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NON-SYMMETRIC MACDONALD POLYNOMIALS
AND DEMAZURE–LUSZTIG OPERATORS

PER ALEXANDERSSON

Abstract. We extend the family non-symmetric Macdonald poly-
nomials and define permuted-basement Macdonald polynomials. We
show that these also satisfy a triangularity property with respect to
the monomial basis and behave well under the Demazure–Lusztig
operators. The symmetric Macdonald polynomials Pλ are expressed
as a sum of permuted-basement Macdonald polynomials via an
explicit formula.

By letting q = 0, we obtain t-deformations of key polynomials and
Demazure atoms and we show that the Hall–Littlewood polynomials
expand positively into these deformations. This generalizes a result
by Haglund, Luoto, Mason and van Willigenburg. As a corollary,
the Schur polynomials decompose with non-negative coefficients
into t-deformations of general Demazure atoms and thus generalize
the t = 0 case which was previously known. This gives a unified
formula for the classical expansion of Schur polynomials in Hall–
Littlewood polynomials and the expansion of Schur polynomials
into Demazure atoms.

1. Introduction

We study a generalization of non-symmetric Macdonald polynomials
by adding a permutation parameter σ to the combinatorial model for
the classical non-symmetric Macdonald polynomials. These are called
permuted-basement Macdonald polynomials and were previously intro-
duced in [Fer11]. The parameter σ allows us to interpolate between two
different parameterizations of the Macdonald polynomials. This makes
some unpublished results by J. Haglund and M. Haiman mentioned in
the introduction of [HMR12, TR13] explicit.

This extended family of polynomials satisfies many properties shared
with the classical non-symmetric Macdonald polynomials:
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• For each fixed value of σ, a triangularity property with respect
to expansion in the monomial basis holds. Consequently, the
permuted-basement Macdonald polynomials constitute a basis
for Q(q, t)[x1, . . . , xn] for each fixed σ.
• The permuted-basement Macdonald polynomials behave nicely

under certain affine Hecke algebra operators. These operators
are known as the Demazure–Lusztig operators, which can be
seen as a t-interpolation between the Demazure operators and
the operations which perform a simple transposition on indices
of variables. In particular, these operators act on the parameter
σ in a simple way, see Proposition 15. Consequently, there is a
combinatorial definition based on fillings of diagrams, as well as
a recursive definition via such operators.
• We give the expansion of the classical symmetric Macdonald

polynomial, Pλ, in the permuted-basement Macdonald polyno-
mials in Theorem 29.
• The specialization q = 0 gives t-deformed Demazure atoms. In

particular, in Corollary 30 we show that the Hall–Littlewood
polynomials expand positively in permuted-basement Macdonald
polynomials when q = 0, thus extending a result in [HLMvW11].
• The specialization t = q = 0 of the permuted-basement Macdon-

ald polynomials give the Demazure characters (also known as
key polynomials) and Demazure atoms.
• The result in [Mas09, Prop. 6.1] proves an equality between two

combinatorial models for the key polynomials. In Proposition 27,
we extend her result to incorporate the t parameter as well as
showing the analogous statement for Demazure t-atoms,

Our goal with this paper is therefore to give a unified treatment of
non-symmetric Macdonald polynomials and specializations of these,
such as Demazure atoms, key polynomials and the related operators.
The methods we use are based on the general theory of non-attacking
fillings developed in [HHL08].

2. Preliminaries — Fillings and statistics

Let σ = (σ1, . . . , σn) be a list of n different positive integers and
let α = (α1, . . . , αn) be a weak integer composition, that is, a vector
with non-negative integer entries. An augmented filling of shape α and
basement σ is a filling of a Young diagram of shape (α1, . . . , αn) with
positive integers, augmented with a zeroth column filled from top to
bottom with σ1, . . . , σn. Note that we use English notation rather than
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the skyline fillings used in [HHL08, Mas09]. For example, the following
figure illustrates the difference:

6 5 5
5
4
3 3 4 2
2 2
1 1 6

Our convention

2
6 4 5
1 2 3 5
1 2 3 4 5 6
Skyline convention

In the skyline convention, the basement appears in the bottom of the
diagram, thus explaining the peculiar choice of terminology.
Definition 1. Let F be an augmented filling. Two boxes a, b, are
attacking if F (a) = F (b) and the boxes are either in the same column,
or they are in adjacent columns, with the rightmost box in a row strictly
below the other box.

a
...

b
or

a
...

b

A filling is non-attacking if there are no attacking pairs of boxes.
Definition 2. A triple of type A is an arrangement of boxes, a, b, c,
located such that a is immediately to the left of b, and c is somewhere
below b, and the row containing a and b is at least as long as the row
containing c. Similarly, a triple of type B is an arrangement of boxes,
a, b, c, located such that a is immediately to the left of b, and c is
somewhere above a, and the row containing a and b is strictly longer
than the row containing c.

A type A triple is an inversion triple if the entries ordered increasingly
form a counter-clockwise orientation. Similarly, a type B triple is an
inversion triple if the entries ordered increasingly form a clockwise
orientation. If two entries are equal, the one with largest subscript in
(1) is considered largest.

Type A:
a3 b1

...

c2

Type B:
c2
...

a3 b1

(1)

If u = (i, j) let d(u) denote (i, j−1). A descent in F is a non-basement
box u such that F (d(u)) < F (u). The set of descents in F is denoted
Des(F ).
Example 3. Below is a non-attacking filling of shape (4, 1, 3, 0, 1) and
with basement (4, 5, 3, 2, 1). The bold entries are descents and the
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underlined entries form a type A inversion triple. There are 7 inversion
triples (of type A and B) in total.

4 2 1 2 4
5 5
3 3 4 3
2
1 1

The leg of a box, denoted leg(u), in an augmented diagram is the
number of boxes to the right of u in the diagram. The arm, denoted
arm(u), of a box u = (r, c) in an augmented diagram α is defined as
the cardinality of the sets

{(r′, c) ∈ α : r < r′ and αr′ ≤ αr} and
{(r′, c− 1) ∈ α : r′ < r and αr′ < αr}.

We illustrate the boxes x and y (in the first and second set in the
union, respectively) contributing to arm(u) below. The boxes marked l
contribute to leg(u). The arm values for all boxes in the diagram are
shown in the diagram on the right.

y
y

u l l l
x

x

4 2 2 1
1

6 4 3 2 1
3 1 0
1
4 3 1 1

The major index , maj(F ), of an augmented filling F is given by

maj(F ) =
∑

u∈Des(F )
leg(u) + 1.

The number of inversions, inv(F ) of a filling is the number of inversion
triples of either type. The number of coinversions, coinv(F ), is the
number of type A and type B triples which are not inversion triples.

Let NAFσ(α) denote all non-attacking fillings of shape α, augmented
with the basement σ ∈ Sn, and all entries in the fillings are in {1, . . . , n}.
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Example 4. The set NAF3124(1, 1, 0, 2) consists of the following aug-
mented fillings:

3 1
1 2
2
4 4 3
coinv:1
maj:1

3 1
1 2
2
4 4 4
coinv:1
maj:1

3 2
1 1
2
4 4 3
coinv:0
maj:0

3 2
1 1
2
4 4 4
coinv:0
maj:0

3 3
1 1
2
4 4 2
coinv:1
maj:0

3 3
1 1
2
4 4 4
coinv:0
maj:0

3 3
1 2
2
4 4 1
coinv:2
maj:1

3 3
1 2
2
4 4 4
coinv:0
maj:1

Given a filling F of shape α we let xF denote the product ∏u∈α xF (u).
For example, the last filling in the previous example gives xF = x2x3x

2
4.

Note that the basement entries do not contribute to the product.

3. A generalization of non-symmetric Macdonald
polynomials

The length of a permutation, `(σ), is the number of inversions in σ.
We use the standard convention and let ω0 denote the unique longest
permutation in Sn, that is, ω0 = (n, n− 1, . . . , 1) in one-line notation.
Permutations act on weak compositions by permuting the entries, and
Sn act on R[x1, . . . , xn] (R will mainly be the ring C(q, t)) by permuting
the indices of the variables. Throughout the paper, α and γ denote
weak compositions while λ and µ are integer partitions.
Definition 5. Let σ ∈ Sn and let α be a composition with n parts. The
non-symmetric permuted basement Macdonald polynomial Eσ

α(x; q, t) is
defined as

Eσ
α(x; q, t) =

∑
F∈NAFσ(α)

xF qmaj(F )tcoinv(F ) ∏
u∈F

u is in the basement or
F (d(u)) 6=F (u)

1− t
1− q1+leg(u)t1+arm(u) . (2)

The product is over all boxes u in F , such that either u is in the
basement or F (d(u)) 6= F (u).

When σ = ω0, we recover1 the non-symmetric Macdonald polynomials
defined in [HHL08], Eα(x; q, t). We refer to this particular value of σ
as the key basement and we simply write Eα(x; q, t) for Eω0

α (x; q, t).
1There is a slight difference in notation, the index α is reversed compared to

[HHL08].
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3.1. Properties of non-symmetric Macdonald polynomials. The
following relation is a part of the Knop–Sahi recurrence relations for
Macdonald polynomials [Kno97, Sah96]:

Eα̂(x; q, t) = qα1x1Eα(x2, . . . , xn, q
−1x1; q, t), (3)

where α̂ = (α2, . . . , αn, α1 + 1). Also note that
Eσ

(α1+1,...,αn+1)(x; q, t) = (x1 · · ·xn)Eσ
(α1,...,αn)(x; q, t),

which allows us to extend the definition of non-symmetric Macdonald
“polynomials” to compositions α with negative entries.

Proposition 6 (see [HHL08, Cor. 3.6.4]). We have the relation
Eω0
α (x1, . . . , xn; q, t) = Eid

α (xn, . . . , x1; q−1, t−1).

The polynomials appearing on the right-hand side above is the version
of non-symmetric Macdonald polynomials studied by D. Marshall in
[Mar99].

Question 7. Can Proposition 6 be generalized to basements?

Using Eq. (2) and Proposition 6, we obtain the following diagram
of specializations, where we recover the key polynomial Kα(x) and
Demazure atom, Aα(x). These specializations were proved in [Mas09]
— we give the classical definition (as described in [LS90, RS95]) of key
polynomials and Demazure atoms in Section 6.

Eσ
α(x; q, t) σ=ω0−−−→ Eω0

α (x; q, t) t=q=0−−−→ Kα(x) α=λ−−−→ sλ(x)yσ=id

y t=q=∞
xi→xn+1−i

Eid
α (x; q, t) t=q=0−−−→ Aα(x)

It is also easy to verify that semi-standard augmented fillings of partition
shape λ and basement ω0 can be put in bijection with semi-standard
Young tableaux of shape λ. This shows that the key polynomial Kλ is
the Schur polynomial sλ (in n variables) whenever λ is a partition.

The classical non-symmetric Macdonald polynomials specialize to
other well-known families of polynomials: the elementary symmetric
functions, eλ, the monomial symmetric functions, mλ, and the symmetric
Macdonald polynomials, Pλ(x1, . . . , xn; q, t). See [Mac95] for definitions.

Eα(x; q, t) ∗−−−→ Pλ(x; q, t)yα=λ
q=1
t=0

yq=1
t=0

eλ′(x) mλ(x).
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Here, ∗ is indicate the relation
E(λ,0n)(x1, . . . , xn, 0, . . . , 0; q, t) = Pλ(x1, . . . , xn; q, t)

for partitions λ with n parts. The polynomials Eα(x; 1, 0) can thus be
interpreted as non-symmetric analogues of the elementary symmetric
functions eλ. See the subsequent work [AS17, AS19] for further details
on this interpretation.

Some specializations of non-symmetric Macdonald polynomials, such
as Eα(x; q, 0) and Eα(x; q−1,∞) have representation-theoretical inter-
pretations, see [FM15, FM17, FMO18]. In particular, we note that
[FM15] consider the combinatorial model defined in (2) in an expansion
of some Eα(x; q−1,∞).

3.2. Alcove walk model. Another interesting article concerning non-
symmetric Macdonald polynomials is [RY11], which gives a combina-
torial model using alcove walks. The basic idea is to repeatedly use
Proposition 17 below, expand the product and interpret the terms. This
method expresses a Macdonald polynomials as a sum over alcove walks
starting at the fundamental alcove and ending at the alcove representing
the particular Macdonald polynomial we are interested in.

Permuted-basement Macdonald polynomials can also be generated in
this way — the choice of a starting alcove — which can be done in n!
ways — corresponds to the basement, see [FMO18].

This interpretation should allow us to extend permuted-basement
Macdonald polynomials to other Lie types. Note that the notion of key
polynomials is known in other types, defined via crystal operators, see
for example [HL16].

3.3. Triangularity. In this subsection, we prove that the permuted-
basement Macdonald polynomials satisfy a triangularity property with
respect to the monomial basis.

Definition 8. We define the Bruhat order on compositions of m with
n parts as the transitive closure of the following relations. Here, ei
denotes the unit vector with an 1 at position i.

• If i < j and αj > αi then α >st sij(α), where sij is the transpo-
sition (i, j).
• If i < j and αj − αi > 1 then sij(α) >st α + ei − ej.

Just as for the classical non-symmetric Macdonald polynomials, the
Eσ
α(x; q, t) satisfy a triangularity condition with respect to the monomial
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basis:
Eσ
α(x; q, t) ∈ xσ−1(α) + Q(q, t){xσ−1(γ) : γ <st α}. (4)

Alternatively, this can be expressed in a slightly more pleasant way as
Eσ
α(σx; q, t) ∈ xα + Q(q, t){xγ : γ <st α}. (5)

We prove triangularity with respect to a lexicographic total ordering,
similar to what is done in [Mac95] for the classical symmetric Macdonald
polynomials. This ordering extends the Bruhat order defined above.
Here, λ(α) denotes the unique partition obtained from α by sorting the
parts in a decreasing manner, and >lex is the standard lexicographic
order, comparing elements component-wise from left to right.

Proposition 9 (Triangularity). Let γ and α be weak compositions
of m with n parts. Then for any basement σ ∈ Sn,

[xσ−1(γ)]Eσ
α(x; q, t) =


0 if λ(γ) >lex λ(α),
0 if λ(γ) = λ(α) and γ >lex α,

1 if γ = α.

Proof. First note that [xσ−1(γ)]Eσ
α(x; q, t) = [xγ1

σ1x
γ2
σ2 · · ·x

γk
σk

]Eσ
α(x; q, t), so

we focus on non-attacking fillings of shape α and γi entries with value
σi for i = 1, . . . , n.
Case λ(γ) >lex λ(α): Let λ = λ(γ) and µ = λ(α). The condition
implies that there is some j ≥ 1 such that

λ1 = µ1, λ2 = µ2, . . . λj−1 = µj−1 and λj > µj.

Suppose there is a way to create a non-attacking filling with these
properties. Then there must be λ1 equal entries in different columns,
then λ2 equal entries in different columns and so on.

If j = 1, it is evident that there is no such non-attacking filling, since
λ1 entries must appear in different columns but there are only µ1(< λ1)
columns available.

In the case j > 1, it is straightforward to show by induction that,
after placing the first λ1 + λ2 + λj−1 entries, the number of columns
with available empty boxes is µj. Since µj < λj, there is no non-
attacking filling with weight xγ1

σ1x
γ2
σ2 · · ·x

γn
σn , shape γ and basement σ if

λ(γ) >lex λ(α).
Case λ(γ) = λ(α) and γ >lex α: Assume that there is a filling T
with shape α and weight xγ1

σ1x
γ2
σ2 · · ·x

γn
σn . Let γi be a largest entry in

γ. This implies that there is exactly one entry σi in each column of T
and in particular, at the end of some longest row with length αl = γi.
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The non-attacking condition for adjacent columns now implies that,
if column c has an entry equal to σi in row r1, and column c + 1 has
an entry equal to σi in row r2, then r1 ≥ r2. Hence T is of the form
exemplified in (6), where ∗ marks entries with value σi.

σ1 α1
σ2 ∗ ∗ ∗ α2
σ3 ∗ ∗ α3
σ4 ∗ α4
σ5 α5

(6)

It follows that i ≥ l. By removing the last box in row l, we obtain a
smaller filling T ′, with weight and shape given by

γ′ = (γ1, . . . , γi−1, γi − 1, γi+1, . . . , γn),
α′ = (α1, . . . , αl−1, αl − 1, αi+1, . . . , αn).

Finally, note that λ(γ′) = λ(α′) and γ′ >lex α
′, since γi = αl and i ≥ l.

However, this is absurd, since repeating this procedure eventually yields
the empty filling, where γ >lex α is no longer true. Therefore, there
cannot be a valid filling T satisfying all conditions to begin with.
Case γ = α: As in the previous case, suppose that there is a filling,
T , satisfying the conditions, and repeatedly remove a box from some
longest row as before. This operation preserves the property γ ≥lex α,
but we know that, as soon as a strict inequality is obtained, there is no
such filling.

In order to have equality γ = α after each removal of a box, we
need that all σi appear in the same row. It follows that T must be
the unique filling where every row i is filled with boxes with value σi.
This filling has no inversions and no two different horizontally adjacent
boxes, so T contributes with the monomial xγ1

σ1x
γ2
σ2 · · ·x

γn
σn . This proves

the triangularity statement in (4). �

Question 10. Is there a natural inner product (depending on σ) for
which the Eσ

α(x; q, t) form an orthogonal basis?

4. Demazure–Lusztig operators

In this section we introduce a set of operators acting on polynomials in
x1, . . . , xn. These appear in the study of key polynomials and Demazure
atoms, see e.g. the paper [RS95] by V. Reiner and M. Shimozono for a
background on key polynomials and properties of these operators.
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Let si ∈ Sn denote the simple transposition (i, i+ 1) and define

∂i = 1− si
xi − xi+1

, πi = ∂ixi, θi = πi − 1.

Note that ∂i(f) is indeed a polynomial if f is, since f−sif is divisible by
xi−xi+1. The operators πi and θi are used to define the key polynomials
and Demazure atoms, respectively, and we give this definition further
down. It should be mentioned that θi and πi are closely related to
crystal operators and i-strings, see [Mas09] for details. Now define the
following t-deformations of the above operators:

π̃i(f) = (1− t)πi(f) + tsi(f) θ̃i(f) = (1− t)θi(f) + tsi(f). (7)

The θ̃i are called the Demazure–Lusztig operators and are generators for
the affine Hecke algebra that appear in [HHL08] (where θ̃i is denoted
Ti). A similar set of operators appears in [LLT97, p. 4], in the definition
of Hall–Littlewood functions.

It should be mentioned that [Fer11] provides a nice characterization of
the permuted-basement Macdonald polynomials as simultaneous eigen-
functions of certain products of Demazure–Lusztig operators and the
operation in (3). This is a generalization of Cherednik’s representation
[Che95] of the affine Hecke algebra mentioned above.

4.1. Some properties of θ̃i and π̃i. Using the definition above, it
is straightforward to show that θ̃2

i = (t− 1)θ̃i + t, which implies that
π̃iθ̃i(f) = θ̃iπ̃i(f) = tf . Hence, θ̃i and π̃i are essentially inverses of each
other. We also see that π̃i can be expressed in θ̃i as

π̃i(f) = θ̃i(f) + (1− t)(f). (8)

The θ̃i and π̃i satisfy the braid relations:

• θ̃iθ̃j = θ̃j θ̃i whenever |i− j| ≥ 2 and
• θ̃iθ̃j θ̃i = θ̃j θ̃iθ̃j when |i− j| = 1.

The same relations are satisfied by the π̃i. This implies that, if
ω = ω1 · · ·ω` and ω′ = ω′1 · · ·ω′` are both reduced words for the same
permutation in Sn, then θ̃ω1 θ̃ω2 · · · θ̃ω` = θ̃ω′1 θ̃ω′2 · · · θ̃ω′` . Hence, if τ ∈ Sn
is a permutation, we can define θ̃τ as θ̃ω1 θ̃ω2 · · · θ̃ω` , where ω is any
reduced word for τ . The braid relations above ensure that this is inde-
pendent of the choice of reduced word and thus well-defined. We define
π̃τ in a similar fashion.
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The following lemma is a straightforward consequence of the defini-
tions above.

Lemma 11. If f is symmetric in xi and xi+1 then

• θ̃i(f) = tf ,
• π̃i(f) = f ,
• θ̃i(f · g) = f · θ̃i(g) for any g, and
• θ̃jf is symmetric in xi and xi+1 for j /∈ {i− 1, i+ 1}.

The following lemma is an important tool in Section 4.4.

Lemma 12 ([HHL08]). We have θ̃i(f) = g if and only if f + g and
txi+1f + xig are both symmetric in xi and xi+1.

Lemma 13. The following mixed braid relations hold for π̃i and θ̃i: π̃iπ̃i−1θ̃i = θ̃i−1π̃iπ̃i−1

π̃i−1π̃iθ̃i−1 = θ̃iπ̃i−1π̃i
and

 π̃i−1θ̃iθ̃i−1 = θ̃iθ̃i−1π̃i
π̃iθ̃i−1θ̃i = θ̃i−1θ̃iπ̃i−1.

Proof. Express π̃i and π̃i−1 in terms of θ̃i and θ̃i−1, respectively, and
expand. �

4.2. Something about knots. There is a deep connection between
Macdonald polynomials and knot theory, see for example the connection
between Jones polynomials and Macdonald polynomials [Che12]. It
is not surprising, given the braid relations involving θ̃i and π̃i. For a
background on the braid group, see the introduction and definitions
in [Deh08]. Intuitively, θ̃i and π̃i can be seen as ŝi and ŝ−1

i in the
Artin presentation of the braid group. The relations in Lemma 13 are
compatible with this interpretation, the only caveat here is that θ̃iπ̃i = t,
while ŝiŝ−1

i = id. This has the consequence that, if ŝ±1
i1 ŝ
±1
i2 · · · ŝ

±1
i`

is
a reduced word in the braid group, then substitution of ŝi 7→ θ̃i and
ŝ−1
i 7→ π̃i gives a reduced word of operators.

4.3. Symmetries of diagram fillings. In this subsection, we intro-
duce the necessary notation to state an important proposition proved
in [HHL08]. The complete proof is fairly involved and closely related
to the theory of LLT polynomials, see the Appendix in [Hag07]. We
first generalize the notion of diagrams, arm values, leg values, major
index and inversions. A lattice-square diagram D is subset of boxes
(i, j) ∈ N2. The reading order of a lattice diagram is the total order
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given by reading squares column by column from right to left, and from
top to bottom within each column, as in (9).

12 8 4
13 9 6 2 1

10 5 3
14 11
15 7

(9)

Arm and leg values for each box in a lattice-square diagram are arbitrary
fixed non-negative integers. We say that two boxes u, v form an
inversion pair in a filling F if they are attacking, v precedes u in
reading order and F (u) < F (v). Similarly, the descent set, Des(F ), of a
filling is the set of boxes u ∈ F such that d(u) ∈ F and F (d(u)) < F (u).
Define inv and maj statistics for arbitrary lattice-square fillings as

inv(F ) = |{(u, v) : u, v is an inversion pair in F}| −
∑

s∈Des(F )
arm(s)

maj(F ) =
∑

s∈Des(F )
(1 + leg(s)).

It is shown in [HHL08] that these definitions extend the corresponding
statistics on augmented fillings.

The following powerful proposition appears in [HHL08, Prop. 4.2.5]
which is later used to determine symmetries of expressions obtained as
a sum over non-attacking fillings.

Proposition 14 (see [HHL08]). Consider two disjoint lattice diagrams,
S and B, and two disjoint subsets Y ,Z ⊆ S. Let Ŝ = B ∪ S, and
suppose we have a fixed filling B : B → [n] that does not contain the
entries i and i + 1. Fix arm and leg values for all boxes u such that
u ∈ S and d(u) ∈ Ŝ. For any filling F : S → [n], set F̂ = B ∪F . Then
the sum∑

F :S→[n]
F̂ non-attacking
F (Y)∩{i,i+1}=∅
F (Z)⊆{i,i+1}

xF qmaj(F̂ )t− inv(F̂ ) ∏
u∈S, d(u)∈Ŝ
F̂ (u)=F̂ (d(u))

(
1− q1+leg(u)t1+arm(u)

) ∏
u∈S

u is in the basement or
F̂ (u) 6=F̂ (d(u))

(1− t)

is symmetric in xi and xi+1.

The fixed filling B plays the role of a basement and the sets Z and Y
are subsets of S that specify which boxes should and should not contain
i and i+ 1.
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4.4. Permuting the basement. The following two properties in Pro-
position 15 are essentially inverses of each other — we can use θ̃i to
decrease the length of the basement and π̃i to increase the length. The
result in the following proposition appears without proof in [Fer11],
referencing a private communication with J. Haglund. We provide a
full proof below.

Proposition 15 (Basement permuting operators). Let α be a compo-
sition and let σ be a permutation. Furthermore, let γi be the length of
the row with basement label i, that is, γi = ασ−1

i
.

If `(σsi) < `(σ), then

θ̃iEσ
α(x; q, t) = Eσsi

α (x; q, t)×

t, if γi ≤ γi+1,

1, otherwise.
(10)

Similarly, if `(σsi) > `(σ), then

π̃iEσ
α(x; q, t) = Eσsi

α (x; q, t)×

t, if γi < γi+1,

1, otherwise.
(11)

Proof. Using Lemma 12, to prove (10), it is enough to show two sym-
metries in xi and xi+1. There are two cases to consider.
Case γi ≤ γi+1: It suffices to show that
Eσ
α(x; q, t) + t ·Eσsi

α (x; q, t) and txi+1 ·Eσ
α(x; q, t) + txi ·Eσsi

α (x; q, t)
(12)

are symmetric in xi and xi+1. We show these symmetries using Propo-
sition 14. For the first symmetry, let Ŝ be the augmented diagram
with shape α and let B be all boxes in the basement σ not containing
{i, i+ 1}. Now consider non-attacking fillings σ̂ : Ŝ → [n]. Each such
filling has i and i+ 1 appearing in the basement column exactly once.
Thus, every such filling σ̂ corresponds to either a filling for Eσ

α or Eσsi
α .

However, there is an extra inversion of type A in the leftmost diagram in
(13), compared to the diagram on the right, given by the boxes marked
{i, i+ 1,∞}.

∞ i+1 · · ·
...

i

and

∞ i · · ·
...

i+1

(13)

It follows that the sum over non-attacking fillings with basement σ in
(13) is, up to a constant, t−1Eσ

α, and the sum over fillings with basement
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σsi is, up to the same constant, Eσsi
α . Proposition 14 states that the

total sum t−1Eσ
α + Eσsi

α is symmetric in xi and xi+1 which implies the
first symmetry in (12).

To show the second symmetry, let Ŝ be the augmented diagram of
shape α, with an additional box u in row σ−1

i+1 and column −1. The
set B is again all boxes in the basement σ except the boxes containing
{i, i+ 1}. Let Z = {u} in Proposition 14, such that the box u may only
contain {i, i+ 1}. The non-attacking condition then forces the fillings
of Ŝ to be of the forms in (14) — ignoring u, these fillings produce Eσ

α

and Eσsi
α .

i+1 i+1 · · ·
...

i

and

i i · · ·
...

i+1

(14)

There are no extra inversions in this case, so Proposition 14 implies
that xi+1Eσ

α + xiEσsi
α is symmetric in xi and xi+1, giving the second

requirement in (12).

Case γi > γi+1: Using the exact same strategy as in the previous case,
we must show that

Eσ
α(x; q, t)+Eσsi

α (x; q, t) and txi+1·Eσ
α(x; q, t)+xi·Eσsi

α (x; q, t) (15)

are symmetric in xi and xi+1. As before, fix the basement entries which
are not in {i, i+ 1} and consider fillings of the two types in (16).

∞2 i+1
...

∞1 i · · ·

and

∞2 i
...

∞1 i+1 · · ·

(16)

In this case, there is no extra inversion in either of these (we can imagine
that the boxes marked ∞1 and ∞2 are greater than all other boxes,
and∞2 >∞1) so the first symmetry in (15) is straightforward. Finally,
we add an extra box u ∈ Z, filled with either i or i+ 1. The fillings in
(17) then give Eσ

α(x; q, t) and Eσsi
α (x; q, t).

i+1 i+1
...

∞ i · · ·

and

i i
...

∞ i+1 · · ·

(17)
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We note that the second filling in (17) has an extra inversion of type B,
given by the entries {i, i+ 1,∞} with i and ∞ in the leftmost column.
Hence, xi+1 ·Eσ

α(x; q, t) + t−1xi ·Eσsi
α (x; q, t) is symmetric in xi and xi+1

which implies the last symmetry in (15).
Relation (11) now follows from the first by applying π̃i on both sides

of (10) and use the fact that π̃iθ̃i(f) = tf for all f . �

Repeated application of these operators gives us the following corol-
lary.

Corollary 16. Let σ and α be given, and define twinvθ(α, σ) and
twinvπ(α, σ) as

twinvθ(α, σ) = |{(i, j) : i < j, αi ≤ αj and σi < σj}| ,
twinvπ(α, σ) = |{(i, j) : i < j, αi < αj and σi < σj}| .

Then
θ̃σEω0

α (x; q, t) = ttwinvθ(ω0α,σ)Eω0σ
α (x; q, t), (18)

π̃σEid
α (x; q, t) = ttwinvπ(α,σ)Eσ

α(x; q, t). (19)

Proof. The proof is more or less immediate via induction on `(σ) by
unraveling (10) and (11). �

4.5. Permuting the shape. We now prove a more general version of
an identity in [HHL08], where the case σ = ω0 is proved.

Proposition 17 (Shape permuting operators). If αj < αj+1,
σj = i+ 1 and σj+1 = i for some i, j, then

Eσ
sjα

(x; q, t) =
(
θ̃i + 1− t

1− q1+leg(u)tarm(u)

)
Eσ
α(x; q, t), (20)

where u = (j + 1, αj + 1) in the diagram of shape α.

Proof. The case σ = ω0 is our base case in an inductive argument on
different basements. It is enough to show the following equalities (for
fixed α):

(1) Equation (20) holds for the triple (σ, i, j) if and only if it holds
for (σsk, i, j) if k 6= {i− 1, i, i+ 1}.

(2) Equation (20) holds for (σ, i, j) with (σj−1, σj, σj+1) = (i− 1, i+
1, i) if and only if it holds for (σsi−1si, i− 1, j).

(3) Equation (20) holds for (σ, i, j), where (σj, σj+1, σj+2) = (i +
1, i, i− 1) if and only if it holds for (σsi−1si, i− 1, j).
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The first equality ensures that we are free to permute the basement
labels not involving i and i + 1. The last two equalities allow us to
increase (decrease) the basement labels on rows j, j+1 by one, provided
that there is also a third row where the label is decreased (increased)
by two. It is easy to see that, with these operations, one can reach any
configuration (σ, i, j) satisfying the conditions in Proposition 17 from
the base case.

Consider the statement

Eσ
sjα

(x; q, t) =
(
θ̃i + Cu

)
Eσ
α(x; q, t), Cu = 1− t

1− q1+leg(u)tarm(u) . (21)

Case 1: We want to show that (20) holds for the left configuration in
(22) if and only if it holds for the right-hand side. Note that (22) only
illustrates one of several possible relative positions of k, k + 1 and i.

k · · ·
...

i+1 · · ·

i · · · u · · ·
...

k+1 · · ·

⇐⇒

k+1 · · ·
...

i+1 · · ·

i · · · u · · ·
...

k · · ·

(22)

We apply θ̃k or π̃k depending on if k + 1 appears below or above k,
respectively, on both sides of (21). Both θ̃k and π̃k commute with θ̃i
since |k − i| ≥ 2 and we obtain

t∗ · Eσsk
sjα

(x; q, t) = t∗ ·
(
θ̃i + Cu

)
Eσsk
α (x; q, t) (23)

using Proposition 15. The factor t∗ depends on the relative lengths of
rows with basement label k and k + 1, but it is the same on both sides.
Since going from (21) to (23) is invertible, we have the desired equality.
Case 2: To get from the basement σ on the left-hand side in (24) to
the basement on the right-hand side, we need to perform si−1 followed
by si as right multiplication.

i−1 · · ·

i+1 · · ·

i · · · u · · ·

⇐⇒

i+1 · · ·

i · · ·

i−1 · · · u · · ·

(24)
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Note that `(σ) < `(σsi−1) < `(σsi−1si), so to transform the basement
in (21) from σ to σsi−1si, we need to apply π̃i−1 followed by π̃i. We get

(π̃iπ̃i−1) Eσ
sjα

(x; q, t) = (π̃iπ̃i−1)
(
θ̃i + Cu

)
Eσ
α(x; q, t).

The right-hand side is expanded and the square brackets has been
rewritten using Lemma 13:
(π̃iπ̃i−1) Eσ

sjα
(x; q, t) =

[
θ̃i−1π̃iπ̃i−1

]
Eσ
α(x; q, t) + Cu (π̃iπ̃i−1) Eσ

α(x; q, t)

=
(
θ̃i−1 + Cu

)
(π̃iπ̃i−1) Eσ

α(x; q, t).
The composition π̃iπ̃i−1 now acts on the basement, giving a factor t∗.
Note that this factor is the same on both sides since the comparisons
performed on row lengths are the same for α and sjα. The end result
is the relation

Eσsi−1si
sjα

(x; q, t) =
[
θ̃i−1 + Cu

]
Eσsi−1si
α (x; q, t),

which is what we wish to prove. Since every step is invertible we have
the desired equivalence.
Case 3: This case, showing the equivalence in Eq. (25), is performed
in the same manner as in the previous case, now using θ̃i−1 followed by
θ̃i to go from the configuration on the left-hand side to the one on the
right-hand side.

i+1 · · ·

i · · · u · · ·

i−1 · · ·

⇐⇒

i · · ·

i−1 · · · u · · ·

i+1 · · ·

(25)

We apply θ̃iθ̃i−1 on both sides of (21) and obtain(
θ̃iθ̃i−1

)
Eσ
sjα

(x; q, t) =
(
θ̃iθ̃i−1

) (
θ̃i + Cu

)
Eσ
α(x; q, t).

Expanding the right-hand side, where the braid relation has been used
in the square bracket, we get(
θ̃iθ̃i−1

)
Eσ
sjα

(x; q, t) =
[
θ̃i−1θ̃iθ̃i−1

]
Eσ
α(x; q, t) + Cu

(
θ̃iθ̃i−1

)
Eσ
α(x; q, t)

=
[
θ̃i−1 + Cu

] (
θ̃iθ̃i−1

)
Eσ
α(x; q, t).

A similar argument as before gives the equality. �

Note that for any A not depending on xi, we can invert the operator
(θ̃i + A). We have

(θ̃i + A)−1 = (A+ t− 1− θ̃i)
(A− 1)(A− t) ,
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which is easy to prove using θ̃2
i = (t− 1)θ̃i + t. This fact together with

Proposition 17 gives the following proposition.

Proposition 18 (Shape permuting operators II). If αj > αj+1,
σj = i+ 1 and σj+1 = i for some i, j, then

Eσ
sjα

(x; q, t) = (Cu + t− 1− θ̃i)Eσ
α(x; q, t)

(Cu − 1)(Cu − t)
, (26)

where Cu = 1−t
1−q1+leg(u)t1+arm(u) and u = (j, αj+1 + 1) in the diagram with

shape α.

These two identities tell us how the θ̃i act on non-symmetric Macdon-
ald polynomials. The case αj = αj+1 is discussed in the next section.
The special cases with σ = ω0 or σ = id appear in various places, see
[MN98, BF97, Mar99].

5. Partial symmetries

The goal of this section is to prove partial symmetries of the permuted-
basement Macdonald polynomials. More specifically, if the shape α and
basement σ are such that the augmented diagram is of the form

...

i+1 · · ·

i · · ·
...

or

...

i · · ·

i+1 · · ·
...

, (27)

where two adjacent rows have equal lengths and the basement labels
differ by 1, then the corresponding Macdonald polynomial Eσ

α(x; q, t) is
symmetric in xi and xi+1. We first show a few implications and then
perform induction on the basement and the shape.

In [Mar99], the polynomials Eid
α (x, q, t) were studied. For example,

he derives the analogous formulas for the shape-permuting operators.
We need the following statement — now translated to our notation —
appearing in [Mar99, Eq. (3.4)].

Lemma 19. Suppose αi = αi+1. Then θiEid
α (x; q, t) = tEid

α (x; q, t).

It would be interesting to give a combinatorial proof of this identity
using Proposition 14.



MACDONALD POLYNOMIALS AND DEMAZURE–LUSZTIG OPERATORS 19

Lemma 20. Suppose αj = αj+1 and {σj, σj+1} = {i, i+ 1} for some j,
i. Then the following statements are equivalent:

(1) Eσ
α(x; q, t) is symmetric in xi and xi+1,

(2) θ̃iEσ
α(x; q, t) = tEσ

α(x; q, t),
(3) Eσsi

α (x; q, t) is symmetric in xi and xi+1,
(4) Eσsk

α (x; q, t), k /∈ {i− 1, i, i+ 1}, is symmetric in xi and xi+1.

Proof. We have (1) ⇔ (2) using Lemma 12, (2) ⇔ (3) using Proposi-
tion 15 and Lemma 11, and finally (1)⇔ (4) by using Lemma 11. �

Lemma 21. Suppose αj = αj+1 and {σj, σj+1} = {i, i+ 1} for some j,
i ≥ 2. Then the following statements are equivalent:

(1) Eσ
α(x; q, t) is symmetric in xi and xi+1,

(2) Eσsi−1si
α (x; q, t) is symmetric in xi−1 and xi.

Proof. Proposition 15 implies that either
θ̃iθ̃i−1Eσ

α(x; q, t) = t∗Eσsi−1si
α (x; q, t) or π̃iπ̃i−1Eσ

α(x; q, t) = t∗Eσsi−1si
α

depending on whether the basement label i− 1 appears earlier or later
than i in σ. By linearity, it suffices to verify the stronger statement
that θ̃iθ̃i−1 and π̃iπ̃i−1 map a monomial symmetric in xi and xi+1 to a
monomial symmetric in xi−1 and xi. This calculation is tedious, but
can be verified explicitly with the definition of the Demazure–Lusztig
operators. Note that it is enough perform the computation with θ̃2θ̃1 on
the monomial xa1xb2xb3, and this can be done symbolically in a modern
computer algebra system such as Mathematica. �

We are now ready to prove the main theorem of this section.

Theorem 22 (Partial symmetry). Suppose αj = αj+1 and that
{σj, σj+1} take the values {i, i + 1} for some j, i. Then Eσ

α(x; q, t) is
symmetric in xi and xi+1.

Proof. The first two items in Lemma 20 together with Lemma 19 imply
that the statement is true whenever σ = id. We now argue in the
same manner as in the proof of Proposition 17. Lemma 20 together
with Lemma 21 imply that we can permute the basement as long
as σj and σj+1 differ by one, and still having the statement in the
theorem to be true. In other words, we can reach any basement where
{σj, σj+1} take the values {i, i+1}, using the operations on the basement
described in the previous two lemmas, all while preserving the symmetry
property. �
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Let α ∼ γ denote that α and γ are permutations of the same partition.

Corollary 23. Fix a shape α and let V be the subspace in Q(q, t)[x]
spanned by {Eω0

γ (x; q, t) : γ ∼ α} and let γ ∼ α. Then

θ̃iEω0
γ (x; q, t) ∈ V, π̃iEω0

γ (x; q, t) ∈ V and Eσ
γ(x; q, t) ∈ V, (28)

for any i and σ.

Proof. It is straightforward to show that θ̃iEω0
γ (x; q, t) ∈ V ; whenever

the rows with basement label i and i + 1 have different lengths the
statement follows from Proposition 17 or Proposition 18. In the case of
equal lengths, it follows from Theorem 22, since then θ̃iEω0

γ (x; q, t) =
tEω0

γ (x; q, t). This implies that the θ̃i preserve V . That π̃iEω0
γ (x; q, t) ∈

V now follows from expressing π̃i in terms of θ̃i as in Eq. (8). Finally,
the last statement is a consequence of Proposition 15 using the fact
that the basement-permuting operators preserve V . �

6. Properties of permuted basement t-atoms

We define the Demazure t-atoms as Aα(x; t) = Eid
α (x; 0, t) and the

permuted-basement Demazure t-atoms as Aσα(x; t) = Eσ
α(x; 0, t). Simi-

larly, the t-key polynomials are defined as Kα(x; t) = Eω0
α (x; 0, t). The

Demazure t-atoms were previously introduced in [HLMvW11] and they
have remarkable similarities with Hall–Littlewood polynomials.

Remark 24. Note that the permuted-basement Demazure atoms we
obtain from Aσα(x; 0) do not agree in general with the extension of
Demazure atoms introduced in [HMR12, TR13]. The authors of these
papers impose an extra restriction (called the B-increasing condition)
on the underlying fillings which they call permuted basement fillings
(PBF). One underlying reason for imposing this extra condition is to be
able to do an analogue of RSK on these fillings. The connection with
Demazure operators is unfortunately lost under this restriction.

Lemma 25. Suppose αj < αj+1. If σj = i+ 1 and σj+1 = i for some i,
j, then

π̃iAσα(x; t) = Aσsjα(x; t). (29)
Similarly, if σj = i and σj+1 = i+ 1 for some i, j, then

π̃iAσα(x; t) = tAσsjα(x; t). (30)

Proof. To obtain (29), put q = 0 in Proposition 17 and use the fact
that θ̃i + (1− t) = π̃i. The second equation is a consequence of the first
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as follows. Start with σj = i + 1 and σj+1 = i and apply θ̃i on both
sides of (29):

θ̃iπ̃iAσα(x; t) = θ̃iAσsjα(x; t).
The right-hand side is rewritten using (10). In the left-hand side we
use the same identity after using the fact that π̃i and θ̃i commute:

π̃iAσsiα (x; t) = tAσsisjα
(x; t).

This now implies (30). �

Corollary 26. The operators θ̃i and π̃i act on the shape of the Demazure
t-atom and t-key in the following manner:

θ̃iAα(x; t) = Asiα(x; t) if αi > αi+1, (31)
π̃iKα(x; t) = Ksiα(x; t) if αi < αi+1. (32)

Proof. The first statement is a direct consequence of applying θ̃i on
both sides of (30) followed by using θiπ̃i = t and substituting α with
siα. The second statement is (29) with σ = ω0. �

The following two identities generalize a result which appears in
[Mas09, Prop. 6.1]. The conclusion is that any t-key and Demazure t-
atom can be obtained from a permuted-basement t-atom with a partition
or reverse partition shape, respectively.

Proposition 27. Let σ be a fixed permutation, let λ be a partition and
let µ̄ be the reverse of a partition µ. Then

Kσλ(x; t) = Aω0σ
λ (x; t) and Aσµ̄(x; t) = Aσµ̄(x; t),

where σ is the shortest permutation taking λ to σλ, and µ̄ to σµ̄,
respectively.

Proof. This follows from Corollary 16 and Proposition 15 using induction
on the length of σ. We note that the identities are clearly true when
σ = id. The first equation is now proved as follows. We apply π̃i on
both sides, where identity (29) is used on the left-hand side and (11)
is used on the right-hand side. A similar reasoning proves the second
identity. The condition on σ being the shortest permutation ensures
that only parts of α with different lengths are interchanged. �

Finally, we note that Corollary 26 with t = 0 implies (under the same
conditions as in Proposition 27) that πσxλ = Kσλ̄(x) and θσxµ = Aσµ(x).
This is the standard definition of key polynomials and the Demazure
atoms, see [LS90, RS95, Mas09].
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We are now ready to prove the following proposition.

Proposition 28. Given α and σ, there is a sequence ρ̃i1 · · · ρ̃i` such
that

Aσα(x; t) = ρ̃i1 · · · ρ̃i`xλ, (33)
where λ is the partition with the parts of α in decreasing order and each
ρ̃ij is one of θ̃i or π̃i.

Proof. The case α = λ and σ = id is clear since
Aid
λ (x; t) = xλ, (34)

which follows from the triangularity property. Using (31) repeatedly on
both sides of (34), we have

Aid
α (x; t) = θ̃τxλ, (35)

where τ is the shortest permutation such that α = τλ. Now apply a
sequence of π̃i on both sides in order to transform the basement into
σ while fixing the shape, using the second identity in Proposition 15.
However, this will in general introduce a power of t, corresponding to
how many times we interchange basement labels of rows where the top
row is shorter than the bottom row. Using Corollary 16, we obtain

ttwinvπ(α,σ)Aσα(x; t) = π̃σθ̃τxλ. (36)
Note now that the word π̃σθ̃τ is not reduced, meaning that we can use
the non-mixed brad relations as well as the mixed braid relations in
Lemma 13 together with the cancellation π̃iθ̃i = t.

Since the left-hand side is a multiple of ttwinvπ(α,σ), we must have at
least this number of cancellations on the right-hand side. On the other
hand, after these cancellations we have

Aσα(x; t) = t− twinvπ(α,σ)π̃σθ̃τxλ, (37)
where the left-hand side is a non-zero polynomial when t = 0. Therefore,
the number of cancellations must be equal to ttwinvπ(α,σ), giving the
desired form. �

For further results on Demazure t-atoms, see [AS19].

7. Polynomial expansions

As before, let γ ∼ µ indicate that the parts of γ is a permutation of
the parts of µ, where γ and µ are compositions with the same number
of parts.
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Theorem 29. The symmetric Macdonald polynomials Pλ(x; q, t), in-
dexed by partitions λ, expand in the permuted basement Macdonald
polynomials as

Pλ(x; q, t) =
∏
u∈λ

(
1− q1+leg(u)tarm(u)

)∑
γ∼λ

ttwinvπ(γ,σ)Eσ
γ(x; q, t)∏

v∈γ (1− q1+leg(v)tarm(v)) .

(38)

Proof. In [HHL08, Prop. 5.3.1], the following expansion is obtained:

Pλ(x; q, t) =
∏
u∈λ

(
1− q1+leg(u)tarm(u)

)∑
γ∼λ

Eid
γ (x; q, t)∏

v∈γ (1− q1+leg(v)tarm(v)) .

We apply π̃σ on both sides. The resulting expression on the right-hand
side follows from Corollary 16, and Lemma 11 implies that π̃σ acts as
the identity on the symmetric polynomial on the left-hand side. �

As a corollary, we get the following positive expansion of Hall–
Littlewood polynomials in permuted-basement t-atoms, by letting q = 0
in (38). This extends a result in [HLMvW11].

Corollary 30 (Hall–Littlewood in permuted-basement
t-atoms). The Hall–Littlewood polynomials Pλ(x; t) expand positively
in permuted-basement t-atoms:

Pλ(x; t) =
∑
γ∼λ

ttwinvπ(γ,σ)Aσγ(x; t). (39)

Recall the classical expansion of Schur polynomials in terms of Hall–
Littlewood polynomials,

sλ(x) =
∑
µ`|λ|

Kλµ(t)Pµ(x; t),

where Kλµ(t) ∈ N[t] are the Kostka–Foulkes polynomials. These are
known to be polynomials with non-negative integer coefficients and
have a combinatorial interpretation, see [LS78]. Corollary 30 implies
the following positive expansion.

Corollary 31 (Schur in permuted-basement t-atoms). If λ is a
partition, then

sλ(x) =
∑
γ`|λ|

ttwinvπ(γ,σ)Kλγ(t)Aσγ(x; t), (40)

where the sum now is taken over compositions of |λ| and Kλγ(t) = Kλµ(t)
if γ ∼ µ.
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A combinatorial proof of this identity in the case t = 0 appears in
[Mas08] in the case σ = id.

To give an overview over positive expansions of polynomials in other
bases, we present an overview in Fig. 1. The proofs of these expansions
can be found in the references.

Quasisymmetric Schur Sα(x)

Demazure atom Aα(x)

Key Kα(x)

General atom Aσα(x) General t-atom Aσα(x; t)

Elementary eλ(x)

Schur sλ(x)Schubert, Sw(x)

Hall–Littlewood, Pλ(x; t)

Gessel fundamental Fα(x)

Figure 1. This graph shows various families of polyno-
mials. The arrows indicate the relation expands positively
in which means that the coefficients are polynomials with
non-negative coefficients. A proof of the dashed edge can
be found in [Pun16] and a generalization of the dotted
edge is given in [AS19].
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Appendix: Examples of permuted-basement Macdonald
polynomials

Here are some explicitly computed non-symmetric Macdonald poly-
nomials with a permuted basement.

E321
110(x; q, t) = (1− t)2x1x2

(1− qt) (1− qt2) + t(1− t)x1x2

1− qt2 + (1− t)x1x3

1− qt + x2x3

(♥)

E312
110(x; q, t) = qt(1− t)2x1x2

(1− qt) (1− qt2) + (1− t)x1x2

1− qt2 + q(1− t)x2x3

1− qt + x1x3

(♦)

E213
110(x; q, t) = q(1− t)2x1x3

(1− qt) (1− qt2) + qt(1− t)x1x3

1− qt2 + q(1− t)x2x3

1− qt + x1x2

(♠)

E231
110(x; q, t) = qt(1− t)2x1x3

(1− qt) (1− qt2) + (1− t)x1x3

1− qt2 + (1− t)x1x2

1− qt + x2x3

(♥)

E132
110(x; q, t) = q(1− t)2x2x3

(1− qt) (1− qt2) + qt(1− t)x2x3

1− qt2 + (1− t)x1x2

1− qt + x1x3

(♦)

E123
110(x; q, t) = q2t(1− t)2x2x3

(1− qt) (1− qt2) + q(1− t)x2x3

1− qt2 + q(1− t)x1x3

1− qt + x1x2

(♠)

Note that the indicated pairs of polynomials coincide when simplified.
This is a consequence of Theorem 22.

Here are the Macdonald polynomials associated with a slightly larger
shape:

E321
012 = q(1− t)x2x3x1

1− qt2 + x2x
2
1, E312

012 = q(1− t)tx1x3x2

1− qt2 + x1x
2
2

E213
012 = (1− t)x1x2x3

1− qt2 + x1x
2
3, E231

012 = q(1− t)tx2x3x1

1− qt2 + x3x
2
1

E132
012 = (1− t)x1x3x2

1− qt2 + x3x
2
2, E123

012 = (1− t)tx1x2x3

1− qt2 + x2x
2
3
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