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SL2-TILINGS DO NOT EXIST IN HIGHER DIMENSIONS (MOSTLY)

LAURENT DEMONET, PIERRE-GUY PLAMONDON, DYLAN RUPEL, SALVATORE STELLA,
AND PAVEL TUMARKIN

Abstract. We define a family of generalizations of SL2-tilings to higher dimensions called
ε-SL2-tilings. We show that, in each dimension 3 or greater, ε-SL2-tilings exist only for
certain choices of ε. In the case that they exist, we show that they are essentially unique
and have a concrete description in terms of odd Fibonacci numbers.

1. Introduction

An SL2-tiling of the plane (see Definition 1) is, loosely speaking, obtained by assigning a
positive integer to each integral point of the plane in such a way that all the 2× 2 matrices
formed by squares of adjacent entries have determinant 1. This definition was introduced
by I. Assem, C. Reutenauer and D. Smith in [1], and was used by these authors to obtain
explicit formulas describing cluster variables in cluster algebras of type A. SL2-tilings can
also be viewed as T -systems of type A1 (e.g. see [3, Remark 2.1]), where all variables are
evaluated in positive integers.

The fact that SL2-tilings of the plane even exist may be a little surprising in itself. On the
contrary, already in [1] it was shown that there are infinitely many of them. More recently
C. Bessenrodt, T. Holm and P. Jørgensen [2] classified all such tilings using triangulations
of some suitable infinity-gon.

In this note, we introduce a higher-dimensional analogue of SL2-tilings: integers will be
assigned to points in Zn, for n ≥ 2, and 2× 2 matrices of adjacent entries in every slice will
be required to satisfy a determinantal identity.

Although our definition seems like a natural generalization of the notion of SL2-tilings,
our main result (Theorem 12) states that, if n ≥ 3, then the objects it defines almost never
exist.

2. SL2-Tilings of the Plane

The aim of this note is to study higher-dimensional analogues of the following object.

Definition 1 ([1]). A bi-infinite array (aij)i,j∈Z with aij ∈ Z>0 is called an SL2-tiling of Z2

if the entries satisfy the relation

(1) ai,j+1ai+1,j − aijai+1,j+1 = 1.

A bi-infinite array (bij)i,j∈Z with bij ∈ Z>0 is called an anti-SL2-tiling of Z2 if the entries
satisfy the relation

(2) bi,j+1bi+1,j − bijbi+1,j+1 = −1.
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The notion of an anti-SL2-tiling is not actually giving anything new as shown by the fol-
lowing lemma, however this notion will be useful for our considerations in higher dimensions.

Lemma 2. If (aij)i,j∈Z is an SL2-tiling, then, by taking bij = ai,−j, one obtains an anti-SL2-
tiling.

One should think of the difference between SL2-tilings and anti-SL2-tilings as viewing the
lattice Z2 “from above” or “from below.” The following result from [1] was our starting
point.

Theorem 3 ([1]). There exist infinitely many SL2-tilings of Z2.

In fact, it is shown in [1] that any admissible frontier of 1’s in the lattice can be completed
into a unique SL2-tiling. An interpretation of all possible SL2-tilings was later given in [2]
in terms of triangulations of a polygon with infinitely many vertices.

The following anti-SL2-tiling will be relevant in our higher dimensional analysis. We will
call it the staircase anti-SL2-tiling of Z2.

Example 4. Consider the anti-SL2-tiling (aij)i,j∈Z of Z2 with aij = 1 if i + j ∈ {0, 1}.
Using (2) and the well-known recursion F2r−1F2r+3 = F 2

2r+1 +1 (r ≥ 1) for the odd Fibonacci
numbers, it is easy to see that

aij =

{
F2r−1 if i+ j = r ≥ 1;

F−2r+1 if i+ j = r ≤ 0;

where we number the Fibonacci numbers as:

F1 F2 F3 F4 F5 F6 F7 · · ·
1 1 2 3 5 8 13 · · ·

The following figure is a portion of this tiling. Note the bold frontier of 1’s; it is an “infinite
staircase”.

1 1 2 5 13 34 89 233
2 1 1 2 5 13 34 89
5 2 1 1 2 5 13 34
13 5 2 1 1 2 5 13
34 13 5 2 1 1 2 5
89 34 13 5 2 1 1 2
233 89 34 13 5 2 1 1
610 233 89 34 13 5 2 1

3. SL2-Tilings in Higher Dimensions

For a fixed integer n ≥ 2, denote vectors in Zn by i = (i1 . . . , in) and let ek be the k-th
unit vector in the same lattice. A signature matrix is a symmetric n × n matrix ε = (εk`)
with εk` = ±1 whenever k 6= ` and εkk = −1.

Definition 5. Fix a signature matrix ε. An array (ai)i∈Zn with ai ∈ Z>0 is called an
ε-SL2-tiling of Zn if for all k and ` with k 6= ` we have

(3) ai+e`ai+ek − aiai+ek+e` = εk`.
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The requirement on the diagonal entries of signature matrices might seem arbitrary right
now because they do not play any role in the above definition; we will see later on that it is
indeed a consistent choice.

In the case n = 2 there are only two possible signature matrices recovering the notions of
SL2-tilings and anti-SL2-tilings of Z2.

The following is a portion of an ε-SL2-tiling of Z3 with all entries of ε equal to −1.
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We will say that two n × n signature matrices ε and ε′ are equivalent if any ε-SL2-tiling
of Zn can be made into an ε′-SL2-tiling of Zn by applying some linear transformation to its
indices (i.e., elements of Zn). By Lemma 2, all signature matrices with n = 2 are equivalent.
The situation is more complicated when n ≥ 3 since not all signature matrices are equivalent.
On the other hand, there are easy ways of constructing signature matrices equivalent to a
given signature matrix ε.

Lemma 6. Let ε = (εk`) be any signature matrix and write ε(r) for the matrix obtained
from ε by changing the sign of all the entries in row r and column r, leaving the diagonal
entries fixed. That is, ε(r) = (ε′k`) where ε′k` = −εk` if exactly one of k and ` equals r and
ε′k` = εk` otherwise. If (ai)i∈Zn is an ε-SL2-tiling, then, by taking bi = ai−2irer , one obtains
an ε(r) − SL2-tiling.

Proof. Indeed, all the relations (3) not involving the index r are satisfied for (bi)i∈Zn because
they are satisfied for (ai)i∈Zn . However, the relations involving the index r pick up a sign
when passing from (ai)i∈Zn to (bi)i∈Zn , as desired. �

Definition 7. If ε is a signature matrix such that εk` = 1 (respectively εk` = −1 whenever
k 6= `, we refer to an ε-SL2-tiling as an SL2-tiling (respectively anti-SL2-tiling) of Zn.

Lemma 8. Let n ≥ 3 and assume (ai)i∈Zn is either an SL2-tiling or an anti-SL2-tiling of
Zn. Then for any r ∈ Z the set {ai :

∑n
j=1 ij = r} consists of a single element.

Proof. We will show that the value of ai+ek depends only on ai. This is enough to conclude
our claim because any vector in Zn whose entries sum up to a given integer r can be obtained
from any other with the same property via “zig-zagging” up and down by simultaneously
adding and subtracting unit vectors.

Pick any three distinct indices j, k, ` ∈ [1, n]. To prove our claim we compute ai+ej+ek+e`

in terms of ai, ai+ej , ai+ek , ai+e` in three different ways. For simplicity of notation we set

εjk = εj` = εk` = ε, ai = a, ai+ej = x, ai+ek = y, ai+e` = z.

The following picture will be useful.
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Using (3) three times, we get

ai+ej+ek =
xy − ε
a

, ai+ek+e` =
yz − ε
a

, ai+ej+e` =
xz − ε
a

.

Three more applications of (3) then lead to

ai+ej+ek+e` =


ai+ej+ek

ai+ej+e`
−ε

ai+ej
= xyz

a2
− εy+z

a2
− εa2−ε

a2x
ai+ej+ek

ai+ek+e`
−ε

ai+ek

= xyz
a2
− εx+z

a2
− εa2−ε

a2y
ai+ej+e`

ai+ek+e`
−ε

ai+e`

= xyz
a2
− εx+y

a2
− εa2−ε

a2z

It follows that x−y
a2

= a2−ε
a2x
− a2−ε

a2y
or (xy + a2 − ε)(x − y) = 0. But xy + a2 − ε ≥ 1 since

a, x, y ≥ 1, hence x = y. Similarly y = z. The result then follows by iterating on all possible
triples of distinct indices j, k, `. �

We now come to our first main result: in dimension n, an “infinite staircase” of 1’s yields
the only possible anti-SL2-tiling.

Theorem 9. For n ≥ 3, there exists a unique (up to translation) anti-SL2-tiling of Zn. Any
of its “two-dimensional slices” obtained by fixing all but two of the entries of i is a translation
of the staircase anti-SL2-tiling of Z2 from Example 4. In particular, all the integers appearing
are odd Fibonacci numbers.

Proof. Assume (ai)i∈Zn is an anti-SL2-tiling of Zn. Pick i with ai minimal. Applying (3),
we get

ai+e1ai−e2 = aiai+e1−e2 + 1 = a2i + 1,

where we used Lemma 8 in the last equality. If ai > 1, this implies ai+e1 < ai or ai−e2 < ai,
contradicting minimality, so we must have ai = 1. In turn, again leveraging Lemma 8, this
implies {ai+ek , ai−ek} = {1, 2} for any k ∈ [1, n]. Without loss of generality (by replacing i
by i+e1 if needed) we will assume ai+ek = 2 and

∑n
j=1 ij = 1. Then, applying (3) repeatedly,

we see that ai′ with
∑n

j=1 i
′
j = r ≥ 1 is exactly the rth odd Fibonacci number F2r−1 (see

Example 4). Similarly one sees that ai′ with
∑n

j=1 i
′
j = r ≤ 0 is the odd Fibonacci number

F−2r+1. �

Proposition 10. There does not exist any SL2-tiling of Zn for n ≥ 3.

Proof. Since any 3-dimensional slice of an SL2-tiling of Zn is an SL2-tiling of Z3, it suffices
to show that there is no SL2-tiling of Z3. Assume (ai)i∈Z3 is an SL2-tiling of Z3. Pick i with
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ai minimal. Applying (3), we get

ai+e1ai−e2 = aiai+e1−e2 − 1 = a2i − 1,

where we used Lemma 8 in the last equality. But this implies ai+e1 < ai or ai−e2 < ai,
contradicting minimality. �

Corollary 11. For n = 3, there are precisely 4 signature matrices ε for which there exists
an ε-SL2-tiling. For such ε, this ε-SL2-tiling is unique (up to translation). More precisely,
an ε-SL2-tiling of Z3 exists if and only if ε12ε13ε23 = −1.

Proof. The claim follows immediately from the observation that any signature matrix for
n = 3 is either one of the two satisfying ε12 = ε13 = ε23 or is obtained from one of these with
a single application of Lemma 6. �

We are finally ready to classify all ε-SL2-tilings for any n ≥ 3.

Theorem 12. For n ≥ 3, there are precisely 2n−1 signature matrices ε for which there exists
an ε-SL2-tiling of Zn. They are precisely the signature matrices obtainable from the anti-
SL2-signature matrix by repeated application of Lemma 6. Whenever an ε-SL2-tiling exists,
it is unique up to translation.

Proof. Let (ai)i∈Zn be an ε-SL2-tiling of Zn. Fixing all but any three distinct entries of i
gives an ε′-tiling of Z3 whose signature matrix ε′ is the submatrix of ε with the corresponding
rows and columns. Therefore, it follows from Corollary 11 that we have an inclusion E ⊂ E ′,
where E is the set of n× n signature matrices ε which admit an ε-SL2-tiling, and E ′ is the
set of n × n signature matrices ε satisfying εjkεk`εj` = −1 for any triple of distinct indices
j, k, `.

Any row (or equivalently any column) of a matrix ε in E ′ uniquely determines all the
remaining entries of ε, moreover all possible choices of entries in this fixed row (or equivalently
column) are allowed. Indeed, assume for the sake of clarity that the matrix ε has been
computed using row 1, then

εjkεk`εj` = (−ε1kε1j)(−ε1kε1`)(−ε1jε1`) = −1.

Therefore E ′ is in bijection with {±1}n−1 and #E ′ = 2n−1.
Using Lemma 6, there is an action of (Z/2Z)n−1 on E given by ε 7→ ε(r) for 1 ≤ r ≤ n−1.

This action is free; indeed the only element of (Z/2Z)n−1 leaving invariant the last column
of any given matrix of E is the identity.

Due to Theorem 9, E is not empty, and so we compute #E ≥ 2n−1 = #E ′ ≥ #E and
deduce that E = E ′.

The uniqueness claim also follows immediately from Corollary 11 by fixing all but any
three distinct entries of i. �

Remark 13. It is now clear why we choose the diagonal entries of ε to be equal to −1: any
ε-SL2-tiling consists of odd Fibonacci numbers and (3) is satisfied also for k = `.
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