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Irreducible complex characters of Sn

Partitions λ = (λ1, λ2, . . . , λ`) of n (written as λ ` n),

where λ1 ≥ λ2 ≥ . . . ≥ λ` > 0 are integers with
∑̀
i=1

λi = n.

Theorem (Frobenius)

The irreducible complex characters of Sn are naturally labelled by
partitions of n,

IrrC(Sn) = {χλ | λ ` n}.

Remark Connection to symmetric functions:
Via the Frobenius characteristic, there is a correspondence

χλ ←→ sλ (Schur function).



Character restriction from Sn to Sn−1

Theorem (Branching formula)

For λ ` n,
χλ ↓Sn−1=

∑
A

χλ\A

where the sum runs over the removable corners A of the Young
diagram of λ.

λ = (5, 3, 3, 2)

. . . . •

. . .

. . •

. •

χ(5,3,3,2) ↓S12= χ
(4,3,3,2) + χ(5,3,2,2) + χ(5,3,3,1)



Odd degree characters

Let λ ` n.

χλ(id) = f λ = #{standard Young tableaux of shape λ}.

If f λ is odd, we call λ an odd partition, for short: λ `o n.
What is the number of odd partitions? I.e., we consider

O(n) = {λ ` n | f λ odd }

or equivalently,
Irr2 ′(Sn) = {χλ ∈ Irr(Sn) | 2 - f λ}

Theorem (Macdonald 1971, McKay 1972)

Let n = 2a1 + . . .+ 2ar with a1 < . . . < ar . Then

#{λ ` n | f λ odd } = 2a1+...+ar .
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Odd degree characters and hooks

Denote by χλ(µ) the value of χλ on elements of cycle type µ.
Observe that for n = 2a1 + . . .+ 2ar as above,

χλ(1n) ≡ χλ(2a1 , . . . , 2ar ) mod 2.

This leads to a hook construction of odd degree characters.

For example, for n = 26 = 2 + 8 + 16:

• • • • • • • • • •
• • • • • • • •
• • • •
•
•
•
•

µ = (10, 8, 4, 14) ∈ O(26)
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McKay’s Conjecture

Let G be a finite group, p a prime; set

kp ′(G ) = #{χ ∈ Irr(G ) | p - χ(1)}.

Conjecture (McKay)

Let P be a Sylow p-subgroup of G. Then

kp ′(G ) = kp ′(NG (P)).

Remark Olsson 1976: True for G = Sn and any prime p.

Theorem (Malle, Späth 2016)

McKay’s Conjecture holds for p = 2.

Remark For G = Sn, Pn ∈ Syl2(Sn), a canonical bijection

Irr2 ′(Sn)→ Irr2 ′(NSn(Pn)) = Lin(Pn)

was constructed by [Giannelli, Kleshchev, Navarro, Tiep 2016].
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Branching revisited

For λ ∈ O(n), what can we say about constituents of χλ ↓Sn−1 and
of χλ ↑Sn+1 of odd degree?

Let ν2(n) be the exponent of the highest power of 2 dividing n.

Theorem (Ayyer, Prasad, Spallone, SLC 2015)

Let λ ∈ O(n). Let m = ν2(n + 1).

1 χλ ↓Sn−1 has exactly one constituent of odd degree.

2 χλ ↑Sn+1 has exactly two constituents of odd degree if the
2m-core of λ is a hook, and no such constituent otherwise.

Example λ = (5, 3, 3, 2).

χ(5,3,3,2) ↓S12 = χ(4,3,3,2) + χ(5,3,2,2) + χ(5,3,3,1)

degree: 11583 2970 4455 4158
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The odd Young graph

∅

(1)

(2) (12)

(3) (13)

(4) (3, 1) (2, 12) (14)

(5) (3, 2) (22, 1) (15)

(6) (5, 1) (32) (4, 2) (22, 12) (23) (2, 14) (16)

...
...



More general restrictions

Character restriction from level n to n − 2k :

Theorem (Isaacs, Navarro, Olsson, Tiep 2017)

Let k ∈ N such that 2k < n, and let χ ∈ Irr2 ′(Sn).
Then there exists a unique odd-degree irreducible constituent
f nk (χ) of χS

n−2k
appearing with odd multiplicity.

Thus, for 2k < n we have a naturally defined map

f nk : Irr2 ′(Sn) −→ Irr2 ′(Sn−2k ).
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More general restrictions - combinatorial

[INOT 2017]: combinatorial description of the map f nk !

Let λ ∈ O(n), µ ∈ O(n − 2k). Then

f nk (χ
λ) = χµ if and only if µ = λ \ H for a 2k -hook H.

In fact, there is a unique 2k -hook H of λ such that λ \ H is odd.
Correspondingly, we write

f nk : O(n) −→ O(n − 2k), λ 7→ µ = λ \ H.

Example

λ = (5, 3, 3, 2)

. . . • •

. . •

. . •
• •

. . . . .

. .

. .

. .

f 131 (λ) = (5, 2, 2, 2)
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f1 on the odd Young graph

∅

(2) (12)

(4) (3, 1)(2, 12) (14)

(6) (4, 2) (23) (2, 14) (5, 1) (32) (22, 12) (16)

(8) (7, 1) (5, 13)(6, 12) (3, 15)(4, 14) (2, 16) (18)

Remark f1 6= f0f0!
For example,

f1((31)) = (12) 6= (2) = f0f0((3, 1)).



Hook removal on the odd Young graph

Question (INOT 2017)

For which n, k is the map f nk injective? surjective? bijective?

Remark Not always! But, for example, the map f nk is surjective
when 2k appears in the binary expansion of n.

Question (INOT 2017)

Let k ≤ ` be such that 2k + 2` ≤ n.
When do the hook removal operators fk and f` commute?
More specifically: when is f n−2`

k f n` = f n−2k

` f nk ?

Remark Not always! But, for example, if 2` is the largest binary
digit of n.
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Hook removal on the odd Young graph
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2-cores and 2-quotients: 2-data

Let λ ` n. Construct the 2-quotient tower Q2(λ):

Row 0: Q(0)
2 (λ) = (λ

(0)
1 ) = (λ).

Row k : Q(k)
2 (λ) = (λ

(k)
1 , . . . , λ

(1)

2k
) contains the partitions in

the 2-quotients of the partitions in Q(k−1)
2 (λ)

(the same as those in the 2k -quotient Q2k (λ) of λ).

2-core tower C2(λ):
j ≥ 0: C(j)2 (λ) = (C2(λ

(j)
1 ), . . . ,C2(λ

(j)

2k
)), the 2-cores of the λ

(j)
i .

k-data D(k)
2 (λ): row j < k equals C(j)2 (λ), row k equals Q(k)

2 (λ).

Theorem (BGO 2017)

Fix k ≥ 0. Then λ is odd if and only if for j < k the sum over all

partitions in C(j)2 (λ) is ≤ 1, and the partitions in Q(k)
2 are odd and

their sizes are pairwise 2-disjoint (i.e., in binary expansion).
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Example

λ = (5, 4, 22, 12), k = 2

Q(0)
2 (λ) : λ C(0)2 (λ) : (1)

Q(1)
2 (λ) : (22, 12) (1) C(1)2 (λ) : (0) (1)

Q(2)
2 (λ) : (12) (1) (0) (0)

D(2)
2 (λ):

C(0)2 (λ) : (1)

C(1)2 (λ) : (0) (1)

Q(2)
2 (λ) : (12) (1) (0) (0)

Remark Removal of a 2k -hook from λ is equivalent to removing a

box from one of the partitions in row k of D(k)
2 (λ).



Walking around the odd Young graph

For an odd partition µ, we define the set of odd extensions:

E(µ, 2k) = {λ `o n | f nk (λ) = µ}, e(µ, 2
k) = #E(µ, 2k).

Theorem (B., Giannelli, Olsson 2017)

Assume 2k < n. Let d = d(n, k) = ν2
(⌊

n
2k

⌋)
. Let µ `o n − 2k .

Then e(µ, 2k) 6= 0 if and only if there is a partition µ
(k)
i in Q(k)

2 (µ)
such that∣∣µ(k)i

∣∣ ≡ 2d − 1 mod 2d+1, and

C2d
(
µ
(k)
i

)
is a hook partition.

In this case, e(µ, 2k) = 2k if d = 0, and e(µ, 2k) = 2 if d > 0.
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Properties of the hook removal operators

Question (INOT 2017)

For which n, k is the map f nk injective? surjective? bijective?

Theorem (B., Giannelli, Olsson 2017)

Let n ∈ N, k ∈ N0 be such that 2k < n. Let d(n, k) = ν2
(⌊

n
2k

⌋)
.

1 If k = 0 then f nk is surjective if and only d(n, k) ≤ 2.
If k > 0 then f nk is surjective if and only d(n, k) ≤ 1.

2 The map f nk is injective if and only if k = 0 and n is odd.
In this case, the map f nk is bijective.
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Commutativity of hook removal operators

Question (INOT 2017)

When do the hook removal operators fk , f` commute?

Theorem (B., Giannelli, Olsson 2017)

Let n = 2t +m where 0 ≤ m < 2t .
Assume 0 ≤ k < ` ≤ t and 2k + 2` ≤ n.
Then, with the exception of the case n = 6, k = 0, ` = 1,

fk f` = f`fk if and only if 2k > m or ` = t.

Remark Explicit description of the set

Tk,`(n) = {λ `o n | fk f`(λ) = f`fk(λ)},

and counting formula for #Tk,`(n) [BGO 2017].
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Compatibility of hook removal operators

Let k ∈ N0 be such that 2k+1 ≤ n.
We define

Gk(n) = {λ `o n | fk fk(λ) = fk+1(λ)} ,Gk(n) = |Gk(n)|.

Write n = 2a1 + . . .+ 2ar , where a1 > a2 > . . . > ar .
Define p, q ≤ r to be maximal with ap ≥ k + 1 and aq ≥ k , resp.
For J ⊆ I = {1, . . . , q} define its G-weight

wG (J) = (
∏
i∈I\J

2ai−k) · (2k − 1)|I\J | · G0(
∑
j∈J

2aj−k).
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Counting formulae for G0

G0(n) and hence the G -weights can be computed explicitly:

Theorem (BGO 2017)

1 G0(1) = 1, G0(2) = 2 = G0(3).

2 For t > 1, G0(2
t) = 2t−1 and G0(2

t + 1) = 4.

3 Let n = 2a1 + 2a2 + . . .+ 2ar + ε ≥ 2, where a1 > · · · > ar > 0
and ε ∈ {0, 1}. Then

G0(n) = G0(2
ar + ε) ·

r−1∏
j=1

(2aj − 2).



Counting formulae for Gk

As before, n = 2a1 + . . .+ 2ar , where a1 > a2 > . . . > ar , and
p, q ≤ r are maximal with ap ≥ k + 1 and aq ≥ k, respectively.

Theorem (BGO 2017)

For k > 0,

Gk(n) = (

r∏
j=q+1

2aj ) · 2k ·
∑

{p,q}⊆J⊆I

wG (J) .

Corollary

Assume 2k+1 ≤ n.
For k > 0, Gk(n) = O(n) if and only if bn/2kc = 2.
For k = 0, G0(n) = O(n) only holds for n ∈ {2, 3, 5}.

Remark Explicit description of Gk(n) [BGO 2017].



The end

Thank you!


