
Séminaire Lotharingien de Combinatoire 77 (2018), Article B77g

DECOMPOSING RECURRENT STATES OF THE ABELIAN SANDPILE
MODEL

MARK DUKES AND THOMAS SELIG

Abstract. The recurrent states of the Abelian sandpile model (ASM) are those states that
appear infinitely often. For this reason they occupy a central position in ASM research.
The set of stable configurations on a graph form a Markov chain whereby a transition from
a configuration c to another c′ occurs if the addition of a grain to c and the resulting
sequence of topplings (if any) yields the state c′. Checking whether a stable configuration is
recurrent is a far from trivial task and requires Dhar’s criterion, an algorithmic process, to be
used. We present several new results for classifying recurrent states of the Abelian sandpile
model on graphs that may be decomposed in a variety of ways. These results represent an
enormous computational saving with respect to Dhar’s criterion. Furthermore, they allow us
to classify, for certain families of graphs, recurrent states in terms of the recurrent states of
its components. We use these decompositions to give recurrence relations for the generating
functions of the level statistic on the recurrent configurations. We also interpret our results
with respect to the sandpile group.

1. Introduction

The Abelian sandpile model (ASM) has attracted a considerable amount of attention
down through the years, and remains a constant source of new and interesting research
topics. Perhaps the most recent of these is its relation to the discrete Riemann–Roch formula
for graphs [3]. One fundamental aspect of ASM research concerns the classification of the
recurrent states of the model; those states that appear infinitely often in the long-time
running of the model.

In order to calculate this important set of recurrent states of the ASM on a given graph
one appeals to Dhar’s criterion [12], an algorithmic procedure for checking when a stable
configuration on a graph is recurrent. Dhar’s criterion is a global one in the sense that it
induces a wave of topplings to occur throughout a graph and it is indifferent to some sort of
regular structure that may be inherent within the graph. Consequently, the computations
required to go through all possible stable configurations on a graph and check whether the
criterion holds for each can take a significant amount of time.

In this paper we present several new results classifying recurrent states of the ASM on
graphs which may be decomposed in a variety of ways. The computational benefit of our

Key words and phrases. Abelian sandpile model, recurrent states, graph decomposition, level polynomial,
Tutte polynomial.

Supported by the EPSRC grant EP/M015874/1: New combinatorial perspectives on the Abelian sandpile
model.

2 MARK DUKES AND THOMAS SELIG

results to the classification problem can be immense. The level statistic of a sandpile con-
figuration, a quantity that is equal (up to an additive constant) to the sum of its heights, is
studied with respect to these decompositions.

Alongside our classification results we give the generating functions of the level statistic
(to be defined) on these graph decompositions, which we believe to represent a significant
contribution in terms of computational savings. We then show the effect of these graph
decompositions on the sandpile group, which is the set of recurrent states equipped with an
Abelian addition operation. These results also have an added benefit in that they provide
a combinatorial setting in which to interpret set products of configurations that are almost
recurrent states (up to some additive vector). The studied decompositions in components
of the graph are also lifted to product decompositions of the sandpile group of the whole
graph into the sandpile group of the components. We almost interpret these decompositions
in terms of set products of configurations (see Section 5 for details).

The motivation behind the current paper is twofold. First, we are interested in generalizing
results of the first author for recurrent configurations of the sandpile model on the complete
bipartite graph, and understanding how altering the graph (e.g. a doubling of edges) changes
the combinatorial interpretation of the recurrent states as parallelogram polyominoes [13, 1,
2]. Second, we are interested in understanding the sandpile model on graphs that have some
notion of a ‘decomposition point’, a vertex or edge that might afford product-style theorems
to sets of recurrent states. The purpose behind this second goal is to attribute a meaning to
products of combinatorial objects that represent recurrent states. Being able to explain this
has the advantage that constructions on these objects (e.g. restricted lattice paths in the
case of [13]) and statistics upon them can be interpreted in terms of a toppling analysis on
an appropriate graph. Several other authors have considered decompositions on graphs in
relation to the sandpile group and these include Lorenzini [17], Jacobson et al. [15], Berget
et al. [4], and Levine [16]. In particular, Lorenzini [17] observed our Theorem 5.2 in the
remark following the proof of his Proposition 1.

We now introduce the Abelian sandpile model on a graph and review some notation that
is necessary in order for us to present our results. Let G = (V,E) be a finite, connected,
loop-free, undirected multigraph with vertex set V = {v0, . . . , vn}. Let di = dGi = deg(vi)
be the degree of the vertex vi in G. We will consider the sandpile model on the graph G in
which a distinguished vertex, v0 say, acts as a sink. We will indicate which vertex of a graph
is being treated as a sink by writing it as a pair, e.g. (G, v0).

Let Z+ be the set of non-negative integers. A configuration on (G, v0) is a vector c =
(c1, . . . , cn) ∈ Zn+ that assigns the number ci to vertex vi. We think of ci as representing the
number of grains of sand at the vertex vi. Denote by Configv0(G) the set of all configurations
on (G, v0). Let αi ∈ Zn+ be the vector with 1 in the i-th position and 0 elsewhere. Throughout
this paper, we will find it useful to refer to sets of vertices in V and will use the following
notation: given i, j ∈ Z+ with i ≤ j, let V[i,j] = {vi, vi+1, . . . , vj}. Also, for some subset
W ⊆ V , we let G[W] be the subgraph of G with vertex set W and edge set the edges of G
with both endpoints in W .

We will say that a vertex vi in a configuration c = (c1, . . . , cn) ∈ Configv0(G) is stable if
ci < di. Otherwise it is called unstable. A configuration is called stable if all its non-sink
vertices are stable, and we denote Stablev0 (G) the set of all stable configurations on (G, v0).

DECOMPOSING RECURRENT STATES OF THE ABELIAN SANDPILE MODEL 3

Unstable vertices may topple. We define the toppling operator Ti corresponding to the
toppling of an unstable vertex vi ∈ V in a configuration c ∈ Configv0(G) by:

Ti(c) := c− diαi +
∑

j:{vi,vj}∈E

αj, (1)

where the sum is over all vertices adjacent to vi, counted with multiplicity.
Performing this toppling may cause other vertices to become unstable, and we may topple

these also. One can show that starting from some unstable configuration c and toppling
successively unstable vertices, we eventually reach a stable configuration c′ (think of the sink
as absorbing grains). Moreover, this configuration c′ does not depend on the sequence in
which vertices are toppled. We write c′ = σ(c) and call it the stabilization of c.

We now define a Markov chain on the set of stable configurations of a graph (G, v0).
Let µ = (µ1, . . . , µn) be a probability distribution on {1, . . . , n} such that µi > 0 for all
i ∈ {1, . . . , n}. At each step of the Markov chain we add a grain at the vertex vi with
probability µi and stabilize the resulting configuration. Formally the transition matrix Q is
given by:

for all c, c′ ∈ Stablev0 (G) , Q(c, c′) =
n∑
i=1

µi1σ(c+αi)=c′ .

The recurrent states for the Markov chain are the set of configurations which appear
infinitely often in the long-time running of the model. Given a graph (G, v0), we let Recv (G)
be the set of recurrent states on the graph G in which the vertex v acts as the sink. We omit
the subscript when it is clear which vertex is acting as the sink.

Proposition 1.1. A configuration c ∈ Configv0(G) is recurrent if there exists some config-
uration a ∈ Configv0(G), satisfying ai ≥ di for all i ∈ {1, . . . , n}, such that c = σ(a).

An orientation O of G is an orientation of every edge of E. If H is a subgraph of G, then
O
∣∣
H

will denote the restriction of the orientation O to the edges of H. An orientation is
acyclic if it contains no directed cycles. A vertex v ∈ V is a source of the orientation O if it
has no incoming edges. It is easy to check that an acyclic orientation has at least one source.
The following result was first stated in these terms by Biggs [6], although the author credits
a previous paper [14] as having equivalent results.

Theorem 1.2. Let c ∈ Stablev0 (G). Then c is recurrent if, and only if, there exists an
acyclic orientation O of G, such that

(a) The sink v0 is the unique source of O. We say that O is sink-rooted.
(b) We have:

ci ≥ outi(O) for all 1 ≤ i ≤ n, (2)

where outi(O) is the number of outgoing edges from the vertex vi in the orientation
O.

Proposition 1.1 and Theorem 1.2 provide two characterizations of recurrent states. A
further characterization, in terms of the so-called burning algorithm (see [19]) will be given
in the proof of Theorem 3.2. However, it is in general difficult to describe all the recurrent
states for a given graph (G, v0). Using the matrix-tree theorem, one can show that the

4 MARK DUKES AND THOMAS SELIG

number of recurrent states equals the number of spanning trees of the graph [19]. There are
various bijective proofs of this result: in [19] the author provides a non-canonical bijection
between recurrent states and spanning trees, while the authors of [5] and [8] both provided
refined versions which enumerate recurrent configurations according the the level statistic.

This statistic is a popular statistic on sandpile configurations, and we will study it in
conjunction with some of our decomposition theorems. Given a recurrent configuration
c ∈ Recv0 (G), define the level of c to be

levelv0 (c) := dv0 − |E|+
∑

v∈V[1,n]

cv, (3)

where |E| denotes the number of elements in the set E. From [18, Thm. 3.5] we have that
if G = (V,E) is a graph and c ∈ Recv0 (G), then 0 ≤ levelv0 (c) ≤ |E| − |V |. Consequently
the level of a recurrent configuration is always a non-negative integer. We define the level
polynomial of a graph G to be the generating function of the level statistic over the set of
recurrent configurations on that graph;

LevelG,v0 (x) :=
∑

c∈Recv0 (G)

xlevelv0 (c). (4)

Recall that the Tutte polynomial of a (connected) graph G = (V,E) is defined by

TG(x, y) :=
∑
S⊆E

(x− 1)cc(S)−1(y − 1)cc(S)+|S|−|V |, (5)

where for S ⊆ E, cc(S) denotes the number of connected components of the subgraph (V, S).
The level and Tutte polynomials of a graph are related by the following well-known result

that was initially proven by López [18], following a conjecture by Biggs. Subsequent com-
binatorial (bijective) proofs have been given, for instance by Cori and Le Borgne [8], and
Bernardi [5].

Theorem 1.3. Let G be a graph. Then we have LevelG,v0 (x) = TG(1, x). In particular, the
level polynomial is independent of the choice of sink.

Theorem 1.3 makes some of the results of this paper such as Corollaries 3.4 or 4.2 entirely
natural in terms of spanning trees of the graph. However, the structure inherent to the
sandpile model, both in the case of the Markov chain transitions previously mentioned in
this section and of the additive structure of the sandpile group introduced in Section 5, is
much more explicit in terms of the recurrent states than it is in terms of the spanning trees.
As such, the focus of this paper is very much on the explicit description of the recurrent
states of the graph with respect to the decompositions studied, which is more difficult.

Example 1.4. Let G be the graph in Figure 1, where the vertex v0 acts as the sink.
We have Stablev0 (G) = {(0, 0), (0, 1), (1, 0), (1, 1)}. By Theorem 1.2, the configuration

(0, 0) cannot be recurrent. Indeed, any direction given to the edge (v1, v2) would result in
one of those two vertices having an outgoing edge, which would contradict Condition (2)
(the inequality in Theorem 1.2). For the configuration (0, 1), we build a sink-rooted, acyclic
orientation which satisfies Condition (2) by directing the edges from v0 to v1, from v0 to v2,

DECOMPOSING RECURRENT STATES OF THE ABELIAN SANDPILE MODEL 5

v1 v2

v0
G

Figure 1. The graph G: the sink v0 is represented by a square, the non sink
vertices v1, v2 by circles. The squares and circles will become important later
in the paper when non-sink vertices may become sink vertices.

and from v2 to v0, as illustrated in Figure 2. Thus, by Theorem 1.2, the configuration (0, 1)
is recurrent.

0 1

Figure 2. The configuration (0, 1) with the corresponding orientation.

By symmetry, the configuration (1, 0) is also recurrent. Finally, note that the orientation of
Figure 2 also satisfies Condition (2) for the configuration (1, 1), which is therefore recurrent.
Finally, we conclude that

Recv0 (G) = {(0, 1), (1, 0), (1, 1)}.
We may deduce from this the level polynomial for the graph G. We get LevelG,v0 (x) =

x+ 2. This may also be deduced from Theorem 1.3 since the Tutte polynomial of G is given
by TG(x, y) = x2 + x+ y, so that TG(1, x) = x+ 2.

The process by which we determined that the configuration (1, 1) is also recurrent in
Example 1.4 above leads to an interesting generalization. Given a graph (G, v0), there is a
natural partial order � on the set Configv0(G) of all configurations by setting c � c′ if, and
only if, ci ≤ c′i for all i ∈ {1, . . . , n}.

Now notice that, if we have a recurrent configuration c = (c1, . . . , cn) and an orientation
O which satisfies Condition (2), then the same orientation O also satisfies the condition for
the configuration c + αi, for any i ∈ {1, . . . , n}. This is also immediate from the definition
of the Markov chain, since there is a positive probability of adding a grain at the vertex vi,
thus Q(c, c+ αi) > 0. This leads to the following result.

Proposition 1.5. For any graph G, the configuration cmax := (d1−1, . . . , dn−1) is recurrent.
It is the maximal recurrent configuration for the partial order �. Moreover, for any c =
(c1, . . . , cn), the interval [c, cmax] of the poset (Recv0 (G) ,�) is given by

[c, cmax] = {c1, c1 + 1, . . . , d1 − 1} × . . .× {cn, cn + 1, . . . , dn − 1}.
There is a well established characterization of recurrent states of the sandpile model on the

complete graph in terms of parking functions. We will make use of this in later sections, but

6 MARK DUKES AND THOMAS SELIG

will state it here since it serves as a good reference for considering small examples throughout
the paper.

Definition 1.6. A parking function of size n is a sequence of non-negative integers
(a1, . . . , an) such that, when they are rearranged in weakly increasing order as (b1, . . . , bn),
we have bi < i for all 1 ≤ i ≤ n.

Theorem 1.7. The set Recv0 (Kn) is characterized by the following set

Recv0 (Kn) = {(n−2−a1, . . . , n−2−an−1) : (a1, . . . , an−1) if a parking function of size n}.

Parking functions can be easily written down from permuting the heights of horizontal
steps of Dyck paths/sequences. Let Dyckn = {(a1, . . . , an) : ai ∈ {0, . . . , i − 1} and a1 ≤
a2 ≤ · · · ≤ an}. For example,

Dyck3 = {(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 1), (0, 1, 2)}. (6)

Using Theorem 1.7 in conjunction with the notion of Dyck paths/sequences allows us to
write down an explicit expression for Recv0 (Kn):

Recv0 (Kn) = {(n− 2− aπ(1), . . . , n− 2− aπ(n−1)) : π ∈ Symn−1, (a1, . . . , an−1) ∈ Dyckn−1}.
(7)

Example 1.8. We have

Recv0 (K4) = {(2− aπ(1), 2− aπ(2), 2− aπ(3)) : π ∈ Sym3 and (a1, a2, a3) ∈ Dyck3}. (8)

Using the list in Equation (6), we have

Recv0 (K4) ={(2, 2, 2), (2, 2, 1), (2, 1, 2), (1, 2, 2), (2, 2, 0), (2, 0, 2), (0, 2, 2), (2, 1, 1),

(1, 2, 1), (1, 1, 2), (2, 1, 0), (2, 0, 1), (1, 2, 0), (1, 0, 2), (0, 1, 2), (0, 2, 1)}. (9)

Example 1.9. To determine Recv0 (K5), we list all 14 elements of Dyck4:

Dyck4 ={(0, 0, 0, 0), (0, 0, 0, 1), (0, 0, 0, 2), (0, 0, 0, 3), (0, 0, 1, 1), (0, 0, 1, 2), (0, 0, 1, 3),

(0, 0, 2, 2), (0, 0, 2, 3), (0, 1, 1, 1), (0, 1, 1, 2), (0, 1, 1, 3), (0, 1, 2, 2), (0, 1, 2, 3)}
Using this we have

Recv0 (K5) = {(3− aπ(1), 3− aπ(2), 3− aπ(3), 3− aπ(4)) : π ∈ Sym4 and (a1, a2, a3) ∈ Dyck4}.
There will be 125 of these sequences, and we do not list them here.

Note that in general there are nn−2 parking configurations on Kn, so the set of recurrent
configurations may be huge.

2. Recurrent states under edge duplication

In this section we will show how recurrent states of the sandpile model on a graph change
when every edge of a graph is replaced with k copies of itself. Let G = (V,E) be a graph. For
a positive integer k we define G(k) to be the multigraph G where every edge of E is replaced
with k copies of itself. That is G(k) =

(
V,E(k)

)
, where E(k) is the multiset

⋃
e∈E
{e1, . . . , ek},

with ej = e for all j ∈ {1, . . . , k}.

DECOMPOSING RECURRENT STATES OF THE ABELIAN SANDPILE MODEL 7

Theorem 2.1. Let c = (c1, . . . , cn) ∈ Configv0(G). Then the following are equivalent:

(a) c ∈ Recv0
(
G(k)

)
.

(b) c̃ := (bc1/kc, . . . , bcn/kc) ∈ Recv0 (G).

Proof. We first show that (a)⇒ (b). Assume that c ∈ Recv0
(
G(k)

)
. By Theorem 1.2, there

exists a sink-rooted acyclic orientation O(k) on G(k), such that:

ci ≥ outi
(
O(k)

)
for all 1 ≤ i ≤ n. (10)

Now since O(k) is acyclic, for any edge e ∈ E, the corresponding edges e1, . . . , ek ∈ E(k)

must all be oriented in the same direction (if two are oriented in opposite directions, those
two edges create a directed cycle). By giving the edge e the same orientation as that of the
corresponding edges e1, . . . , ek, this allows us to define an orientation O on G, such that

outi
(
O(k)

)
= k · outi(O) for all 1 ≤ i ≤ n. (11)

Moreover, it is easy to check that since the orientation O(k) is sink-rooted and acyclic, so is
the orientation O. Finally, we have:

outi(O) =
1

k
outi

(
O(k)

)
≤ 1

k
ci =

ci
k

for all 1 ≤ i ≤ n,

by using (11) followed by (10). Since outi(O) is an integer, this implies that

outi(O) ≤
⌊ci
k

⌋
= c̃i for all 1 ≤ i ≤ n.

Since O is a sink-rooted acyclic orientation of G satisfying the above, it follows from Theo-
rem 1.2 that c̃ ∈ Recv0 (G).

We now show that (b)⇒ (a). Assume that c is such that c̃ ∈ Recv0 (G). By Theorem 1.2,
there exists a sink-rooted acyclic orientation O on G, such that:

c̃i ≥ outi(O) for all 1 ≤ i ≤ n. (12)

Similarly to above, by orienting all edges e1, . . . , ek of E(k) corresponding to an edge e of E
in the same direction as e, we get a sink-rooted acyclic orientation O(k) on G(k) satisfying
Equation (11). It follows that:

ci ≥ k ·
⌊ci
k

⌋
= k · c̃i ≥ k · outi(O) = outi

(
O(k)

)
for all 1 ≤ i ≤ n,

and as before, Theorem 1.2 implies that c ∈ Recv0
(
G(k)

)
. �

From Theorem 2.1 we can deduce the following formula for the level polynomial of the
graph G(k).

Corollary 2.2. Let k be a positive integer. We have:

LevelG(k),v0 (x) =
(
1 + x+ . . .+ xk−1

)|V |−1 · LevelG,v0
(
xk
)
.

In particular,
∣∣Recv0

(
G(k)

)∣∣ = k(|V |−1)|Recv0 (G) |.

8 MARK DUKES AND THOMAS SELIG

Proof. Let c ∈ Configv0(G
(k)), and c̃ := (bc1/kc, . . . , bcn/kc). Define ai := ci − kbci/kc for

i ∈ {1, . . . , n}. Standard floor inequalities show that ai ∈ {0, . . . , k − 1} for all 1 ≤ i ≤ n.
Thus Theorem 2.1 can be re-stated as follows: c = (c1, . . . , cn) ∈ Recv0

(
G(k)

)
if, and only

if, there exists a unique pair (γ, r) with γ = (γ1, . . . , γn) ∈ Recv0 (G) , r = (r1, . . . , rn) ∈
{0, . . . , k − 1}n such that ci = kγi + ri for all 1 ≤ i ≤ n.

If c = (c1, . . . , cn) ∈ Recv0
(
G(k)

)
then we can write

levelv0 (c) = dG
(k)

v0
− |E(k)|+

n∑
i=1

ci = kdGv0 − k|E|+
n∑
i=1

(kγi + ri) = k · levelv0 (γ) +
n∑
i=1

ri.

Therefore, we can compute:

LevelG(k),v0 (x) =
∑

c∈Recv0(G(k))
xlevelv0 (c) =

∑
γ∈Recv0 (G)
0≤r1,...,rn<k

x(k·levelv0 (γ)+r1+...+rn)

=

(∑
0≤r1,...,rn<k

(xr1) . . . (xrn)

)
·

(∑
γ∈Recv0 (G)

(
xk
)levelv0 (γ))

=
(
1 + x+ . . .+ xk−1

)n · LevelG,v0
(
xk
)
.

�

Example 2.3. We develop an example to show some of the computational gains which can be
made through applying Theorem 2.1 and its corollary. Consider the graph G from Figure 3
below. We wish to determine the recurrent configurations of G(2).

v1 v2

v0

G

v1 v2

v0

G(2)

Figure 3. The graphs G and G(2).

We can show that Recv0 (G) = {(0, 1), (1, 0), (1, 1), (2, 0), (2, 1)}. Now Theorem 2.1 tells
us that c = (c1, c2) ∈ Recv0

(
G(2)

)
if, and only if, there exists a unique pair (γ, α) with

γ = (γ1, γ2) ∈ Recv0 (G) , α = (α1, α2) ∈ {0, 1}2 such that ci = kγi + αi for all i = 1, 2.
In words, recurrent configurations on G(2) are obtained from recurrent configurations on

G by multiplying them by two and adding up to one grain at each vertex. This is made clear
in Table 1.

This table allows us to determine Recv0
(
G(2)

)
. We may also compute the level polynomi-

als. We get
LevelG,v0 (x) = x2 + 2x+ 2,

and thus, by Corollary 2.2

LevelG(k),v0 (x) = (1 + x)2 ·
((
x2
)2

+ 2
(
x2
)

+ 2
)

= x6 + 2x5 + 3x4 + 4x3 + 4x2 + 4x+ 2,

DECOMPOSING RECURRENT STATES OF THE ABELIAN SANDPILE MODEL 9

Recurrent Corresponding recurrent
configurations on G configurations on G(2)

(0, 1) (0, 2)
(0, 3), (1, 2), (1, 3)

(1, 0) (2, 0)
(2, 1), (3, 0), (3, 1)

(1, 1) (2, 2)
(2, 3), (3, 2), (3, 3)

(2, 0) (4, 0)
(4, 1), (5, 0), (5, 1)

(2, 1) (4, 2)
(4, 3), (5, 2), (5, 3)

Table 1. The correspondence between recurrent configurations on G and on
G(2).

which can also be computed directly using the second column of Table 1.

3. Recurrent states on graphs having cut vertices

In this section we show how the recurrent states on a graph which contains a cut vertex
may be decomposed into recurrent states on the two different parts of the graph which meet
at this cut vertex. We then build on this result by showing that a graph whose set of cut
vertices have a tree like structure has a recurrent configuration set that can be decomposed
in a similar manner.

Definition 3.1. Let G = (V,E) be a finite, connected graph. We say that v ∈ V is a cut
vertex of G if removing the vertex v and all edges incident to v makes G disconnected.

Theorem 3.2. Let G = (V,E) be a finite, connected graph, on the vertex set

V = {v0, v1, . . . , vn+m}
where m,n ≥ 1. Assume that vn is a cut vertex of G. Let H1 := G[V[0,n]] and H2 :=

G[V[n,n+m]]. Given c = (c1, . . . , cn+m) ∈ Configv0(G), let c(1) := (c1, . . . , cn−1, cn − dH2
n) and

c(2) := (cn+1, . . . , cn+m), where dH2
n is the degree of the vertex vn in the graph H2. Then

c ∈ Recv0 (G) if and only if c(1) ∈ Recv0 (H1) and c(2) ∈ Recvn (H2) .

v0

vn
H1 H2

Figure 4. The graph G with its cut vertex vn.

10 MARK DUKES AND THOMAS SELIG

Remark 3.3. Theorem 3.2 is obvious in terms of the spanning trees of the graph. Indeed,
the spanning trees of such a graph G are simply given by the “independent” products of
spanning trees of H1 and H2. The difficulty here is to describe such decompositions in terms
of the recurrent states.

Proof. First let us assume that c(1) ∈ Recv0 (H1) and c(2) ∈ Recvn (H2). Then there exists a
sink-rooted acyclic orientation O1 of H1, and an acyclic orientation O2 of H2 whose unique
source is the vertex vn, such that:

c
(1)
i ≥ outi(O1), for all 1 ≤ i ≤ n, and c

(2)
j ≥ outj(O2), for all n+ 1 ≤ j ≤ n+m.

Since the edges of the graphs H1 and H2 form a partition of the edges of G, we may define
an orientation O := O1 ∪ O2 of G. By construction, O is sink-rooted and acyclic.

For i ∈ {1, . . . , n− 1}, we have:

ci = c
(1)
i ≥ outi(O1) = outi(O).

Similarly, for j ∈ {n+ 1, . . . , n+m}, we have:

cj = c
(2)
j ≥ outj(O2) = outj(O).

Finally, at the vertex vn, we have:

cn = c(1)n + dH2
n ≥ outn(O1) + dH2

n = outn(O1) + outn(O2) = outn(O),

since vn is a source of the orientation O2. Thus the orientation O satisfies Condition (2),
and by Theorem 1.2, the configuration c is recurrent.

To show the converse, we first recall some results concerning the so-called burning algo-
rithm (see [19]). This algorithm inputs a stable configuration a on a graph G = (V,E), and
establishes if a is recurrent. We now describe this algorithm.

B1. Initialise by setting V B
0 = {v0}. The set V B

i will be the set of vertices burnt up to
and including time i.

B2. (i) Assume for some i ≥ 0, we have constructed the set V B
i of vertices burnt up to

and including time i.
(ii) Let V U

i be the set of vertices not yet burnt and set Gi := G[V U
i].

(iii) Now set Ṽi := {v ∈ V U
i ; av ≥ dGiv } to be the set of unstable vertices in the

configuration a restricted to Gi.
(iv) By construction, since a is stable in the graph G, the instability of any such

vertex must arise from the burning of previous vertices.
(v) We set V B

i+1 := V B
i ∪ Ṽi.

B3. The algorithm terminates when we reach a time i such that no vertices can subse-
quently be burnt, i.e. Ṽi = ∅. It outputs V B := V B

i , which is the set of all vertices
burnt beforehand.

Notice that since V B
0 ⊆ V B

1 ⊆ V B
2 ⊆ · · · ⊆ V , the burning algorithm does indeed terminate.

Our interest lies in the following facts.

(1) The configuration a is recurrent if, and only if, V B = V , i.e. the burning algorithm
applied to a burns all vertices of the initial graph.

DECOMPOSING RECURRENT STATES OF THE ABELIAN SANDPILE MODEL 11

(2) Let a ∈ Recv0 (G). Define a total order ≺b on the set of vertices V by setting vi ≺b vj
if, when applying the burning algorithm to a, either vi is burned before vj, or they
are burned at the same time and i < j. Now define an orientation Ob of G by
orienting the edge {v, w} from v to w if, and only if, v ≺b w. Then this orientation
is sink-rooted, acyclic, and satisfies:

av ≥ outObv , for all v ∈ V .

We now return to the proof of Theorem 3.2. Let c ∈ Recv0 (G). Apply the burning
algorithm to c, and let Ob be the corresponding sink-rooted acyclic orientation as in part
(2) of the above. Since the cut vertex vn lies on all paths from the sink to vertices vk when
k ≥ n + 1, this implies that the vertex vn must be burnt before any vertices with higher
indices. Therefore, in the orientation Ob, all edges from vn to vertices of H2 are oriented
away from vn.

We now define O1 := Ob|H1
and O2 := Ob|H2

. Due to the above, it follows that vn is the
unique source of the orientation O2. Moreover, by construction O1 is sink-rooted, and both
orientations are acyclic. Now let k ∈ {1, . . . , n+m}. We have:

if k ≤ n− 1, then c
(1)
k = ck ≥ outk(O) = outk(O1); (13)

if k = n, then c(1)n = cn − dH2
n ≥ outn(O)− dH2

n = outn(O)− outn(O2) = outn(O1);
(14)

if k ≥ n+ 1, then c
(2)
k = ck ≥ outk(O) = outk(O2). (15)

By Theorem 1.2, Equations (13) and (14) imply that c(1) ∈ Recv0 (H1), while Equation (15)
implies that c(2) ∈ Recvn (H2). This completes the proof of Theorem 3.2. �

Theorem 3.2 implies the following decomposition for the level polynomial of a graph with
a cut vertex.

Corollary 3.4. Let G = (V,E) be a finite, connected graph, on the vertex set

V = {v0, v1, . . . , vn+m}
where m,n ≥ 1. Assume that vn is a cut vertex of G. Let H1 := G[V[0,n]] and H2 :=
G[V[n,n+m]]. Then we have:

LevelG,v0 (x) = LevelH1,v0 (x) · LevelH2,vn (x) .

Proof. Let c be a configuration on G. Let c(1) (respectively c(2)) be the configurations on H1

(respectively H2) as defined in Theorem 3.2. Then we have:

levelv0 (c) = d0 − |E|+ (c1 + . . .+ cn−1) + cn + (cn+1 + . . .+ cn+m)

= d0 − (|E1|+ |E2|) +

(
n−1∑
i=1

c
(1)
i

)
+ (c(1)n + dH2

n) +

(
n+m∑
i=n+1

c
(2)
i

)

=

(
d0 − |E1|+

n∑
i=1

c
(1)
i

)
+

(
dH2
n − |E2|+

n+m∑
i=n+1

c
(2)
i

)
= levelv0

(
c(1)
)

+ levelvn
(
c(2)
)
,

12 MARK DUKES AND THOMAS SELIG

and the claim immediately follows. �

We note that Corollary 3.4 is in fact a consequence of the Specification Theorem 1.3, and
the following result, due to Tutte [21].

Theorem 3.5. Let G be a graph. Assume G has a cut vertex which splits G into two
components H1 and H2. Then we have:

TG(x, y) = TH1(x, y) · TH2(x, y).

The proof of Theorem 3.5 relies on the expression of the Tutte polynomial in terms of
internal and external activities of spanning trees. However, our Theorem 3.2 gives a com-
binatorial explanation of this decomposition (at least at the specification x = 1). It is also
worth noting that a similar decomposition result was given for the so-called flow polynomial,
which is another specification of the Tutte polynomial, in [20].

v0

v1 v2 v3

v4

G

Figure 5. A graph G with its cut vertex v2.

Example 3.6. Consider the graph G of Figure 5. The vertex v2 is a cut vertex. We may
thus determine the recurrent configurations by combining recurrent configurations on the
subgraphs H1 and H2, adding two grains at the cut vertex v2, since it has two incident edges
in H2. We show this in the Table 2, in which we also compute the level polynomials.

Graph

v0

v1 v2

H1

v2 v3

v4

H2

v0

v1 v2 v3

v4

G

Recurrent (0, 1) (0, 1), (1, 0), (1, 1) (0, 3, 0, 1), (0, 3, 1, 0), (0, 3, 1, 1)
configurations (1, 0) (0, 1), (1, 0), (1, 1) (1, 2, 0, 1), (1, 2, 1, 0), (1, 2, 1, 1)

(1, 1) (0, 1), (1, 0), (1, 1) (1, 3, 0, 1), (1, 3, 1, 0), (1, 3, 1, 1)
(2, 0) (0, 1), (1, 0), (1, 1) (2, 2, 0, 1), (2, 2, 1, 0), (2, 2, 1, 1)
(2, 1) (0, 1), (1, 0), (1, 1) (2, 3, 0, 1), (2, 3, 1, 0), (2, 3, 1, 1)

Level x2 + 2x+ 2 x+ 2 x3 + 4x2 + 6x+ 4
polynomial = (x2 + 2x+ 2) · (x+ 2)

Table 2. Applying Theorem 3.2 to determine the recurrent configurations of G.

DECOMPOSING RECURRENT STATES OF THE ABELIAN SANDPILE MODEL 13

3.1. Cut vertices in graphs with an underlying tree-like structure. Theorem 3.2
showed us how to determine the recurrent configurations of the sandpile model on a graph
G when it has one cut vertex that splits it into two subgraphs H1 and H2. The subgraph
H1 contained the sink of G, and the intersection of H1 and H2 is the cut vertex vn. If
one considers the graphs H1 and H2 now as vertices, then Theorem 3.2 is the result (see
Figure 6) for a graph constructed on a single, rooted edge, where: the root vertex corresponds
to the subgraph H1 containing the sink v0 of G; the non-root vertex corresponds to the other
subgraph H2; the edge corresponds to the cut vertex vn. In this subsection we generalize

v0

vn
H1 H2

H1 H2

vn

Figure 6. A graph with a cut vertex can be seen as a graph constructed on
a single edge.

this from the case of a single rooted edge to the case of a rooted tree. First we will need
some notation to be able to discuss the associate tree-structure.

Consider a tree (T, ρ), rooted at some vertex ρ. For clarity, we will refer to vertices of
the tree as nodes, to distinguish them from vertices of the graph G. Let nodes (T) denote
the node set of T . Since T is rooted, every non-root node t ∈ nodes (T) \ {ρ} will have an
adjacent node on the (unique) path from t to the root ρ called the parent of t and denoted
by parent(t). All other nodes adjacent to t are called descendants of t, and this set is denoted
desc(t). If a node has no descendants then it is called a leaf.

We now explain what we mean for a graph G to have an underlying tree-structure (T, ρ).

Definition 3.7. We will say that the graph-sink pair (G, vρ) has an underlying cv-tree
structure (T, ρ) if the following holds. The graph G can be written as

G =
⋃

t∈nodes(T)

Ht,

where the pair (T, ρ) is a rooted tree and associated to every node t ∈ nodes (T) is a con-
nected, loop-free, graph Ht = (Vt, Et). Each graph Ht has a distinguished vertex vt ∈ Vt
such that:

(a) for all t ∈ nodes (T) \ {ρ}, we have Vt ∩ Vparent(t) = {vt};
(b) if (t, t′) is not an edge of T , then Vt ∩ Vt′ = ∅.

See Figure 7 for an illustration of the construction in Definition 3.7.

Remark 3.8. Every graph can be decomposed into blocks, where a block is a maximal 2-
connected subgraph. It is well-known that this block decomposition has a tree structure
as in that of Definition 3.7, and is thus a special case of a cv-tree structure (the blocks of
the cv-tree structure may be graphs which are not 2-connected but on which the recurrent
configurations are well known, e.g. trees). In particular, Theorems 3.9 and 5.7 allow one to
reduce the analysis of recurrent configurations to the 2-connected case.

14 MARK DUKES AND THOMAS SELIG

H0H1

H4
H5 H2

H6

H7

1

4
5

2

3

6

v0

v1

v2

v3

v4

v5

v6

0

Figure 7. A graph with its underlying tree structure.

Theorem 3.9. Let G =
⋃

t∈nodes(T)
Ht have an underlying cv-tree structure (T, ρ). Let c ∈

Configvρ(G). For any node t ∈ nodes (T), we let t1, . . . , tk be the descendants of t in T .

Define the configurations c(t) on Configvt(Ht) by:

c(t)(v) :=

{
c(v) if v /∈ {vt1 , . . . , vtk}
c(v)− dHti (v) if v = vti

Then c ∈ Recvρ (G) if, and only if, c(t) ∈ Recvt (Ht) for all t ∈ nodes (T).

Proof. Our proof is by induction on the number of nodes in the cv-tree nodes (T).
If |nodes (T) | = 1, then the tree t is reduced to a single (root) vertex ρ, and the configu-

ration c(ρ) is just the configuration c, since ρ has no descendants. In this case the statement
is a tautology.

Next, let us suppose that we have proven our result for |nodes (T) | = k for some k ≥ 1.
Let (T, ρ) be a rooted tree with k + 1 nodes, and assume that G =

⋃
t∈nodes(T)

Ht has an

underlying cv-tree structure (T, ρ). Fix some leaf ` of T . Since ` has no descendants, the
configuration c(`) is just the restriction of c to H`. Define G′ :=

⋃
t∈nodes(T)\{`}

Ht, and let c′ be

the configuration on G′ defined by

c′(v) :=

{
c(v) if v 6= v`

c(v`)− dH`(v`) if v = v`.

Now by construction, the vertex v` is a cut vertex of the graph G, splitting it into H`

and G′. We may therefore apply Theorem 3.2, to get that c ∈ Recvρ (G) if, and only if,

c(`) ∈ Recv` (H`) and c′ ∈ Recvρ (G′). But the graph G′ is constructed on a rooted tree

DECOMPOSING RECURRENT STATES OF THE ABELIAN SANDPILE MODEL 15

with |nodes (T) | − 1 = k nodes, so that we may apply the induction hypothesis to c′, which
combined with the above yields the desired result. �

Similarly to Corollary 3.4 in the cut vertex case, this yields a decomposition of the level
polynomial for graphs with a tree-like structure.

Corollary 3.10. Let G =
⋃

t∈nodes(T)
Ht be constructed on a rooted tree (T, ρ). Then we have

LevelG,vρ (x) =
∏

t∈nodes(T)

LevelHt,vt (x) .

4. Recurrent states on graphs with isthmuses

Having dealt with the cut vertex case, it is natural to ask ourselves what happens when
the graph has an isthmus, an edge whose removal disconnects the graph.

Theorem 4.1. Let G = (V,E) be a finite, connected graph on the vertex set

V = {v0, v1, . . . , vn+m}
where m,n ≥ 1. Assume that the edge e = (vn, vn+1) is an isthmus. Let H1 := G[V[0,n]] and

H2 := G[V[n+1,n+m]]. Let c = (c1, . . . cn+m) ∈ Configv0(G). Define c(1) := (c1, . . . , cn−1, cn−1)

and c(2) := (cn+2, . . . , cn+m). Then c ∈ Recv0 (G) if and only if cn+1 = dn+1 − 1, c(1) ∈
Recv0 (H1), and c(2) ∈ Recvn+1 (H2).

v0 vn

vn+1
H1 H2

Figure 8. A graph G with an isthmus (vn, vn+1).

It is worth noting that Theorem 4.1 was proved by Lopez [18] in the special case where
the isthmus is adjacent to the sink, as part of his proof of the Specification Theorem 1.3.

As in the cut vertex case, this theorem allows us to infer the following decomposition for
the level polynomial.

Corollary 4.2. Let G = (V,E) be a finite connected graph on the vertex set

V = {v0, v1, . . . , vn+m}
where m,n ≥ 1. Assume that the edge e = (vn, vn+1) is an isthmus of G. Let H1 := G[V[0,n]]
and H2 := G[V[n+1,n+m]]. Then we have:

LevelG,v0 (x) = LevelH1,v0 (x) · LevelH2,vn+1 (x) .

This can also be inferred from Theorem 1.3. Indeed, if e is an isthmus, then TG(x, y) =
x · TG.e(x, y), where G.e is the graph G with the edge e contracted (reduced to a single
vertex). In the case of the level polynomial, this yields LevelG,v0 (x) = LevelG.e,v0 (x). Since

16 MARK DUKES AND THOMAS SELIG

contracting an isthmus creates a cut vertex at the contracted vertex, we can then apply
Corollary 3.4 to get the desired result.

Rather than proving Theorem 4.1, we prove a generalization to the case where the edge
(vn, vn+1) is a multi-edge. That is, the graphG is formed of two componentsH1, H2 connected
by k copies of the same edge, as illustrated in Figure 9 below. We call such an edge a k-
multi-isthmus.

v0 vn

vn+1
H1 H2

Figure 9. A graph G with a 3-multi-isthmus.

Theorem 4.3. Let G = (V,E) be a finite, connected graph on the vertex set

V = {v0, v1, . . . , vn+m}

where m,n ≥ 1. Assume that the edge e = (vn, vn+1) is a k-multi-isthmus for some k ≥ 1.
Let H1 := G[V[0,n]] and H2 := G[V[n+1,n+m]]. Let c = (c1, . . . cn+m) ∈ Configv0(G). Define

c(1) := (c1, . . . , cn−1, cn − k) and c(2) := (cn+2, . . . , cn+m). Then we have c ∈ Recv0 (G) if and
only if c(1) ∈ Recv0 (H1), c(2) ∈ Recvn+1 (H2), and

dH2
n+1 = dn+1 − k ≤ cn+1 ≤ dn+1 − 1.

Corollary 4.4. Let G = (V,E) be a finite, connected graph on the vertex set

V = {v0, v1, . . . , vn+m}

where m,n ≥ 1. Assume that the edge e = (vn, vn+1) is a k-multi-isthmus for some k ≥ 1.
Let H1 := G[V[0,n]] and H2 := G[V[n+1,n+m]]. Then we have

LevelG,v0 (x) = (1 + x+ . . .+ xk−1) · LevelH1,v0 (x) · LevelH2,vn+1 (x) .

Since Theorem 4.1 and Corollary 4.2 correspond to Theorem 4.3 and Corollary 4.4 in the
special case k = 1, it is sufficient to prove the latter two results.

Proof. Define I := G[V[n,n+1]] to be the subgraph of G consisting of the multi-isthmus
(vn, vn+1). Since vn and vn+1 are both cut-vertices, the graph G has a cv-tree structure
where the blocks are H1, I,H2 and the underlying tree is a path graph. The set Recvn (I) of
recurrent states of the block I is straightforward to compute:

c = (cn+1) ∈ Recvn (I) if, and only if, cn+1 ∈ {0, . . . , k − 1}, (16)

and Theorem 4.3 immediately follows from this and Theorem 3.9.
Moreover, from Equation (16), we get that LevelI,vn (x) = 1 +x+ · · ·+xk−1, and applying

Corollary 3.10 gives us Corollary 4.4, as desired. �

DECOMPOSING RECURRENT STATES OF THE ABELIAN SANDPILE MODEL 17

v0

v1 v2 v3 v4

v5

G

Figure 10. A graph G containing a 2-multi-isthmus (v2, v3).

Example 4.5. Consider the graph G of Figure 10. This graph can be decomposed into two
components H1 and H2, connected by the 2-multi-isthmus (v2, v3). By Theorem 4.3, the
recurrent configurations are given by the products of recurrent configurations on H1 and
H2 as in the cut vertex case, which we complete by putting either two or three grains of
sand at the vertex v3. We show this in Table 3, and also compute the corresponding level
polynomials.

Graph

v0

v1 v2 v3 v4

v5

G

v0

v1 v2

H1

v3 v4

v5

H2

Recurrent (0, 3, 2, 0, 1), (0, 3, 3, 0, 1) (0, 1) (0, 1)
configurations (1, 2, 2, 0, 1), (1, 2, 3, 0, 1) (1, 0) (0, 1)

(1, 3, 2, 0, 1), (1, 3, 3, 0, 1) (1, 1) (0, 1)
(0, 3, 2, 1, 0), (0, 3, 3, 1, 0) (0, 1) (1, 0)
(1, 2, 2, 1, 0), (1, 2, 3, 1, 0) (1, 0) (1, 0)
(1, 3, 2, 1, 0), (1, 3, 3, 1, 0) (1, 1) (1, 0)
(0, 3, 2, 1, 1), (0, 3, 3, 1, 1) (0, 1) (1, 1)
(1, 2, 2, 1, 1), (1, 2, 3, 1, 1) (1, 0) (1, 1)
(1, 3, 2, 1, 1), (1, 3, 3, 1, 1) (1, 1) (1, 1)

Level x3 + 5x2 + 8x+ 4 x+ 2 x+ 2
polynomial = (1 + x) · (x+ 2) · (x+ 2)

Table 3. Applying Theorem 4.3 to determine the recurrent configurations of G.

5. Decomposition of the sandpile group

In this section we look at how the decomposition results from Section 3 affect the so-called
sandpile group.

Let (G, v0) be a graph, with vertex set V = {v0, . . . , vn} and edge set E. Recall that
σ : Configv0(G) → Stablev0 (G) denotes the stabilization operator. We define a binary
operation ⊕ on Stablev0 (G) by:

for all c, c′ ∈ Stablev0 (G) , c⊕ c′ := σ (c+ c′) , (17)

18 MARK DUKES AND THOMAS SELIG

where + denotes pointwise addition in Stablev0 (G). Dhar showed in [11] that (Recv0 (G) ,⊕)
is an Abelian group, called the sandpile group. We denote it S(G, v0).

For the proofs of this section, we will need the following characterization of recurrent
states, due to Dhar [11]. We first define a configuration b ∈ Configv0(G) by b :=

∑
i:{vi,v0}∈E

αi,

where the sum is over all vertices adjacent to the sink, counted with multiplicity. Thus the
configuration b corresponds to the toppling of the sink in an initially empty configuration.

Proposition 5.1. A configuration c ∈ Configv0(G) is recurrent if, and only if, σ(c+ b) = c.
Moreover, in the stabilization of c+ b every vertex in V[1,n] topples exactly once.

Theorem 5.2. Let G = (V,E) be a finite, connected graph, on the vertex set

V = {v0, v1, . . . , vn+m}

where m,n ≥ 1. Assume that vn is a cut vertex of G. Let H1 := G[V[0,n]] and H2 :=
G[V[n,n+m]]. We have:

S(G, v0) ∼= S(H1, v0)× S(H2, vn),

where the symbol ∼= denotes group isomorphism, and × is the direct product of two groups.

We require two lemmas in order to prove this theorem. Given c = (c1, . . . , cn+m) ∈
Configv0(G), let c(1) := (c1, . . . , cn−1, cn − dH2

n) and c(2) := (cn+1, . . . , cn+m), where dH2
n is the

degree of the vertex vn in the graph H2.

Lemma 5.3. For any configurations c, c′ ∈ Recv0 (G), we have

(c⊕ c′)(2) = c(2) ⊕ c′(2). (18)

Proof. Let c, c′ ∈ Recv0 (G). Then c⊕ c′ is the stabilization of the configuration c+ c′. Let us
examine how this stabilization might occur. We may choose to first stabilize the configuration
in H2 except perhaps at vn, by making only topplings at vertices in V[vn+1,...,vn+m]. We will
reach a configuration γ where all these vertices are stable. The configuration γ, restricted
to V[vn+1,...,vn+m], is exactly the same configuration we would reach in the graph (H2, vn) by

stabilizing the configuration c(2) + c′(2), that is, the configuration c(2) ⊕ c′(2).
Now of all the subsequent topplings to stabilize c+c′, only the topplings of the cut vertex vn

will effect the configuration on V[vn+1,...,vn+m]. But the effect of toppling vn on these vertices is
exactly the effect of toppling the sink on the graph (H2, vn). Since the configuration reached
on (H2, vn) before any such toppling is c(2) ⊕ c′(2), which is recurrent, toppling the sink and
then stabilizing leaves this configuration unchanged by Proposition 5.1. This completes the
proof of Lemma 5.3. �

Lemma 5.4. For any configurations c, c′ ∈ Recv0 (G), we have

(c⊕ c′)(1) = c(1) ⊕ c′(1) ⊕ κ, (19)

where κ = κ
(
c(2), c′(2)

)
:=
(
dH2
n + |c(2)|+ |c′(2)| − |c(2) ⊕ c′(2)|

)
αn, with |c| designating the

total number of grains of a configuration c, and αn is the configuration with one grain at the
vertex vn and none elsewhere.

DECOMPOSING RECURRENT STATES OF THE ABELIAN SANDPILE MODEL 19

Proof. A crucial remark that stems from the proof of Lemma 5.3 is the following. When
stabilizing the configuration c+ c′, if the configuration is initially stabilized in H2, then the
topplings of the cut vertex vn have no effect in H2.

Now once we have initially stabilized c+ c′ in H2, we may stabilize it in H1. The configu-
ration to stabilize is thus the configuration c+ c′ restricted to H1, to which a certain number
λ of grains have been added at vn. These grains are added as a result of the original stabi-
lization in H2, they are the surplus of grains toppled into vn through stabilizing (c + c′)(2).
Thus λ = |c(2)|+ |c′(2)| − |(c⊕ c′)(2)|, and we have

(c⊕ c′)|H1
= c|H1

⊕ c′|H1
⊕ λαn.

Equation (19) with κ =
(
λ+ dH2

n

)
αn follows from the above, with the definition c

(1)
n =

cn + dH2
n resulting in the adjustment by an additive constant. �

Proof of Theorem 5.2. Lemmas 5.3 and 5.4 allow us to understand the operator ⊕ on
Recv0 (G), and in particular its behaviour when restricted to the components H1, H2.

The result then follows from a group theory argument that we will now explain. Lem-
mas 5.3 and 5.4, combined with the Decomposition Theorem 3.2, mean that we have the
following situation. We have a set G = H1×H2, where G,H1 and H2 are all equipped with an
Abelian group structure. However, the binary addition operation in G does not decompose
to product addition in H1 and H2. Rather, for (c1, c2), (c

′
1, c
′
2) ∈ G, we have

(c1, c2) + (c′1, c
′
2) = (c1 + c′1 + κ(c2, c

′
2), c2 + c′2),

where the function κ is described by Lemma 5.4.
Now from [7, Chapter IV] we get that such a group G is isomorphic to the direct product
H1 × H2 if there exists a function a : H2 → H1 such that for any c2, c

′
2 ∈ H2, we have

κ(c2, c
′
2) = a(c2) + a(c′2) − a(c2 + c′2). In our case, simply setting a(c2) =

(
|c2|+ dH2

n

)
αn

immediately yields the desired result. �

Remark 5.5. In fact, we make a slight abuse when using the group theory arguments in
this case, since the configurations κ, a(c2) are not in general recurrent configurations on H1.
However, this difficulty can be overcome by considering the unique recurrent configurations
to which they are toppling equivalent (see [10, Theorem 1]) instead.

Example 5.6. Consider the graph G of Figure 11, where the vertex v2 is a cut vertex splitting
the graph into two isomorphic components H1, H2. In Example 1.4, we showed that the com-
ponents Hi have three recurrent configurations, which implies that S (H1, v0) ∼= S (H2, v2) ∼=
Z/3Z. It immediately follows from Theorem 5.2 that

S (G, v0) ∼= Z/3Z× Z/3Z.

Note that this is not a straightforward consequence of simply enumerating the recurrent
configurations of G, since an Abelian group with nine elements could also be (isomorphic
to) Z/9Z.

As with the transition from Theorem 3.2 to Theorem 3.9, an induction argument allows
us to extend Theorem 5.2 to the case of graphs with an underlying cv-tree structure.

20 MARK DUKES AND THOMAS SELIG

v0

v1 v2 v3

v4

G

Figure 11. A graph G with its cut vertex v2.

Theorem 5.7. Let G =
⋃

t∈nodes(T)
Ht have an underlying cv-tree structure (T, ρ). We have:

S (G, vρ) ∼=
∏

t∈nodes(T)

S (Ht, vt) ,

where ∼= denotes group isomorphism, and
∏

the direct product of the groups involved.

Remark 5.8. It is not clear that the result of Theorem 4.1 can be cast in a useful manner in
terms of the sandpile group. The enumeration result in Corollary 4.2 suggests a decomposi-
tion of the form S(G(k)) = S(G)× Zn−1k , but there are some simple examples for which this
both holds and does not hold.

6. Examples

In this part, we exhibit two examples which showcase the results of this paper. They
illustrate the computational gains that are made with respect to determining the recurrent
configurations on a graph that can be decomposed in the terms we have described.

Example 6.1. Let G be the graph in Figure 12. Let us consider the sandpile model on G
wherein vertex v0 is the sink. Apply Theorem 3.9 to this graph. The cv-tree (T, 0) structure
of G is illustrated in Figure 13. The constituent graphs of the cv-tree are

Hi =

{
G[{vi,v4i+1,v4i+2,v4i+3,v4i+4}] if 0 ≤ i ≤ 4

G[{vi,v3i+6,v3i+7,v3i+8}] if 5 ≤ i ≤ 20,

and nodes (T) = {0, 1, . . . , 20}. Note that Hi is isomorphic to K5 (respectively K4) for all
i ≤ 4 (respectively 5 ≤ i ≤ 20). The recurrent states of the sandpile model on these graphs
are therefore characterized by Theorem 1.7.

Theorem 3.9 tells us that c = (c1, . . . , c68) ∈ Recv0 (G) if, and only if, c(t) ∈ Recvt (Ht) for
all 0 ≤ t ≤ 20. This latter condition is equivalent to:{

(c
(i)
4i+1, c

(i)
4i+2, c

(i)
4i+3, c

(i)
4i+4) ∈ Recv0 (K5) for all 0 ≤ i ≤ 4

(c
(i)
3i+6, c

(i)
3i+7, c

(i)
3i+8) ∈ Recv0 (K4) for all 5 ≤ i ≤ 20.

The set Recv0 (K4) is explicitly listed in Equation (9), and the set Recv0 (K5) is described in
Example 1.9.

Now since dHi(vi) = 4 for 1 ≤ i ≤ 4, and dHi(vi) = 3 for all 5 ≤ i ≤ 20, we may conclude
with our classification of recurrent states of the sandpile model on G: c ∈ Recv0 (G) if and
only if

DECOMPOSING RECURRENT STATES OF THE ABELIAN SANDPILE MODEL 21

(i) (c1 − 4, c2 − 4, c3 − 4, c4 − 4) ∈ Recv0 (K5),
(ii) (c4i+1 − 3, c4i+2 − 3, c4i+3 − 3, c4i+4 − 3) ∈ Recv0 (K5) for all 1 ≤ i ≤ 4, and
(iii) (c3i+6, c3i+7, c3i+8) ∈ Recv0 (K4) for all 5 ≤ i ≤ 20.

We may also compute the level polynomial for the graph G of Figure 12. By Corollary 3.10,
we have:

LevelG,v0 (x) = LevelK5,v0 (x)5 LevelK4,v0 (x)16 .

The level polynomials of the complete graphs can be computed for instance by computing
their Tutte polynomials and applying Theorem 1.3. We get

LevelK4,v0 (x) = x3 + 3x2 + 6x+ 6

LevelK5,v0 (x) = x6 + 4x5 + 10x4 + 20x3 + 30x2 + 36x+ 24,

and thus

LevelG,v0 (x) = (x6 + 4x5 + 10x4 + 20x3 + 30x2 + 36x+ 24)5(x3 + 3x2 + 6x+ 6)16

= x78 + 68x77 + 2346x76 + . . .+ 22463437455746924544.

In other words, there is one recurrent configuration with level 78, 68 recurrent configurations
with level 77, and so on.

Example 6.2. Let G be the graph in Figure 14. Let us consider the sandpile model on G
wherein vertex v0 is the sink. We apply Theorems 3.9 and 4.1 to this graph. The cv-tree
(T, 0) structure of G and its constituent graphs are illustrated in Figure 15, where H0 and H1

are connected by an isthmus. Note that H0 and H2 are isomorphic to K5, H3 is isomorphic to

K
(2)
4 , that is K4 with all edges doubled, and that H1 is a graph whose recurrent configurations

have already been determined in Example 3.6.
Theorems 3.9 and 4.1 tell us that c = (c1, . . . , c14) ∈ Recv0 (G) if, and only if, c(t) ∈

Recvt (Ht) for all 0 ≤ t ≤ 3, and c5 = 3, since v5 is the vertex of the isthmus (v3, v5)
“furthest” from the sink, and has degree four. This latter condition is equivalent to:

• (c
(0)
1 , c

(0)
2 , c

(0)
3 , c

(0)
4), (c

(2)
8 , c

(2)
9 , c

(2)
10 , c

(2)
11) ∈ Recv0 (K5) (20)

• c5 = 3 (21)

• (c
(1)
6 , c

(1)
7) ∈ Recv5 (H1) (22)

• (c
(3)
12 , c

(3)
14 , c

(3)
15) ∈ Recv0

(
K

(2)
4

)
. (23)

The set Recv0 (K5) is described in Example 1.9. Since dH1(v3) = 1 and dH3(v4) = 6,
Equation (20) is equivalent to:

(c1, c2, c3 − 1, c4 − 6), (c8, c9, c10, c11) ∈ Recv0 (K5) .

We have already computed the recurrent configurations of the component H1 in Exam-
ple 3.6, so Recv5 (H1) =

{
(0, 1), (1, 0), (1, 1), (2, 0), (2, 1)

}
. Since dH2(v7) = 4, Equation (22)

is equivalent to:

(c6, c7 − 4) ∈ Recv5 (H1) .

22 MARK DUKES AND THOMAS SELIG

v0

v1v2

v3 v4

v5

v6

v7

v8v9

v12

v10

v11

v13

v16
v14

v15

v17

v20

v18

v19

v21 v22

v23

v33

v34

v35

v45v46

v47

v57

v58

v59

v30

v31

v32

v42v43

v44

v54

v55

v56

v66 v67

v68

v24v25

v26

v36

v37
v38

v48 v49

v50

v60

v61
v62

v27
v28

v29

v39

v40v41

v51
v52

v53

v63

v64 v65

Figure 12. The graph used in Example 6.1.

Finally, the set Recv0 (K4) is explicitly listed in Equation 9. The recurrent states of K
(2)
4

are linked to those of K4 by Theorem 2.1, so that Equation (23) is equivalent to:

(bc12/2c, bc13/2c, bc14/2c) ∈ Recv0 (K4) .

Combining all this, we may conclude with our classification of recurrent states of the
sandpile model on G: c ∈ Recv0 (G) if and only if

• (c1, c2, c3 − 1, c4 − 6), (c8, c9, c10, c11) ∈ Recv0 (K5),
• c5 = 3,
• (c6, c7 − 4) ∈ Recv5 (H1), and
• (bc12/2c, bc13/2c, bc14/2c) ∈ Recv0 (K4).

DECOMPOSING RECURRENT STATES OF THE ABELIAN SANDPILE MODEL 23

0

12

3 4

5

9

13

17

6

10

14

18

7

11

15

19

8

12

16

20

Figure 13. The cv-tree (T, 0) of the graph G in Figure 12 and Example 6.1.

v0 v1

v4

v2

v3

v5

v6 v7 v11

v10

v9

v8

v13

v12

v14

Figure 14. A graph G that can be decomposed as previously described.

References

[1] J.-C. Aval, M. D’Adderio, M. Dukes, A. Hicks, and Y. Le Borgne. Statistics on parallelogram polyomi-
noes and a q, t-analogue of the Narayana numbers. J. Comb. Theory Ser. A 123(1):271–286, 2014.

[2] J.-C. Aval, M. D’Adderio, M. Dukes, and Y. Le Borgne. Two operators on sandpile configurations, the
sandpile model on the complete bipartite graph, and a cyclic lemma. Adv. Appl. Math. 73:59–98, 2016.

[3] M. Baker and S. Norine. Riemann–Roch and Abel–Jacobi theory on a finite graph. Adv. Math.
215(2):766–788, 2007.

[4] A. Berget, A. Manion, M. Maxwell, A. Potechin, and V. Reiner. The critical group of a line graph. Ann.
Combin. 16:449–488, 2012.

[5] O. Bernardi. Tutte polynomial, subgraphs, orientations and sandpile model: new connections via em-
beddings. Electron. J. Comb. 15(1):#R109, 53 pp., 2008.

24 MARK DUKES AND THOMAS SELIG

0

1

2

3

(a) The cv-tree struc-
ture of the graph in Fig-
ure 14.

v0/v7 v1/v11

v4/v10

v2/v9

v3/v8

H0
∼= H2

∼= K5

v5

v6 v7

H1

v4 v13

v12

v14

H3
∼= K

(2)
4

(b) The constituent graphs of the cv-tree for Figure 14. In the pentagram on the left, graph H0

consists of those labels to the left of the ‘/’ and graph H2 consists of those labels to the right of ‘/’.
Both are isomorphic to K5.

Figure 15. Decomposition of the graph G from Figure 14.

[6] N. Biggs. The Tutte Polynomial as a Growth Function. J. Algebraic Combin. 10(2):115–133, 1999.
[7] K. Brown. Cohomology of groups, volume 87 of Graduate Texts in Mathematics. Springer-Verlag, New

York-Berlin, 1982.
[8] R. Cori and Y. Le Borgne. The sand-pile model and Tutte polynomials. Adv. Appl. Math. 30(1-2):44–52,

2003.
[9] R. Cori and D. Poulalhon. Enumeration of (p, q)-parking functions. Discrete Math. 256(3):609–623,

2002. LaCIM 2000 Conference on Combinatorics, Computer Science and Applications.
[10] R. Cori and D. Rossin. On the sandpile group of a graph. Eur. J. Combin. 21:447–459, 2000.
[11] D. Dhar. Self-organized critical state of sandpile automaton models. Phys. Rev. Lett. 64:1613–1616,

1990.
[12] D. Dhar. Theoretical studies of self-organized criticality. Phys. A 369(1):29–70, 2006.
[13] M. Dukes and Y. Le Borgne. Parallelogram polyominoes, the sandpile model on a complete bipartite

graph, and a q, t-Narayana polynomial. J. Comb. Theory Ser. A 120(4):816–842, 2013.
[14] C. Greene and T. Zaslavsky. On the interpretation of Whitney numbers through arrangements of

hyperplanes, zonotopes, non-Radon partitions, and orientations of graphs. Trans. Amer. Math. Soc.
280(1):97–126, 1983.

[15] B. Jacobson, A. Niedermaier, and V. Reiner. Critical groups for complete multipartite graphs and
Cartesian products of complete graphs. J. Graph Theory 44:231–250, 2003.

[16] L. Levine. Sandpile groups and spanning trees of directed line graphs. J. Combin. Theory Ser. A
118(2):350–364, 2011.

DECOMPOSING RECURRENT STATES OF THE ABELIAN SANDPILE MODEL 25

[17] D. Lorenzini. A finite group attached to the laplacian of a graph. Discrete Math. 91:277–282, 1991.
[18] C. Merino. Chip firing and the Tutte polynomial. Ann. Comb. 1(1):253–259, 1997.
[19] F. Redig. Mathematical aspects of the Abelian sandpile model. Lecture Notes of Les Houches Summer

School 2005, Mathematical Statistical Physics, Session LXXXIII. Elsevier, 2006.
[20] K. Sekine and C.Q. Zhang. Decomposition of the Flow Polynomial. Graphs Combin. 13(2):189–196,

1997.
[21] W.T. Tutte. A contribution to the theory of chromatic polynomials. Can. J. Math. 6:80–91, 1954.

School of Mathematics and Statistics, University College Dublin, Dublin 4, Ireland.

Department of Computer and Information Sciences, University of Strathclyde, Glasgow,
G1 1XH, UK

