For example, the positive answer for Question 1.3 holds for the following
special cases: π = (n) which consists of a single part for 1 ≤ n ≤ 8, fur-
thermore for π = (2, 2), and π = (3, 2) (the proofs are computer-assisted).
Furthermore, Corollary 4.3 shows that the answer for Question 1.3 is pos-
itive also for any of these partitions augmented by an arbitrary number of
parts equal to 1.

Also, the positive answer for Question 1.3 holds in the special case α ∈{
2, 1

2

}
, see Theorem 5.1.

However, in order to present the most interesting and promising type
of predictions given by Formula (1.9), we will need the notion of Stanley

polynomials, see below.

1.11. Stanley polynomials. If P = (p1, . . . , pℓ) and Q = (q1, . . . , qℓ) are
sequences of non-negative integers such that q1 ≥ · · · ≥ qℓ, we consider the
multirectangular Young diagram

P ×Q := (q1, . . . , q1︸ ︷︷ ︸
p1 times

, . . . , qℓ, . . . , qℓ︸ ︷︷ ︸
pℓ times

).
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p3q3

Figure 1.3. Multirectangular Young diagram P ×Q.

This concept is illustrated in Figure 1.3. Quantities P and Q are referred to
as multirectangular coordinates of the Young diagram P ×Q.

Stanley [Sta04] proved that the evaluation Ch(1)
π (P × Q) of the normal-

ized character of the symmetric group on a multirectangular Young diagram
is a polynomial in the variables p1, . . . , pℓ, q1, . . . , qℓ. This polynomial, re-
ferred to as Stanley polynomial, later turned out to be a powerful tool in the
context of Kerov polynomials; see [DFŚ10]. In particular, one could argue
that instead of viewing the character λ 7→ Ch(1)

π (λ) as a function of the
Young diagram, it is more convenient to view it as a function

(p1, . . . , pℓ, q1, . . . , qℓ) 7→ Ch(1)
π (P ×Q)

of the multirectangular coordinates. The idea of Stanley polynomials has
to be a bit adjusted for the framework of Jack characters Ch(α)

π ; we will
discuss the details below.

If c is a number and P = (p1, . . . , pℓ), we use the shorthand notation

cP = c(p1, . . . , pℓ) = (cp1, . . . , cpℓ).

We will be interested in the evaluations of the Jack character

(1.11) Ch(α)
π

(√
αP × 1√

α
Q

)
,

as well as in analogous evaluations of the orientability generating series

(1.12) Ĉh
(α)

π

(√
αP × 1√

α
Q

)
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in rescaled multirectangular coordinates p1, . . . , pℓ, q1, . . . , qℓ. Note that
for the above expressions to make sense we have to assume that

√
α p1, . . . ,

√
α pℓ,

1√
α
q1, . . . ,

1√
α
qℓ

are non-negative integers such that

1√
α
q1 ≥ · · · ≥ 1√

α
qℓ.

We will show (see Lemma 2.4) that (1.11) (as well as (1.12)) can be written
uniquely as a polynomial in the indeterminates

(1.13) p1, . . . , pℓ, q1, . . . , qℓ, γ.

These polynomials will also be referred to as Stanley polynomials. It is
worth pointing out that the indeterminate α is not listed among the indeter-
minates (1.13).

1.12. Orientability generating series property. As promised, we will
discuss now the predictions given by Formula (1.9) in the context of Stanley
polynomials.

1.12.1. The definition.

Definition 1.4 (OGS-PROPERTY). Consider a pair which consists of

• a partition π, and
• a monomial

(1.14) M = pe11 · · · peℓℓ qf11 · · · qfℓℓ γg

in indeterminates (1.13).

We say that the pair (π,M) fulfills the Orientability Generating Series

property (OGS-property) if the coefficients of the monomial M in the Stan-
ley polynomials for Jack character (1.11) and in the Stanley polynomial for
the orientability generating series (1.12) are equal:

(1.15) [M] Ch(α)
π

(√
αP × 1√

α
Q

)
= [M] Ĉh

(α)

π

(√
αP × 1√

α
Q

)
.

The question is: which pairs (π,M) have the OGS-property? There
are known examples of pairs which do not have this property (for example
M = p1p2p3q1q2q3 and π = (9), see Section 7). The positive examples will
be discussed in the following.
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1.12.2. OGS-property and rectangular Young diagrams. Investigation of
the normalized characters Chπ(λ) in the case when λ = p × q is a rect-

angular Young diagram was initiated by Stanley [Sta04] who noticed that
they have a particularly simple structure; in particular he showed that For-
mula (1.3) holds true in this special case.

This line of research was continued by Lassalle [Las08a] who (apart from
other results) studied Jack characters Ch(α)

π (p×q) on rectangular Young dia-
grams. In particular, Lassalle found a recurrence relation [Las08a, Eq. (6.2)]
fulfilled by such characters; this recurrence relates the values of Jack char-
acters on a fixed rectangular Young diagram p×q, corresponding to various
partitions π. This recurrence relation is essential for the current paper; ex-
pression (1.9) was formulated by a careful attempt to reverse-engineer the
hypothetical hidden combinatorial structure behind Lassalle’s recurrence.
In particular, our measure of non-orientability of maps monM was from the
very beginning chosen in such a way that Formula (1.10) from Question 1.3
holds true for an arbitrary rectangular Young diagram λ = p × q. In Sec-
tion 4 we will discuss these issues and prove the following theorem.

Theorem 1.5.

• If λ = p × q is a rectangular Young diagram, then the answer for

Question 1.3 is positive; in other words

Ch(α)
π (p× q) = Ĉh

(α)

π (p× q)

holds true for any partition π and any positive integers p and q.

• If a monomial M involves only variables pi, qi, γ for some value of

the index i (i.e., M = pei q
f
i γ

g) and π is an arbitrary partition, then

(M, π) has the OGS-property, i.e., Equality (1.15) holds true.

Extensive computer exploration leads us to believe that the following ex-
tension of the above theorem holds true as well.

Conjecture 1.6.

• The answer for Question 1.3 is positive if λ = (p1, p2) × (q1, q2)
is a multirectangular Young diagram consisting of (at most) two

rectangles.

• If monomial M involves only variables pi, pj, qi, qj , γ for some

choice of the indices i, j (i.e., M = peii p
ej
j q

fi
i q

fj
j γ

g) and π is an

arbitrary partition, then (M, π) has the OGS-property.

1.12.3. OGS-property for top-degree monomials. One can show that Stan-
ley polynomials for both Jack character (1.11) and for the orientability gen-
erating series (1.12) are polynomials in indeterminates (1.13) of degree
|π| + ℓ(π). When this article was almost finished, the following positive
result about the monomials of this maximal degree was announced.
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Theorem 1.7 ([Śni14]). Let π be an arbitrary partition and let monomial

M of the form (1.14) be of degree

e1 + · · ·+ eℓ + f1 + · · ·+ fℓ + g = |π|+ ℓ(π).

Then the pair (M, π) has the OGS-property.

This positive result is an indication that there could be indeed some truth
behind our intuitions on the orientability generating series, and it encour-
ages further investigation of the topic.

1.13. Links with other problems.

1.13.1. Lassalle’s conjectures. Our search for some Stanley formula for
general Jack characters Ch(α)

π has been motivated by two recent conjectures
of Lassalle. He conjectured some nice positivity and integrality properties
for the coefficients of Ch(α)

π expressed in terms of multirectangular coordi-

nates (i.e., the coefficients of Stanley polynomials) [Las08a, Conjectures 1
and 2] and in terms of free cumulants (see Section 2.3 for the definition)
[Las09, Conjectures 1.1 and 1.2], respectively. The positivity part in both
conjectures would follow from our Main Conjecture 1.1: for multirectangu-
lar coordinates we explain the connection in Section 6, while for free cumu-
lants this would follow from the general machinery developed in [DFŚ10].

1.13.2. The b-Conjecture of Goulden and Jackson. In the current paper we
investigate the combinatorics of Jack characters related to maps. The study
of analogous connections between Jack polynomials and maps is much
older. In particular, Goulden and Jackson [GJ96a] formulated a conjec-
ture (called b-Conjecture) which claims, roughly speaking, that the connec-
tion coefficients of Jack polynomials can be explained combinatorially as
a summation over certain maps with coefficients that should describe non-

orientability of a given map. An extensive bibliography on this topic can be
found in [LC09].

Although there is no direct link between our problem and the b-Conjec-
ture (we are unable to show, for instance, that one implies the other), both
problems seem quite close, and we hope that any progress on one of them
could give ideas to solve the other.

1.14. Outline of the paper. In Section 2, we define Jack characters. Then,
in Section 3, we give formal definitions related to non-oriented maps and
define the weight monM . In Sections Section 4 and 5, we prove that the
answer for Question 1.3 is positive for rectangular Young diagrams on the
one hand and, on the other hand, for the special choice of the deformation
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parameter α ∈
{

1
2
, 2
}

. In Section 6, we explain the link between Main Con-
jecture 1.1 and the above-mentioned conjectures of Lassalle. Then, finally,
in Section 7, we present our numerical exploration and the counterexample.

2. PRELIMINARIES

2.1. Partitions and Young diagrams. A partition π = (π1, . . . , πl) is de-
fined as a weakly decreasing finite sequence of positive integers. If π1 +
· · ·+ πl = n we also say that π is a partition of n and denote it by π ⊢ n.
We will use the following notations: |π| := π1 + · · · + πl; furthermore
ℓ(π) := l denotes the number of parts of π and

mi(π) :=
∣∣{k : πk = i}

∣∣

denotes the multiplicity of i ≥ 1 in the partition π. When dealing with
partitions we will use the shorthand notation

1l := (1, . . . , 1︸ ︷︷ ︸
l times

).

Any partition can be alternatively viewed as a Young diagram. For draw-
ing Young diagrams we use the French convention.

The conjugacy classes of the symmetric group Sn are in one-to-one cor-
respondence with the partitions of n. Thus any partition π ⊢ n can be also
viewed as some (arbitrarily chosen) permutation π ∈ Sn with the corre-
sponding cycle decomposition. This identification between partitions and
permutations allows us to define characters such as Tr ρ(π), Ch(α)

π for π
being either a permutation or a partition.

2.2. Jack characters. Jack characters were introduced by Lassalle
[Las08a, Las09]; however, we will use a slightly different normalization
than the one used in his papers. This new normalization was introduced and
motivated in [DF14]. We present it in the following.

Firstly, as there are several of them, we have to fix a normalization of
Jack polynomials. In our context it is most convenient to use the functions
denoted by J in the book of Macdonald [Mac95, Section VI, Eq. (10.22)].
We expand the Jack polynomial in the basis of power-sum symmetric func-
tions:

J
(α)
λ =

∑

ρ:
|ρ|=|λ|

θ(α)ρ (λ) pρ;

then we define the Jack character by

(2.1) Ch(α)
π (λ) := α− |π|−ℓ(π)

2

(|λ| − |π|+m1(π)

m1(π)

)
zπ θ

(α)

π∪1|λ|−|π|(λ),
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where

zπ = π1π2 · · · m1(π)!m2(π)! · · · .
It turns out that for α = 1 we recover the usual normalized characters (1.1)
of the symmetric groups (see [DF14, Sections 1.3 and 1.4]).

2.3. Free cumulants. We now present the notion of the free cumulants of

a Young diagram which will be necessary later in some proofs.

Definition 2.1. For a Young diagram λ, we define the sequence of its free

cumulants R
(1)
2 (λ), R

(1)
3 (λ), . . . which are given (for k ≥ 2) by

(2.2) R
(1)
k (λ) := (−1)

∑

T

(−1)|V•(T )| N (1)
T (λ),

where the sum runs over bicolored, planted plane trees with k vertices.
The formal definition of a planted plane tree will not be necessary for the
purposes of this article; we will only need the fact that each free cumulant
is a linear combinations of the functions N (1)

G .

The usual way of defining the free cumulants of a Young diagram λ is a
two-step procedure [Bia98]: it uses Kerov’s transition measure of λ [Ker93]
and the notion of free cumulants of a probability measure on the real line

[NS06] which originates in Voiculescu’s free probability theory. Our def-
inition has the advantage of being more direct. The equivalence between
both definitions has been established by Rattan [Rat08], see also [FŚ11a,
Theorem 9].

Definition 2.2. Dealing with Jack polynomials, it is convenient to use an-

isotropic free cumulants given by

(2.3) R
(α)
k (λ) := (−1)

∑

T

(−1)|V•(T )|N (α)
T (λ),

where the sum runs again over bicolored, planted plane trees with k ≥ 2
vertices.

The difference between (2.2) and (2.3) lies in the use of the deformed
number of embeddings N (α)

T instead of the non-deformed one. The an-
isotropic free cumulants have been introduced by Lassalle [Las09]. How-
ever, the normalization used here is different and corresponds to the one in
[DF14] (for details see Section 2.4 below).

2.4. Relationship to Lassalle’s normalization. For the reader’s conve-
nience we provide below the relationship between the quantities used by
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Lassalle (in boldface) and the ones used by us:

ϑ
λ
π∪1n−|π|(α) =

(|λ| − |π|+m1(π)

m1(π)

)
zπ θ

λ
π∪1|λ|−|π|(α),

Ch(α)
π (λ) = α− |π|−ℓ(π)

2 ϑ
λ
π∪1n−|π|(α);(2.4)

R
(α)
k (λ) = αk/2 Rk(λ;α).

Our convention has the advantage of being compatible with the symmetry
(α, λ) ↔ (α−1, λ′), where λ′ is the transpose diagram of λ (defined, e.g., in
[Mac95, Section 1.1]). Namely,

Ch(α)
π (λ) = (−1)|π|−ℓ(π)Ch(1/α)

π (λ′);(2.5)

R
(α)
k (λ) = (−1)kR

(1/α)
k (λ′).

The first equation is an adaptation of [Mac95, VI, (10.30)] to our notations,
while the second follows easily from the definitions.

2.5. Existence of an N
(α)
G -expansion for Jack characters.

Proposition 2.3. For each partition π, there exists a collection (cG) of poly-

nomials cG ∈ Q[γ] indexed by bicolored graphs such that

(2.6) Ch(α)
π (λ) =

∑

G

cG
(
γ(α)

)
N

(α)
G (λ)

holds true for an arbitrary Young diagram λ.

Proof. Any sum which is in the form given by the right-hand side of (2.6)
shall be called an N (α)

G -expansion.
By definition (2.3), any anisotropic free cumulant R(α)

k admits an N (α)
G -

expansion. Moreover, any linear combination and any product of some
N

(α)
G -expansions is also an N

(α)
G -expansion (indeed, it is straightforward

to check that N (α)
G ·N (α)

G′ = N
(α)
G⊔G′). Moreover, the constant function equal

to γ has an N (α)
G -expansion corresponding to the empty bicolored graph ∅:

γ = γ N
(α)
∅ .

Thus we have shown that each element of the algebra generated by the
collection of functions on the set of Young diagrams given by

γ, R
(α)
2 , R

(α)
3 , . . .

has an N (α)
G -expansion.

But, by [DF14, Proposition 3.7], the latter algebra contains each Jack
character Ch(α)

π , which concludes the proof. �
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Unfortunately, not much is known about the expansion of the Jack char-
acter Ch(α)

π in terms of the anisotropic free cumulants. Thus the coefficients
cG in (1.8) constructed by the above reasoning are not very explicit. More-
over, let us recall that an N

(α)
G -expansion — if it exists — is not unique

(Remark 1.2), and the expansion given by this proof is definitely not the
one we are looking for in Main Conjecture 1.1 (the above proof of Proposi-
tion 2.3 gives a sum over forests, while Main Conjecture 1.1 requires that a
coefficient of a forest should be independent of α).

2.6. Existence of Stanley polynomials.

Lemma 2.4. For each partition π, both the corresponding Jack character

Ch(α)
π

(√
αP × 1√

α
Q

)

and the orientability generating series

Ĉh
(α)

π

(√
αP × 1√

α
Q

)

can be expressed (in a unique way) as a polynomial in the indeterminates

(1.13).

Proof. We often viewed γ = γ(α) given by (1.7) as a function of the pa-
rameter α. It will be convenient now to reverse the optics; for a given γ ∈ R

we define α(γ) as the unique positive solution of the equation

γ =
1− α√

α
.

Let us fix the value of an integer ℓ ≥ 1. We say that a function F on the
set of Young diagrams has the polynomiality property if the map

(p1, . . . , pℓ, q1, . . . , qℓ, γ) 7→ F

(
√
α(γ) P × 1√

α(γ)
Q

)

coincides with some polynomial in indeterminates (1.13) (with coefficients
in Q) on the set

P̃Q :=

{
(P,Q, γ) :

√
α(γ) P × 1√

α(γ)
Q is a Young diagram

}
.

For any bicolored graph G, we claim that the function N (α)
G has the poly-

nomiality property. Indeed, a slight variation of [FŚ11b, Lemma 3.9] im-
plies thatN (1)

G (P×Q) can be expressed as a polynomial (with non-negative,
integer coefficients) in the indeterminates p1, . . . , pℓ, q1, . . . , qℓ with degree
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|V•(G)| in the variables P and degree |V◦(G)| in the variablesQ. Therefore
N

(α)
G (P ×Q) (see (1.2)) is a polynomial in the indeterminates

1√
α
p1, . . . ,

1√
α
pℓ,

√
α q1, . . . ,

√
α qℓ.

Equivalently,N (α)
G has the polynomiality property.

Clearly, any linear combination of the functions N (α)
G with coefficients in

Q[γ], also has the polynomiality property. In particular (by Proposition 2.3

and Definition 1.9, respectively), so do Ch(α)
π and Ĉh

(α)

π .

In order to prove uniqueness, it is enough to show that whenever a poly-
nomial F in indeterminates (1.13) vanishes on the set P̃Q, then F is iden-
tically equal to 0. Consider such a polynomial F and set d to be its degree.
Let us fix α0 > 0 and denote γ0 = 1−α0√

α0
. We define

S = {i/√α0 : 1 ≤ i ≤ d+ 1},
Sj = {(j(d+ 1) + i) · √α0 : 1 ≤ i ≤ d+ 1} for 0 ≤ j ≤ ℓ− 1.

Strictly from the definition, we have the following inclusion:

S × · · · × S︸ ︷︷ ︸
ℓ factors

×Sℓ−1 × · · · × S0 × {γ0} ⊂ P̃Q,

so that F vanishes on this Cartesian product. It is easy to prove (for exam-
ple, by induction on n, the number of the variables) that, if a polynomial of
degree d

f ∈ R[x1, . . . , xn]

vanishes on a Cartesian product T1 × · · · × Tn ⊂ Rn, with |Ti| > d (for
1 ≤ i ≤ n), then f is identically equal to 0. Therefore — for any fixed
value of γ0 — F (P,Q, γ0) is equal to 0 as a polynomial in P and Q. As this
holds for any choice of the real number γ0, we conclude that F (P,Q, γ) is
equal to 0 as a polynomial in P , Q and γ, as desired. �

3. THE MEASURE OF NON-ORIENTABILITY OF MAPS

3.1. Pairings and polygons. A set-partition of a set S is a collection
{I1, . . . , Ir} of pairwise disjoint, non-empty subsets, the union of which
is equal to S.

A pairing (or, alternatively, pair-partition) of S is a set-partition into
pairs. If s is an element of S and P is a pairing of S, the partner of s in P
is defined as the unique element t ∈ S such that {s, t} is a pair of P .

For instance, for any integer n ≥ 1,

P =
{
{1, 2}, {3, 4}, . . . , {2n− 1, 2n}

}



18 M. DOŁĘGA, V. FÉRAY AND P. ŚNIADY

is a pairing of [2n] (we use the standard notation [n] := {1, . . . , n}). Note
that the existence of a pairing of S clearly implies that |S| is even.

Let us consider now two pairings B,W of the same set S consisting
of 2n elements. We consider the following bicolored, edge-labeled graph
L(B,W):

• it has n black vertices indexed by the pairs of B and nwhite vertices
indexed by the pairs of W;

• its edges are labeled by the elements of S. The extremities of the
edge labeled i are the pair of B containing i and the pair of W con-
taining i.

Note that each vertex has degree 2 and each edge has one white and one
black extremity. Besides, if we erase the indices of the vertices, it is easy to
recover them from the labels of the edges (the index of a vertex is the set of
the two labels of the edges incident to this vertex). Thus, in the following
we forget the indices of the vertices and view L(B,W) as an edge-labeled
graph.

As every vertex has degree 2, the graph L(B,W) can be seen as a col-
lection of polygons. Moreover, because of the proper bicoloration of the
vertices, each polygon has an even length. Let 2ℓ1 ≥ 2ℓ2 ≥ · · · be the
ordered lengths of these polygons. The partition (ℓ1, ℓ2, . . . ) is called the
type of L(B,W) or the type of the couple (B,W).

Special role will be played by the polygons having exactly 2 edges. Such
a polygon will be referred to as bigon.

Example 3.1. For partitions

B =
{
{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}, {A,B}, {C,D}

}
,

W =
{
{2, 3}, {4, 5}, {6, 7}, {8, 9}, {10, 1}, {B,C}, {D,A}

}
,

the corresponding polygons L(B,W) are shown in Figure 3.1.

Definition 3.2. Let s1 and s2 be two elements of S that belong to the same
polygon of L(P1, P2). Fix an arbitrary orientation of this polygon. Then,
one can consider the number of elements of S between s1 in s2 in the poly-
gon. We say that s1 and s2 are in an even (respectively odd) position if
this number is even (respectively odd). As each polygon has an even size,
this definition does not depend on the choice of the orientation. For exam-
ple, in Example 3.1 the elements 4 and 9 are in an even position, while the
elements 1 and 3 are in an odd position.

3.2. Non-oriented maps. The central combinatorial object in this paper is
the following.
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Figure 3.1. Polygons obtained from the couple of pairings
from Example 3.1.
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Figure 3.2. Example of a non-oriented map drawn on the
projective plane. The left side of the square should be glued
with a twist to the right side, as well as bottom to top (also
with a twist), as indicated by arrows. This map has been
obtained by gluing the edge-sides of the polygon from Fig-
ure 3.1 according to the pair-partition given by Eq. (3.1).

Definition 3.3. An (unoriented) map is a triple M = (B,W, E) of pairings
of the same set S.

The terminology comes from the fact that it is possible to represent such
a triple of pair-partitions as a bicolored graph embedded in a non-oriented
(and possibly non-connected) surface. Let us explain how this works.
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First, we consider the union of the polygons L(B,W) defined in Sec-
tion 3.1. The edges of these polygons, that is the elements of the set S, are
called edge-sides.

We consider the union of the interiors of these polygons as a (possibly
disconnected) surface with a boundary. If we consider two edge-sides, we
can glue them: that means that we identify with each other their white ex-
tremities, their black extremities, and the edge-sides themselves.

For any pair in the pairing E , we glue the two corresponding edge-sides.
In this way we obtain a (possibly disconnected, possibly non-orientable)
surface Σ without boundary. After the gluing, the edges of the polygons
form a bicolored graph G embedded in the surface. For instance, with the
pairings B and W from Example 3.1 and

(3.1) E =
{
{1, 3}, {2, 10}, {4, 9}, {5, D}, {6, C}, {7, B}, {8, A}

}
,

we get the graph from Figure 3.2 embedded in the projective plane.
In general, the graph G has as many connected components as the sur-

face Σ. Besides, the connected components of Σ \ G correspond to the
interiors of the collection of polygons we are starting from, and, thus, they
are homeomorphic to open discs. These connected components are called
faces.

This makes the link with the more common definition of maps: usually, a
(non-oriented, bicolored) map is defined as a (bicolored) connected graphG
embedded in a (non-oriented) surface Σ in such a way that each connected
component ofΣ \G is homeomorphic to an open disc. It should be stressed
that with our definition — contrary to the traditional convention — we do
not require the map to be connected.

Definition 3.4. Let M = (B,W, E) be a map.

• The elements of B (respectively W) are called black (respectively
white) corners.

• The elements of E are called edges; we use the notation E(M) for
the set of edges of a map (that is the third element of the triple
defining the map).

• The polygons L(B,W) corresponding to the couple of pairings
(B,W) are called faces; the set of faces will be denoted by F(M).
The face-type of the map is the type of the couple (B,W), as defined
in Section 3.1.

• The polygons L(B, E) (respectively L(W, E)) of the couple of pair-
ings (B, E) (respectively (W, E)) are called black vertices (respec-
tively white vertices); their set is denoted by V•(M) (respectively
V◦(M)).
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• A leaf is a vertex of M of degree 1, that is a bigon of L(B, E) or
L(W, E). In other terms, a leaf is a pair of edge-sides which belongs
to both E and B or which belongs to both E and W .

• The connected components of the map M correspond to the con-
nected components of the graph G constructed above. Equivalently,
they are the equivalence classes of the transitive closure of the rela-
tion: x ∼ y if x is the partner of y in E , B or W .

Note that our maps have labeled edge-sides, and each element of S is
used exactly once as a label.

The pairing B (respectively W) indicates which edge-sides share the
same corner around a black (respectively white) vertex. This explains the
names of these pairings.

This encoding of (non-oriented) maps by triples of pairings is of course
not new. It can for instance be found in [GJ96b]; the presentation in that
paper is nevertheless a bit different as the authors consider there connected

monochromatic maps.

3.3. Ribbon graphs. For the purposes of the current paper it is sometimes
convenient to represent a map as a ribbon graph (see Figure 3.4) as follows:
each vertex is represented as a small disc, and each edge is represented by
a thin ribbon connecting two discs in a way that a walk along the boundary
of the ribbons corresponds to the walk along the boundary of the faces of a
given map.

3.4. Summation over maps with a specified face-type. Summations over
maps with a specified face-type (such as in Equations (1.4), (1.5) and (1.9))
should be understood as follows: we fix a couple of pairings (B,W) of
type π and consider all pairings E of the same ground set; we sum over the
resulting collection of maps (B,W, E). The set of maps with a specified

face-type should be understood in an analogous way.

3.5. Three kinds of edges. Let a map M with some selected edge E =
{s1, s2} be given. We distinguish three cases (a schematic description and
an example of each case are given in Figures 3.5 and 3.6):

• Both edge-sides s1 and s2 belong to the same face F and are in an
even position (see Definition 3.2).

Graphically, this means that if we travel along the boundary of the
face F then we visit the edge E twice and the directions in which
we travel twice along the edge E are opposite, see Figure 3.6a.

In this case the edge E is called straight, and we associate to it
the weight

monM,E := 1.
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Figure 3.3. Example of a map drawn on the Klein bottle: the
left-hand side of the square should be glued to the right-hand
side (without a twist) and the top side should be glued to the
bottom side (with a twist), as indicated by the arrows.

3

6

1 5 42

Figure 3.4. The map from Figure 3.3 drawn as a ribbon graph.

• Both edge-sides s1 and s2 belong to the same face F and are in an
odd position.

Graphically, this means that if we travel along the boundary of
the face F , we visit the edge E twice and the directions in which
we travel twice along the edge E are the same, see Figure 3.6b.

In this case the edge E is called twisted, and we associate to it the
weight

monM,E := γ =
1− α√

α
.
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Figure 3.5. The non-oriented map from Figure 3.2. On the
boundary of each face some arbitrary orientation was cho-
sen, as indicated by the arrows. The edge {4, 9} is an ex-
ample of a straight edge, the edge {1, 3} is an example of a
twisted edge, the edge {6, C} is an example of an interface

edge.

(a) (b) (c)

Figure 3.6. Three possible kinds of edges in a map (see Fig-
ure 3.5): (a) straight edge: both edge-sides of the edge be-
long to the same face and have opposite orientations, (b)
twisted edge: both edge-sides of the edge belong to the same
face and have the same orientation, (c) interface edge: the
edge-sides of the edge belong to two different faces; their
orientations are not important. In all three cases the colors
of the vertices are not important.

• Edge-sides s1 and s2 belong to different faces of the map, see Fig-
ure 3.6c.

In this case the edge E is called interface and we associate to it
the weight

monM,E :=
1

2
.
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3.6. Removal of edges. Let P be a pairing of a set S and s1, s2 be two
distinct elements of S. We define a pairing P{s1,s2} of the set S \ {s1, s2} as
follows:

• if {s1, s2} is a pair of P , then

P{s1,s2} := P \
{
{s1, s2}

}
;

• otherwise, consider the partners t1 and t2 of s1 and s2, respectively.
The elements s1, s2, t1, t2 are all distinct. We define

P{s1,s2} :=
(
P \

{
{s1, t1}, {s2, t2}

})
∪ {t1, t2}.

In other words, we remove the two pairs containing s1 or s2, and we
match together the two unmatched elements of S \ {s1, s2}.

Let M = (B,W, E) be a map and E ∈ E be an edge of M . Then we
define M \ {E} (or, shortly, M \ E) as the triple

M \ {E} =M \ E := (BE ,WE, EE),
which consists of the three original pairings with the edge E removed.

Graphically, this corresponds to the removal of the edge E from the
map M . If one extremity (or both extremities) of this edge is a leaf (are
leaves), we also remove this vertex (both vertices). Note that a removal of
an edge might drastically change the topology of the surface on which the
map is drawn; for this reason it might be more convenient to use the graph-
ical representation of a map as a ribbon graph (see Section 3.3) because the
effect of an edge removal from a map in this framework is much simpler;
namely, we just remove the appropriate edge from the corresponding ribbon
graph.

Lemma 3.5. Let P be a pairing of a set S and s1, s2, s3, s4 be four distinct

elements of S. Then
(
P{s1,s2}

)
{s3,s4} =

(
P{s3,s4}

)
{s1,s2} .

Proof. This can be verified by an easy case-by-case analysis. �

The above lemma implies that for any two distinct edges E1, E2 of a
map M , one has

(
M \ E1

)
\ E2 =

(
M \ E2

)
\ E1,

which allows one to define the map

M \ {E1, . . . , Ei} :=
((
M \ E1

)
\ · · ·

)
\ Ei

for an arbitrary subset {E1, . . . , Ei} ⊆ E(M) of the edges of M by an
iterative procedure. The fact that the above object is well-defined (i.e., it
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does not depend on the choice of the order of the edges E1, . . . , Ei) can
be also easily justified in a more intuitive way by referring to the ribbon
graphs.

3.7. Effect of an edge removal on the faces. Let E = {s1, s2} be one of
the edges of the map M . In the following we will investigate the faces of
the map M \ E, i.e., the polygons associated to (BE ,WE).

3.7.1. Removal of a straight edge. Suppose that E is a straight edge of the
map M . By definition, this means that the two edge-sides s1 and s2 of E
belong to the same face F of M . Moreover, if we fix some orientation
on the face F , there is an even number, let us say 2i, of the edge-sides
between s1 and s2 in F . With the other orientation there would also be an
even number, let us say 2j, of the edge-sides between s1 and s2 in F . In
particular, the face F consists of 2i+ 2j + 2 edge-sides. When we remove
the edge E, the face F is split into two faces F1 and F2 which consist of 2i
and 2j edge-sides, respectively (in the degenerate case when i or j is equal
to 0, the corresponding face does not exist).

This can be easily seen graphically, see Figure 3.7. This figure, and the
similar ones hereafter, should be understood as follows.

• We represent in the figures only the polygon(s) containing the edge-
sides s1 and s2; on the left-hand side in the map M and on the right-
hand side in the map M \ E. The other polygons are not modified
by the edge removal.

• The edge-sides which are to be removed, namely s1 and s2, are
indicated by thick dashed lines.

• For improved readability, the edge-side labels are placed outside of
the face. For i ∈ {1, 2} we denote by tBi the partner of si in B and
by tWi the partner of si in W .

• Consider the black (respectively white) extremity of the edge E =
{s1, s2} in the map M . This vertex of M corresponds to the two
black (respectively white) vertices of the polygons, namely to the
black (respectively white) extremities of the edge-sides s1 and s2;
note that in a degenerate case these two extremities might coincide.
These two black (respectively white) vertices are decorated on the
left-hand side of our figures with a square shape (respectively with a
diamond shape). After removal of the edge E these two vertices are
glued together into a single black (respectively white) vertex which
on the right-hand side of our figures is also decorated with the same
square shape (respectively diamond shape).
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tB2

s2

tW2tW1

s1

tB1

2j edges between s1 and s2

2i edges between s2 and s1

removal of

a straight edge

tB2tB1

2j edges in total

tW2tW1

2i edges in total

Figure 3.7. The impact on the faces of a removal of a
straight edge.

3.7.2. Topological viewpoint on removal of an edge. In order to give some
topological intuition to the reader, we shall describe now and in the follow-
ing (Sections 3.7.3, 3.7.5 and 3.7.7) the effect on the surface of a removal
of an edge in each of the three cases. As all the proofs in this paper are done
rigorously with the “set theoretical point of view of maps” (Definitions 3.3
and 3.4, etc.), we permit ourselves to stay a bit informal in these topologi-
cal considerations. For background on non-orientable surfaces, we refer to
[LC09, Section 2.1] and the references therein.

We denote by Σ (respectively Σe) the surface on which the map M (re-
spectively M \ E) is naturally embedded; see Section 3.2. We also denote
by GM ⊂ Σ (respectively by GM\E ⊂ Σe) the graph associated to the map
M (respectively to the map M \ E), viewed as a subset of the surface Σ
(respectively Σe). Furthermore, GM \ E ⊂ Σ denotes the graph GM with
the edge E removed.

We shall compare:

(S1) the connected components of Σ \GM , i.e., the faces of the map M ,
(S2) the connected components of Σ \ (GM \ E),
(S3) the connected components ofΣe\(GM\E), i.e., the faces of the map

M \ E.

Note that, by definition, each connected component in (S1) and (S3) is
homeomorphic to an open disc, while a priori some connected components
in (S2) might not be homeomorphic to a disc. If this is indeed the case, then
the surface Σ does not fulfill the defining property of the surface Σe and
thus Σ 6= Σe.
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Figure 3.8. The impact on the faces of a removal of a twisted edge.

3.7.3. Removal of a straight edge — topological viewpoint. We now come
back from the general considerations to the special case when the edge E
is a straight edge of the map M . The edge-sides s1 and s2 of E lie on
the border of the same face F (i.e., on the border of the same connected
component considered in (S1)), which — by definition — is homeomorphic
to an open disc. The parity condition on the relative position of the edge-
sides s1 and s2 in F implies that the situation illustrated in Figure 3.6a
occurs. Thus, if we erase the edgeE and consider the corresponding surface
Σ\(GM \E), the face F becomes homeomorphic to an annulus, i.e., the set
{z ∈ C : 1 < |z| < 2}. In other terms, one of the components in (S2) is an
annulus (and all the other components are homeomorphic to an open disc).
In order to get the surface Σe, we must replace this annulus by two disjoint
open discs (both objects have the same border) which will be the elements
of (S3). This is in accordance with the fact that the face F of M is split in
M \E into a pair of faces.

In the other direction, in order to transformΣe intoΣ, one has to take two
disjoint open discs lying on the surface Σe and replace them by an annulus,
which corresponds to adding a handle to the surface.

3.7.4. Removal of a twisted edge. Suppose E is a twisted edge of the map
M . By definition, this means that the two edge-sides s1, s2 of E belong to
the same face F of the map M and are in an odd position. Let us denote
the number of the edge-sides of the face F by 2r. Then, after removal of
the edge E, the face F is replaced by a face with 2(r − 1) edge-sides; see
Figure 3.8. The other faces are not modified.

3.7.5. Removal of a twisted edge — topological viewpoint. Topologically,
a removal of a twisted edge has the following effect. Consider the map
M embedded in its surface Σ. Again, both edge-sides s1 and s2 of E are
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Figure 3.9. The impact on the faces of an interface edge removal.

assumed to lie on the same face F of M . However, now the situation il-
lustrated in Figure 3.6b occurs and, when we remove the edge E, the face
F becomes homeomorphic to a Möbius strip; this Möbius strip, denoted by
F ′, is one of the connected components in (S2). As the border of a Möbius
strip is homeomorphic to a circle, one can remove F ′ from Σ and replace
it by a disk; this disk will be one of the elements of (S3). In this way we
obtain a surface Σ′ on which GM \ E is embedded in such a way that each
connected component of Σ′ \ (GM \ E) is homeomorphic to an open disk.
This is the defining property of Σe, thus Σe = Σ′.

Conversely, Σ is obtained from Σe by replacing a disk by a Möbius strip
or, in other words, by adding a cross-cap.

3.7.6. Removal of an interface edge. Suppose E is an interface edge of
M . By definition, this means that the two edge-sides s1, s2 of E belong
to different faces F1 and F2 of M . Let us denote by 2r and 2s the number
of the edge-sides of the face F1 and F2, respectively. Then after removal
of the edge E, the faces F1 and F2 are replaced by a single new face with
2(r + s− 1) edge-sides; see Figure 3.9. The other faces are not modified.

3.7.7. Removal of an interface edge — topological viewpoint. Topologi-
cally, a removal of an interface edge is very simple. Indeed, when we erase
the edge E, the two faces F1 and F2 adjacent to E in M are merged into
a single connected component in (S2) which is homeomorphic to an open
disc. So the condition that components of the surface without the graph
must be homeomorphic to open disks is not violated and one can simply
take Σe = Σ as the surface on which GM \ E = GM\E is drawn.



JACK POLYNOMIALS AND ORIENTABILITY GENERATING SERIES OF MAPS 29

3.8. Weight associated to a map with a history. Let M be a map and let
some linear order ≺ on its edges be given. This linear order will be called
history.

Let E1 ≺ · · · ≺ En be the edges of M , listed according to the linear
order ≺. We set Mi =M \ {E1, . . . , Ei} and define

(3.2) monM,≺ :=
∏

0≤i≤n−1

monMi,Ei+1
.

(Recall that the quantity monM,E appearing on the right-hand side was de-
fined in Section 3.5.) This product monM,≺ can be interpreted as follows:
from the map M we remove (one by one) all the edges, in the order speci-
fied by the history. For each edge which is about to be removed we consider
its weight relative to the current map; finally we multiply all weights.

Please note that the type of a given edge (i.e., straight versus twisted

versus interface) might change in the process of removing edges and the
weight monM,≺ usually depends on the choice of the history ≺.

3.9. Measure of non-orientability of a map. Let M be a map with n
edges. We define

(3.3) monM :=
1

n!

∑

≺
monM,≺ .

This quantity can be interpreted as the mean value of the weight associated
to the map M equipped with a randomly selected history (with all histories
having equal probability). This is the central quantity for the current paper.
We call it the measure of non-orientability of the map M .

Example 3.6. We consider the mapM shown in Figure 3.3. For calculations
involving removal of edges it is more convenient to represent this map as a
ribbon graph, see Figure 3.4. For the history {3, 6} ≺ {1, 5} ≺ {2, 4} the
corresponding weight is equal to monM,≺ = 1 · 1

2
· 1, while for the history

{1, 5} ≺ {3, 6} ≺ {2, 4} the corresponding weight is equal to monM,≺ =
γ · γ · 1. The other histories are analogous to these two cases; finally

monM =

2 summands︷ ︸︸ ︷
1 · 1

2
· 1 + 1 · 1

2
· 1+

4 summands︷ ︸︸ ︷
γ · γ · 1 + · · ·+ γ · γ · 1
6

.

Lemma 3.7. Let M be a map. Then monM is a polynomial in the variable

γ of degree (at most)

d(M) := 2 · (number of connected components of M)− χ(M),

where

χ(M) := |V(M)| − |E(M)|+ |F(M)|
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is the Euler characteristic of M .

The polynomial monM(γ) is an even (respectively odd) polynomial if

and only if the Euler characteristic χ(M) is an even number (respectively

an odd number).

Before we give the proof, notice that, if M is a connected map, then
1
2
d(M) has a natural interpretation as the Euler genus of the surface on

which M is drawn. Moreover, if its underlying surface is orientable, then
the map cannot have any twisted edges, and thus monM(γ) does not depend
on γ. Hence the degree of the polynomial monM(γ) satisfies the same
bound as some invariants defined by Brown and Jackson [BJ07, Lemma 3.3]
and La Croix [LC09, Theorem 4.4].

Proof of Lemma 3.7. We claim that for an arbitrary map M and its edge E:

(A) monM,E is a polynomial in γ of degree (at most) d(M)−d(M \E);
(B) monM,E is an even (respectively odd) polynomial if and only if

d(M) − d(M \ E) is an even number (respectively an odd num-
ber).

Indeed, this statement follows by a careful investigation of each of the three
cases considered in Section 3.5 (cases when at least one of the endpoints of
E has degree 1 must be considered separately). We present the details in
the following.

• Assume that both extremities of E are leaves. Then E is clearly a
straight edge, so monM,E = 1. But M \E has two vertices less, one
edge less, one face less, and one connected component less than M .
So d(M \ E) = d(M), and the claim holds in this case.

• Assume that exactly one extremity of E is a leaf. Then E is clearly
a straight edge, so monM,E = 1. But M \E has one vertex less, one
edge less, and the same number of faces and connected components
as M . So d(M \ E) = d(M), and the claim holds in this case.

• Assume thatE is straight, but none of its extremities is a leaf. Recall
that monM,E = 1 in this case. But M \ E has one edge less and
one more face (see Section 3.7.1) than M . The number of vertices
is unchanged, while the number of connected components can be
constant or increase by 1. In the first case, d(M \ E) = d(M)− 2,
and in the second d(M \E) = d(M). In both cases our claim holds.

• Assume that E is twisted. In this case monM,E = γ. Furthermore,
maps M and M \ E have the same number of connected compo-
nents, the same number of faces, and the same number of vertices
(see Section 3.7.4). However, M \ E has one edge less than M .
Thus d(M \ E) = d(M)− 1, and our claim holds in this case.
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• Assume that E is an interface edge. In this case monM,E = 1
2
. Fur-

thermore, maps M and M \ E have the same number of connected
components and the same number of vertices. However, the number
of faces decreases by 1 (see Section 3.7.6) as well as the number of
edges. Thus d(M \ E) = d(M), and our claim holds in this case.

We apply the above claims (A) and (B) to each factor on the right-hand
side of (3.2); as the sum of the degrees of the factors is a telescoping sum, it
follows that the statement of the lemma holds true if the polynomial monM
is replaced by monM,≺, where ≺ is an arbitrary history. The latter result
finishes the proof by taking the average over ≺. �

Remark 3.8. The above case-by-case analysis can be understood easily from
the topological point of view, at least when the edge removal does not dis-
connect the graph. Indeed, a removal of a straight (respectively twisted or
interface) edge increases the Euler characteristic of the surface by 2 (respec-
tively by 1 or 0), see Sections 3.7.3, 3.7.5 and 3.7.7. It also increases the
degree in γ by 0 (respectively 1 or 0). In all cases, the degree in γ increases
at most as much as the Euler characteristic of the surface decreases, which
explains our lemma.

4. RECTANGULAR YOUNG DIAGRAMS AND LASSALLE’S RECURRENCE

The main result of this section is the following, which constitutes the
first part of Theorem 1.5 (the proof of the remaining part of Theorem 1.5 is
postponed until Section 4.5).

Theorem 4.1. For any rectangular Young diagram

λ = p× q = (q, . . . , q︸ ︷︷ ︸
p times

),

and for an arbitrary partition π and parameter α > 0, the answer for

Question 1.3 is positive, i.e.,

(4.1) Ch(α)
π (p× q) = Ĉh

(α)

π (p× q)

holds true for an arbitrary partition π and arbitrary positive integers p and

q.

The main idea of the proof is to find a combinatorial interpretation of the
recurrence (4.2) found by Lassalle [Las08a, Eq. (6.2)].

4.1. Lassalle’s recurrence. Following Lassalle [Las08a], we denote by
π∪ (s) the partition π with an extra part s added and by π \ (s) the partition



32 M. DOŁĘGA, V. FÉRAY AND P. ŚNIADY

π with one part s removed (we will not use this notation when π does not
contain a part equal to s). We also write

π ∪ 1l = π ∪ (1) ∪ · · · ∪ (1)︸ ︷︷ ︸
l times

,

π↓(s) =
(
π \ (s)

)
∪ (s− 1),

π↑(rs) =
(
π \ (r + s+ 1)

)
∪ (r) ∪ (s),

π↓(rs) =
((
π \ (r)

)
\ (s)

)
∪ (r + s− 1).

Consider a rectangular Young diagram λ = p× q and a partition π such
thatm1(π) = 0 (i.e., π does not contain any part equal to 1). Then Lassalle’s
recurrence relation [Las08a, Eq. (6.2)], after adapting to our normalizations
takes the form

(4.2)

(
p√
α
−

√
αq

)∑

r

r mr(π) Ch
(α)
π↓(r)(λ)

+
∑

r

r mr(π)

r−2∑

i=1

Ch
(α)
π↑(i,r−i−1)(λ)

− γ
∑

r

r(r − 1)mr(π) Ch
(α)
π↓(r)(λ)

+
∑

r,s

rs mr(π)
(
ms(π)− δr,s

)
Ch

(α)
π↓(rs)(λ)

= −|π| Ch(α)
π (λ).

The difficulty in this formula comes from the fact that it was proved only
under the assumption that m1(π) = 0. In the following we will show how
to overcome this issue.

4.2. Partitions with parts equal to 1. Luckily, Jack characters corre-
sponding to a partition π with some parts equal to 1 can be deduced from
the case without parts equal to 1. Indeed, strictly from the definition of Jack
characters (2.1), we have

(4.3) Ch
(α)

π∪1l(λ) = (|λ| − |π|)l Ch(α)
π (λ).

The following result shows that an analogous property is satisfied by the

orientability generating series Ĉh
(α)

π .

Lemma 4.2. Let π be a partition and λ be an arbitrary Young diagram.

Then

(4.4) Ĉh
(α)

π∪1l(λ) = (|λ| − |π|)l Ĉh
(α)

π (λ).
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Proof. It is enough to prove that for any partition π we have

(4.5) Ĉh
(α)

π∪(1)(λ) = (|λ| − |π|) Ĉh
(α)

π (λ).

For a partition π, let Fπ be the set of pairs (M ′,≺), where M ′ is a
map with face-type π and history ≺. More explicitly: we start by fixing
two pairings B′,W ′ of the same set S ′ so that (B′,W ′) has type π. Then
maps of face-type π are triples (B′,W ′, E ′), where E ′ is a pairing of S ′. In
other words, each element of Fπ can be viewed as a pair-partition E ′ of S ′,
equipped with some linear order on the pairs.

Consider two elements b1, b2 that are not in S ′ and let S := S ′ ⊔ {b1, b2}.
We also consider the pairings B := B′ ⊔ {{b1, b2}} and W := W ′ ⊔
{{b1, b2}} of S. The couple (B,W) has type π ∪ (1). Hence maps of
face type π∪ (1) are triples M = (B,W, E), where E is an arbitrary pairing
of S.

If (M,≺) ∈ Fπ∪(1) is such that {b1, b2} is a pair of E , we say that (M,≺
) ∈ F 0

π∪(1); in the other case we say that (M,≺) ∈ F 1
π∪(1). This yields a

disjoint decomposition

(4.6) Fπ∪(1) = F 0
π∪(1) ⊔ F 1

π∪(1).

Let H : Fπ∪(1) → Fπ be a function H : (M,≺) 7→ (M ′,≺′) with M ′ =
(B,W, E) defined as follows:

• If (M,≺) ∈ F 0
π∪(1), then E ′ := E \

{
{b1, b2}

}
is defined as the

pairing E with the pair {b1, b2} removed; as the linear order ≺′ we
take the restriction of ≺ to E ′ ⊂ E .

In this case, M , viewed as a bicolored graph, is a disjoint union
of the bicolored graphM ′ and the bicolored graph consisting of two
vertices connected by the edge {b1, b2}. Thus the number of embed-
dings ofM into the Young diagram λ is simply a product ofN (1)

M ′ (λ)
and the number of embeddings of a single edge into the Young di-
agram λ (the latter number of embeddings is equal to |λ|, because
any box of the Young diagram λ can be the image of the edge, see
Section 1.6). The process of calculating monM,≺ is almost identi-
cal to the analogous process of calculating monM ′,≺′ , except for the
additional edge {b1, b2} which is clearly a straight edge. Thus

N
(1)
M (λ) = |λ| N (1)

M ′ (λ),

|V◦(M)| = |V◦(M
′)|+ 1,

|V•(M)| = |V•(M
′)|+ 1,

monM,≺ = monM ′,≺′ .
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The first three equations also imply that

N
(α)
M (λ) = |λ| N (α)

M ′ (λ).

• Let (M,≺) ∈ F 1
π∪(1). The edge-sides b1 and b2 appear in two dif-

ferent edges {e1, bi}, {e2, bj} ∈ E ; we choose the indices {i, j} =
{1, 2} in such a way that {e1, bi} ≺ {e2, bj}. Then we set

E ′ := E{b1,b2} =
(
E ∪

{
{e1, e2}

})
\
{
{e1, bi}, {e2, bj}

}
.

As the linear order ≺′ we take the unique linear order on E ′ that
coincides with ≺ on the intersection E ∩ E ′ of their domains and
such that for any pair P ∈ E ∩ E ′ we have

P ≺′ {e1, e2} if and only if P ≺ {e2, bj};

in other words, the order ≺′ is obtained from ≺ by replacing the pair
{e2, bj} by {e1, e2} and by removing the pair {e1, bi}.

The map M is obtained from M ′ by replacing the edge {e1, e2}
by a pair of edges in such a way that a new face is created (this face
corresponds to the bigon B = {b1, b2} in L(B,W)). This means
that, as a bicolored graph, M is obtained from the graph M ′ by re-
placing one of the edges by a pair of edges, henceN (α)

M = N
(α)
M ′ . The

process of calculating monM,≺ is almost identical to the analogous
process of calculating monM ′,≺′ , except for the edge {e1, bi}, which
is the edge out of the two edges adjacent to the bigon B which is
removed first. This edge is clearly an interface edge. Thus,

N
(1)
M (λ) = N

(1)
M ′ (λ),

|V◦(M)| = |V◦(M
′)|,

|V•(M)| = |V•(M
′)|,

monM,≺ =
1

2
monM ′,≺′ .

The first three equations imply that

N
(α)
M (λ) = N

(α)
M ′ (λ).

This concludes the definition of the map H.
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The left-hand side of (4.5) is equal to

(4.7) Ĉh
(α)

π∪(1)(λ) =
∑

(M,≺)∈Fπ∪(1)

(−1)ℓ(π)+1

(|π|+ 1)!
(−1)|V•(M)| monM,≺ N

(α)
M (λ)

=
∑

(M,≺)∈F 0
π∪(1)

(−1)ℓ(π)

(|π|+ 1)!
(−1)|V•(M ′)| monM ′,≺′ |λ| N (α)

M ′ (λ)

−
∑

(M,≺)∈F 1
π∪(1)

(−1)ℓ(π)

(|π|+ 1)!
(−1)|V•(M ′)| monM ′,≺′

1

2
N

(α)
M ′ (λ),

where (M ′,≺′) is the image of (M,≺) under H, and in the last equality we
used the decomposition (4.6).

In the following we will show that for each (M ′,≺′) ∈ Fπ its preimage
fulfills

|H−1(M ′,≺′) ∩ F 0
π∪(1)| = |π|+ 1,

|H−1(M ′,≺′) ∩ F 1
π∪(1)| = 2 (|π|+ 1)| π|.

First observe that, for all pairs (M,≺) ∈ H−1(M ′,≺′)∩F 0
π∪(1), the maps

M are all the same: their edge pairing is given by E = E ′ ∪
{
{b1, b2}

}
.

Moreover, the order ≺ is obtained from the order ≺′ by adding the addi-
tional pair {b1, b2} anywhere between pairs of E ′, and this can be done in
|π|+ 1 ways.

Similarly, consider (M,≺) ∈ H−1(M ′,≺′) ∩ F 1
π∪(1). Then E is obtained

from E ′ by removing some pair {e1, e2} and adding the pairs {e1, bi} and
{e2, bj} for some choice of {i, j} = {1, 2}. Since the edges e1 and e2 play
different roles (because by convention {e1, bi} ≺ {e2, bj}, we have alto-
gether 4 choices for doing this for each edge {e1, e2}. The pair {e1, e2} ∈ E ′

can be equivalently specified by saying that there are ℓ elements which are
smaller than {e1, e2} (with respect to ≺′) with 0 ≤ ℓ ≤ |π| − 1. The linear
order ≺ is obtained by replacing the pair {e1, e2} by {e2, bj} and by adding
the pair {e1, bi} in such a way that {e1, bi} ≺ {e2, bj}; there are ℓ+1 choices
for this. Thus the total number of choices is equal to

∑

0≤ℓ≤|π|−1

4(ℓ+ 1) = 2 (|π|+ 1) |π|,

just as we claimed.
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Concluding, from (4.7) we see that

Ĉh
(α)

π∪(1)(λ)

=
∑

(M ′,≺′)∈Fπ

(−1)ℓ(π)

(|π|)! (|π|+ 1)
(−1)|V•(M ′)|

×monM ′,≺′ N
(α)
M ′ (λ)

(
|λ| (|π|+ 1)− 2 (|π|+ 1) |π| 1

2

)

= (|λ| − |π|)×
∑

(M ′,≺′)∈Fπ

(−1)ℓ(π)

(|π|)! (−1)|V•(M ′)|monM ′,≺′ N
(α)
M ′ (λ)

= (|λ| − |π|) Ĉh(α)

π (λ),

which finishes the proof. �

Corollary 4.3. If the answer for Question 1.3 is positive for some partition

π and some Young diagram λ, it is also true for π′ := π ∪ 1 and λ.

Proof. This follows from the recurrence relations (4.3) and (4.4) �

4.3. Recurrence relation for the orientability generating series. In this

section we shall see that the orientability generating series Ĉh
(α)

π (p× q) —
when evaluated at a rectangular Young diagram — satisfies a recurrence
relation analogous to (4.2).

There is an important simplification when we restrict our attention to a
rectangular Young diagram, due to the following lemma.

Lemma 4.4. For a rectangular Young diagram λ = p × q, the number

of embeddings of a bicolored graph G into λ is given by the particularly

simple formula

N
(1)
G (λ) = p|V•(G)| q|V◦(G)|.

Proof. This is a particular case of [FŚ11b, Lemma 3.9]. �

We can now prove the following.
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Proposition 4.5. If λ = p × q is a rectangular Young diagram and π is a

partition such that m1(π) = 0, then

(4.8)

(
p√
α
−

√
αq

)∑

r≥1

r mr(π) Ĉh
(α)

π↓(r)(λ)

︸ ︷︷ ︸
(removing a leaf)

+
∑

r≥1

r mr(π)
r−2∑

i=1

Ĉh
(α)

π↑(i,r−i−1)(λ)

︸ ︷︷ ︸
(removing a straight edge)

− γ
∑

r≥1

r(r − 1)mr(π) Ĉh
(α)

π↓(r)(λ)

︸ ︷︷ ︸
(removing a twisted edge)

+
∑

r,s≥1

rs mr(π)
(
ms(π)− δr,s

)
Ĉh

(α)

π↓(rs)(λ)

︸ ︷︷ ︸
(removing an interface edge)

= −|π| Ĉh(α)

π (λ).

The comments below the curly braces concerning the individual sum-
mands on the left-hand side of this recurrence relation are connected to its
proof; see below.

Remark 4.6. Notice that the assumptionm1(π) = 0 in the proposition above
means that all the sums on the left hand side of (4.8) can, alternatively, run
over r ≥ 2 instead of r ≥ 1.

Proof. Clearly, (3.2) is equivalent to the recursive relationship

monM,≺ = monM,E ·monM\E,≺′,

where E is the first edge according to the linear order ≺, and ≺′ is the
restriction of ≺ to the edges of E(M \ E).

Using (1.9), (1.2), (3.3), and Lemma 4.4, the right-hand side of (4.8) can
be written as

(4.9) − |π| Ĉh(α)

π (λ)

=
(−1)ℓ(π)−1

(|π| − 1)!

∑

(M,≺)

(
− p√

α

)|V•(M)| (
q
√
α
)|V◦(M)|

monM,≺,
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where the sum runs over maps of face type π with a specific history. In the
following we will use the notation

contributionM,≺(λ) :=

(
− p√

α

)|V•(M)| (
q
√
α
)|V◦(M)|

monM,≺

for the contribution of the pair (M,≺) to the sum on the right-hand side of
(4.9).

Recall that the summation in (4.9) should be interpreted as follows: we
fix a couple (B,W) of pairings of type π, and we sum over all choices of
the pairing E of the same ground set S; we also sum over all choices of the
linear order ≺ on E . For such a map M = (B,W, E) and a linear order ≺,
we denote by E = {s1, s2} the first edge according to the linear order ≺
and by ≺′ the restriction of the linear order ≺ to the edges of E \ {E}.

The summation over (M,≺) can be seen alternatively as follows: we first
choose the first edge E and then sum over all choices of the couple (E ′,≺′),
where E ′ = E \ {E} is a pairing of S \ E and ≺′ a linear order on E ′. This
summation over E ′ can be interpreted as a summation over all choices of
the map M ′ = (BE ,WE , E ′) of face-type corresponding to the type of the
couple (BE ,WE). Note that the map M ′ corresponds to M \ E. We shall
use this idea repeatedly in the proof.

We split our sum depending on the type (straight, twisted, or interface)
of the edge E in the map M . Note that, as B and W are fixed, this type
depends only on the pair E, not on the remaining pairs in E . According to
the classification from Section 3.5, there are the following possibilities:

The edge E is straight and both endpoints of E have degree 1. This is
not possible since it would imply that one of the faces of M is a bigon; thus
m1(π) ≥ 1.

The edge E is straight (hence monM,E = 1) and only the black (respec-

tively white) endpoint of E has degree 1 (i.e., it is a leaf). In other terms,
the pair E belongs also to the pairing B (respectively W). We consider the
map M \E; recall that it has one black (respectively white) vertex less than
M (the leaf extremity has been removed together with the edge). It follows
that

contributionM,≺(λ) =
−p√
α
contributionM\E,≺′(λ);(4.10)

respectively

contributionM,≺(λ) = q
√
α contributionM\E,≺′(λ).

Fix the black vertex B = {b1, b2} ∈ B, and let us consider the total
contribution of the couples (E ,≺) such that B is the black endpoint of E;



JACK POLYNOMIALS AND ORIENTABILITY GENERATING SERIES OF MAPS 39

in other words E = B. This means that E = E ′⊔{B}, where E ′ is a pairing
of S \ B, and thus BB = B \ {B}. Therefore (BE ,WE) = (BB,WB)
is a couple of pairings of S \ B of type π↓(r), where 2r is the number of
edge-sides in the polygon of L(B,W) containing B. It follows that the
summation over all choices of the pairing E ′ corresponds to a summation
over all choices of the map M ′ of face-type π↓(r). By definition, the map
M ′ = (BB,WB, E ′) is equal to M \ E, and its contribution appears as the
last factor on the right-hand side of Equation (4.10) above.

Therefore, for a fixed pair B ∈ B that belongs to a polygon of size 2r of
L(B,W), the total contribution to the right-hand side of (4.9) of the couples
(E ,≺) as above is given by

(−1)ℓ(π)−1

(|π| − 1)!

∑

(M ′,≺′)

−p√
α
contributionM ′,≺′(λ) =

p√
α
Ĉhπ↓(r)(λ).

For r ≥ 2, there are mr(π) polygons of size 2r in L(B,W), and each of
them contains r pairs of B. Hence the total contribution of the pairs (M,≺)
such that the first edge E belongs to B (i.e., its black extremity is a leaf) is
equal to

p√
α

∑

r≥2

rmr(π) Ĉhπ↓(r)(λ).

Similarly, the total contribution of pairs (M,≺) such that the first edge E
belongs to W is equal to

−q
√
α
∑

r≥2

rmr(π) Ĉhπ↓(r)(λ).

Finally, both cases together yield the first term of the recurrence relation
(4.8).

The edge E is straight (hence monM,E = 1) and no endpoint of E has

degree 1. In this case, we have

contributionM,≺(λ) = contributionM\E,≺′(λ).

By definition, E = {s1, s2} being straight means that both of its edge-sides
s1 and s2 belong to the same polygon F ∈ L(B,W). Moreover, there is an
even number of edge-sides, say 2i (with i > 0), between s1 and s2 if we
turn around F in one direction, and also an even number of edge-sides, say
2j (with j > 0), if we turn around the face in the other direction.

Fix such a pairE of edge-sides. Then (BE ,WE) is a couple of pairings of
S \ E of type π↑(i,j) (see Section 3.7.1). As before, the summation over all
choices of (E ,≺) such that E is the first edge is equivalent to a summation
over all choices of the pairing E ′ of S \ E and all choices of the order ≺′

on E ′. By definition, this corresponds to a summation over all choices of
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(M ′,≺′), where M ′ = (BE ,WE , E ′) =M \E runs over maps of face-type
π↑(i,j). Therefore, for a fixed E, the total contribution of the corresponding
pairs (M,≺) is equal to

∑

(M ′,≺′)

(−1)ℓ(π)−1

(|π| − 1)!
contributionM ′,≺′(λ) = Ĉh

(α)

π↑(i,j)
(λ).

Let us count how many pairs E correspond to a given value of i and j.
First, s1 must be chosen in some face F containing 2r edge-sides. There are
mr(π) such faces and 2r edge-sides in each of them, so there are 2rmr(π)
possible choices for s1. Once s1 is fixed, there are two possible choices
for s2 (and only one choice if i = j): we fix arbitrarily a direction to turn
around the face F , and then s2 must be the (i+1)-st or (j+1)-st edge-side
after s1 in this direction. As s1 and s2 play identical roles and E is a non-
ordered pair, the number of pairs E corresponding to a pair of values {i, j}
is equal to (2 − δi,j)rmr(π). Hence the total contribution of the couples
(M,≺) such that E is straight and none of its endpoints is a leaf is equal to

∑

r≥1
{i,j}:
i,j≥1,

i+j=r−1

(2− δi,j)rmr(π)Ĉh
(α)

π↑(i,j)
(λ) =

∑

r≥1
i,j≥1

i+j=r−1

rmr(π)Ĉh
(α)

π↑(i,j)
(λ).

Clearly, this is equal to the second summand on the left-hand side of (4.8).

The edge E is twisted and thus monM,E = γ. In this case, no endpoint of
E has degree 1, hence

contributionM,≺(λ) = γ · contributionM\E,≺′(λ).

We fix a pair E = {s1, s2} such that both edge-sides s1 and s2 lie in a
polygon F of L(B,W) and are in an odd position. As above, if we fix the
number 2r of the edge-sides in F , there are 2rmr(π) possible choices for
s1. Once s1 is fixed, there are r − 1 possible choices for s2, which makes
r(r − 1)mr(π) choices for the pair {s1, s2} (recall the symmetry between
s1 and s2).

Fix such an edge E. The couple (BE ,WE) of pairings of S \ E has
type π ↓ (r) (see Section 3.7.4). Hence the summation over all choices of
(M,≺) such that E is the first edge is equivalent to a summation over maps
M \E of face-type π ↓ (r).
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Finally, the total contribution of the couples (M,≺) with first edge
twisted is equal to

∑

r

r(r − 1)mr(π)
∑

(M ′,≺′)

(−1)ℓ(π)−1

(|π| − 1)!
γ · contributionM ′,≺′(λ)

= −γ
∑

r

r(r − 1)mr(π) Ĉhπ↓(r)(λ),

where the summation on the left-hand side is over maps M ′ with face-type
π ↓ (r). Clearly, this is equal to the third summand on the left-hand side of
(4.8).

The edge E is interface and thus monM,E = 1
2
. In this case, no endpoint

of E has degree 1, hence

contributionM,≺(λ) =
1

2
contributionM\E,≺′(λ).

Fix a pairE = {s1, s2} of edge-sides lying in two different polygons F1 and
F2 of L(B,W). Suppose F1 contains 2r edge-sides, while F2 contains 2s.
Then (BE ,WE) has face-type π ↓ (rs) (see Section 3.7.6). The summation
over all choices of (M,≺) such that E is the first edge is equivalent to a
summation over all choices of the map M ′ =M \ E of face-type π ↓ (rs).
Therefore, for a fixed pair E as above, the total contribution of the couples
(M,≺) with first edge equal to E is given by

∑

(M ′,≺′)

(−1)ℓ(π)−1

(|π| − 1)!
· 1
2
contributionM ′,≺′(λ) =

1

2
Ĉhπ↓(rs)(λ).

How many pairs E correspond to a given pair {r, s}? First, one should
choose s1 in a polygon of size 2r or 2s, let us say 2r, of L(S1, S2). There
are 2rmr(π) choices for that. Then we choose s2 in a polygon of size 2s
of L(S1, S2) (recall that, if r = s, this polygon has to be different from the
first one): there are 2s

(
ms(π)− δr,s

)
choices for that. If r = s, then s1 and

s2 play analogous roles (if r 6= s, we broke the symmetry by assuming that
s1 lies in a polygon of size 2r), so one should divide by 2 in order to count
unordered pairs {s1, s2} instead of ordered pairs. Finally, we obtain that the
total contribution of the couples (M,≺) with first edge being interface is
equal to

∑

{r,s}

4

1 + δr,s
rs mr(π)

(
ms(π)− δr,s

) 1
2
Ĉhπ↓(rs)(λ)

=
∑

r,s

rs mr(π)
(
ms(π)− δr,s

)
Ĉhπ↓(rs)(λ).
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Clearly, this is equal to the fourth summand on the left-hand side of (4.8).

By putting together all the contributions of the cases considered above,
we obtain the recurrence (4.8). This finishes the proof of the proposition.

�

4.4. Proof of Theorem 4.1. We use induction on |π|. For |π| = 0, there is

only the empty partition π = ∅; clearly in this case Ch(α)
∅ (λ) = Ĉh

(α)

∅ (λ) =
1. Since this is a somewhat pathological case (empty polygon, empty func-
tion, etc.), in order to avoid difficulties with the start of the induction, we
also consider separately the case |π| = 1, for which there is only one parti-

tion, namely π = (1). In this case, we easily get Ch(α)
1 (λ) = Ĉh

(α)

1 (λ) =
|λ|, so that that start of the induction is established.

Let us assume that the inductive hypothesis holds for all π such that |π| <
n, and let π be a partition with |π| = n. In the case where m1(π) ≥ 1, we
apply (4.3) and (4.4), and the inductive hypothesis implies that (4.1) holds
true for π as well.

In the case where m1(π) = 0, we compare the left-hand side of (4.8)
with the left-hand side of (4.2). From the inductive hypothesis it follows
that they are equal; hence their right-hand sides must be equal as well. This
concludes the proof of the inductive step. �

4.5. Proof of Theorem 1.5. The first part of Theorem 1.5 is restated in
Theorem 4.1, hence it is enough to prove only the second part.

In the following we shall implicitly view α as a function of γ, where α(γ)
was defined in the beginning of the proof of Lemma 2.4.

Let us fix integers i and ℓ with 1 ≤ i ≤ ℓ. We define

P̃Qi :=

{
(
P̃i = (p1, . . . , pℓ), Q = (q1, . . . , qℓ), γ

)
:

pj = 0 for all j 6= i and

√
αP̃i ×

1√
α
Q is a Young diagram

}
.

Note that all Young diagrams appearing in this set are rectangular. Thus the
first part of Theorem 1.5 implies that for any triple (P̃i, Q, γ) ∈ P̃Qi the
equality

(4.11) Ch(α)
π

(√
αP̃i ×

1√
α
Q

)
= Ĉh

(α)

π

(√
αP̃i ×

1√
α
Q

)

holds true for any partition π.
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Just as in Definition 1.4, we now view P = (p1, . . . , pℓ) and Q =
(q1, . . . , qℓ) as sequences of indeterminates. Then, by Lemma 2.4, we know
that each of the quantities

Ch(α)
π

(√
αP × 1√

α
Q

)
and Ĉh

(α)

π

(√
αP × 1√

α
Q

)

is a polynomial in the indeterminates γ, p1, . . . , pℓ, q1, . . . , qℓ. By substitut-
ing

P̃i := (0, . . . , 0︸ ︷︷ ︸
i− 1 times

, pi, 0, . . . , 0︸ ︷︷ ︸
ℓ− i times

),

we see that each of the quantities

(4.12) Ch(α)
π

(√
αP̃i ×

1√
α
Q

)

and

(4.13) Ĉh
(α)

π

(√
αP̃i ×

1√
α
Q

)

can be expressed as a polynomial in the indeterminates γ, pi, q1, . . . , qℓ
(a priori the uniqueness of this polynomial might not be obvious; we shall
discuss this issue in the following).

Moreover, for any triple (g, e, f) of non-negative integers, the following
equality between the coefficients of the respective polynomials holds true:

[
γgpei q

f
i

]
Ch(α)

π

(√
αP × 1√

α
Q

)
=
[
γgpeiq

f
i

]
Ch(α)

π

(√
αP̃i ×

1√
α
Q

)
,

and similarly

[
γgpei q

f
i

]
Ĉh

(α)

π

(√
αP × 1√

α
Q

)
=
[
γgpeiq

f
i

]
Ĉh

(α)

π

(√
αP̃i ×

1√
α
Q

)
.

Since equality (4.11) holds for any triple (P̃i, Q, γ) ∈ P̃Qi, it follows —
using the same technique as in the uniqueness part of the proof of Lemma 2.4
— that the quantities

Ch(α)
π

(√
αP̃i ×

1√
α
Q

)
and Ĉh

(α)

π

(√
αP̃i ×

1√
α
Q

)

are equal as polynomials in the indeterminates γ, pi, q1, . . . , qℓ (note that
the same argument explains the uniqueness of the polynomials (4.12) and
(4.13)). In particular, for any triple (g, e, f) of non-negative integers, the
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following equality between the coefficients of the respective polynomials in
the indeterminates γ, p1, . . . , pℓ, q1, . . . , qℓ holds true:
[
γgpei q

f
i

]
Ch(α)

π

(√
αP × 1√

α
Q

)
=
[
γgpei q

f
i

]
Ĉh

(α)

π

(√
αP × 1√

α
Q

)
.

This finishes the proof. �

5. SUPPORT FOR THE CONJECTURES: SPECIAL VALUES OF α

5.1. Reformulation of the results from [FŚ11b]. The purpose of this sec-
tion is to explain how Equations (1.4) and (1.5) can be obtained easily from
the results of [FŚ11b], even if the presentation there is a little bit different.
We use boldface characters for the notation of [FŚ11b].

First, note the difference in the notation and in the normalization:

Ch(2)
π (λ) =

(
1√
2

)|π|−ℓ(π)
Σ

(2)
π
.

Note also that the roles of black and white vertices in the definition of NG

are inverted. Hence [FŚ11b, Theorem 5.2] with the notation of the present
paper takes the form

Ch(2)
π (λ) =

(
1√
2

)|π|−ℓ(π)
(−1)|π|

2ℓ(π)

∑

M

(−2)|V◦(M)| N (1)
M ,

where the sum runs over the maps of face-type π. This is clearly the same
as Equation (1.4).

Equation (1.5) is deduced directly from (1.4) using the duality relation
(2.5) and the fact that

N
(α)
G (λ′) = N

(1/α)
G′ (λ),

where G′ is obtained from G by inverting the colors of the vertices.

5.2. The special cases α = 1
2

and α = 2.

Theorem 5.1. The answer for Question 1.3 is positive for α = 1
2

and α = 2.

Proof. The condition α ∈
{

1
2
, 2
}

is equivalent to γ2 = 1
2
. This implies, by

the same case analysis as in the proof of Lemma 3.7, that for any edge E of
an arbitrary map M

monM,E = γ

[
|F(M)|−|V(M)|

]
−
[
|F(M\E)|−|V(M\E)|

]
+1.

For an arbitrary history ≺, the exponents of γ in the product (3.2) form a
telescoping sum, thus

monM,≺ = γ|F(M)|−|V(M)|+|E(M)| = γℓ(π)−|V(M)|+|π|,
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where π is the face-type ofM ; in particular this expression does not depend
on the choice of the history, hence

monM = γℓ(π)−|V(M)|+|π|.

One can thus easily check that Ĉh
(2)

π coincides with (1.4), while Ĉh
(1/2)

π

coincides with (1.5). �

6. LINK WITH A POSITIVITY CONJECTURE OF LASSALLE

In this section we often use the following parameter introduced by Las-
salle:

β := α− 1.

6.1. Statement of Lassalle’s conjecture. Lassalle stated the following
conjecture.

Conjecture 6.1 ([Las08a, Conjecture 1]). Let π be a partition such that

m1(π) = 0. Then (−1)|π|ϑP×Q
π∪1n−|π|(α) is a polynomial in (P,−Q, β) with

non-negative integer coefficients.

In the following we will prove (in Corollary 6.3) that our Main Conjec-
ture 1.1 implies a weaker version of Conjecture 6.1, namely that the coeffi-
cients are non-negative rational numbers.

6.2. Positivity in multirectangular coordinates. Our first step is the fol-
lowing statement.

Theorem 6.2. Under the assumption that Main Conjecture 1.1 holds true,

the quantity (−1)|π|Ch(α)
π (P × Q) is a polynomial in the variables

(P/
√
α,−√

αQ,−γ) with non-negative rational coefficients.

Proof. For a Young diagram P × Q given in multirectangular coordinates,
the number of embeddings N (1)

M (P × Q) takes a particularly simple form
(see [FŚ11b, Lemma 3.9], where the notations are slightly different), for
this reason, Equation (1.6) would imply that

Ch(α)
π (P ×Q) = (−1)ℓ(π)

∑

M

wtM(γ)

×


 ∑

ϕ : V•(M)→N⋆

∏

l∈V•(M)

(−pϕ(l)√
α

)
·
∏

l′∈V◦(M)

(√
α qψ(l′)

)

 ,

where the first sum is over all bicolored maps M of face-type π, and ψ(l′)
is defined as the maximum of ϕ(l) over all white neighbors l of the black
vertex l′.
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The quantity wtM(γ) is a polynomial in γ with non-negative rational
coefficients of the same parity as the Euler characteristic χ(M), that is, the
same parity as |π|+ ℓ(π) + |V(M)|. Rewriting the equation above as

(−1)|π|Ch(α)
π (P ×Q) =

∑

M

wtM(−γ)

×


 ∑

ϕ : V•(M)→N⋆

∏

l∈V•(M)

(
pϕ(l)√
α

)
·
∏

l′∈V◦(M)

(
−
√
α qψ(l′)

)

 ,

makes the assertion of the theorem obvious. �

Corollary 6.3. We assume that Main Conjecture 1.1 holds true. Let π be an

arbitrary partition. Then (−1)|π|ϑP×Q
π∪1n−|π|(α) is a polynomial in (P,−Q, β)

with non-negative rational coefficients.

Proof. Using (2.4), we obtain

(−1)|π|ϑP×Q
π∪1n−|π|(α) =

∑

M

√
α
2|V◦(M)|+|π|−ℓ(π)−|V(M)|

wtM(−γ)

×


 ∑

ϕ : V•(M)→N⋆

∏

l∈V•(M)

pϕ(l) ·
∏

l′∈V◦(M)

(
−qψ(l′)

)

 .

Recall that wtM(γ) is a polynomial in γ of degree at most

χ(M) = 2·(number of connected components of M)−ℓ(π)+|π|−|V(M)|

and with the same parity as χ(M). The number of connected components
of M is at most the number of white vertices, and since −γ = β√

α
and

α = β + 1 we see that

√
α
2|V◦(M)|+|π|−ℓ(π)−|V(M)|

wtM(−γ)

is a polynomial in β with non-negative rational coefficients. This concludes
the proof. �

Remark 6.4. If Main Conjecture 1.1 is true with a weight wtM with integer
coefficients (as polynomial in γ), then it also implies the integrality state-
ments in [Las08a, Conjecture 1] and [Las09, Conjecture 1.2].
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7. COMPUTER EXPLORATION AND THE COUNTEREXAMPLE

7.1. Counterexample π = (9). For π = (9) a computer calculation shows
that

(7.1) Ĉh
(α)

(9) (P ×Q)− Ch
(α)
(9) (P ×Q)

=
41

70
(2γ2 − 1)

∑

i<j<k

pipjpk(qk − qj)(qi − qj)qk,

which might be non-zero for multirectangular Young diagrams consisting
of at least ℓ ≥ 3 rectangles. It is worth pointing out that this is not a
counterexample for Conjecture 1.6. However, it shows that the answer to
Question 1.3 might be negative for some specific choices of α and λ.

For (7.1), the quantity Ĉh
(α)

π (P×Q) was computed using the very defini-
tion given in this article. Computing Ch(α)

π (P × Q) is a bit harder
(while shorter in practice): we used some data made available by Lassalle
[Las08b], that express it in terms of the free cumulants. (Lassalle gave an
algorithm to do this computation in [Las09, Section 9]. But as his data
were made available, we did not implement it again.) Then the free cumu-
lant Rk(P ×Q) can be computed using the recursive structure of bicolored
planted plane trees (see [Rat08, Eqs. (10), (11) and (12)]).

The calculation of (7.1) took a week of computer time. Finding this coun-
terexample was only possible because the theoretical results in this paper
and some additional tricks allow to reduce the computational complexity.
(The naive algorithm which lists all maps with all histories would have
to consider 17!! · 9! ≈ 1.25 × 1013 cases.) An analogous calculation for
π = (10) would be, for the moment, rather challenging.

7.2. Another weight. We have also been testing numerically another can-
didate for the weight in Main Conjecture 1.1. The idea was to define mon′

M

as monM,< for some specific history <. We chose this history as follows:

• first erase the edge containing the edge-side with the smallest label
(denote it by s0);

• then remove the edges containing

E ◦W(s0), (E ◦W)2(s0), . . . ,

until you reach s0 again (here the pairings E and W are viewed as
fixed point-free involutions);

• then start again with the edge-side with the smallest label among the
remaining edges.
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This definition was inspired by the work of La Croix on the b-Conjecture
[LC09, Sec. 4.1]. This new candidate weight mon′

M is much easier to eval-
uate as we do not need to consider all possible histories.

This new weight mon′
M gives the correct answer in the cases where α ∈

{1/2, 2}, just as monM does (Theorem 5.1). Indeed, we have proved that in
this case monM,≺ does not depend on the choice of the history ≺, thus any
specific choice of history (or any mean over some set of histories) works
fine.

We have observed numerically that this weight is a solution to Main Con-
jecture 1.1 for any π of size at most 8 as well as for π = (9), but not for
π = (10) and π = (5, 4).

Also, this weight seems to work for rectangular shapes, but we are unable
to prove it. Numerical data suggest that it also works for a superposition of
(at most) two rectangles λ = (p1, p2)× (q1, q2).

ACKNOWLEDGMENTS

We thank Michael La Croix for a very interesting discussion concerning
the b-Conjecture.

We also thank Michel Lassalle for making his data available on his web-
page [Las08b]. Computer exploration for this paper was partly driven by the
open-source mathematical software Sage [S+14] and its algebraic combi-
natorics features developed by the Sage-Combinat community [SCc14].

M.D.’s research has been supported by a grant of the Narodowe Centrum

Nauki (2011/03/N/ST1/00117). In the initial phase of research, P.Ś. was
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[FŚ11b] V. Féray and P. Śniady. Zonal polynomials via Stanley’s coordinates and free

cumulants. J. Algebra, 334:338–373, 2011.
[GJ96a] I. P. Goulden and D. M. Jackson. Connection coefficients, matchings, maps

and combinatorial conjectures for Jack symmetric functions. Trans. Amer.

Math. Soc., 348(3):873–892, 1996.
[GJ96b] I. P. Goulden and D. M. Jackson. Maps in locally orientable surfaces, the dou-

ble coset algebra, and zonal polynomials. Canad. J. Math., 48(3):569–584,
1996.

[GR05] A. Garsia and J. B. Remmel. Breakthroughs in the theory of Macdonald poly-
nomials. Proc. Natl. Acad. Sci. USA, 102(11):3891–3894 (electronic), 2005.

[IO02] V. Ivanov and G. Olshanski. Kerov’s central limit theorem for the Plancherel
measure on Young diagrams. In Symmetric functions 2001: surveys of devel-

opments and perspectives, volume 74 of NATO Sci. Ser. II Math. Phys. Chem.,
pp. 93–151. Kluwer Acad. Publ., Dordrecht, 2002.

[Jac71] H. Jack. A class of symmetric polynomials with a parameter. Proc. Roy. Soc.

Edinburgh Sect. A, 69:1–18, 1970/1971.
[Kad97] K. W. J. Kadell. The Selberg-Jack symmetric functions. Adv. Math.,

130(1):33–102, 1997.
[Ker93] S. Kerov. Transition probabilities of continual Young diagrams and the

Markov moment problem. Funct. Anal. Appl., 27(3):104–117, 1993.
[KO94] S. Kerov and G. Olshanski. Polynomial functions on the set of Young dia-

grams. C. R. Acad. Sci. Paris Sér. I Math., 319(2):121–126, 1994.
[Las08a] M. Lassalle. A positivity conjecture for Jack polynomials. Math. Res. Lett.,

15(4):661–681, 2008.
[Las08b] M. Lassalle. Website Jack polynomials and free cumulants.

http://igm.univ-mlv.fr/~lassalle/free.html, Accessed:
1/12/2012.

[Las09] M. Lassalle. Jack polynomials and free cumulants. Adv. Math., 222(6):2227–
2269, 2009.

[LC09] M. A. La Croix. The combinatorics of the Jack parameter and the genus series

for topological maps. Ph.D. thesis, University of Waterloo, 2009.
[LV95] L. Lapointe and L. Vinet. A Rodrigues formula for the Jack polynomi-

als and the Macdonald–Stanley conjecture. Internat. Math. Res. Notices,
1995(9):419–424, 1995.

[LV97] L. Lapointe and L. Vinet. Rodrigues formulas for the Macdonald polynomials.
Adv. Math., 130(2):261–279, 1997.

[Mac95] I. G. Macdonald. Symmetric functions and Hall polynomials. Oxford Math-
ematical Monographs. The Clarendon Press Oxford University Press, New
York, second edition, 1995. With contributions by A. Zelevinsky, Oxford Sci-
ence Publications.

http://igm.univ-mlv.fr/~lassalle/free.html
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