Algebraic power series mod p
—fast computation of coefficients—

Alin Bostan

Algebraic power series mod p

One of the most difficult questions in modular computations is the
complexity of computations mod p for a large prime p of coefficients
in the expansion of an algebraic function.

[D. Chudnovsky & G. Chudnovsky, 1990]
Computer Algebra in the Service of
Mathematical Physics and Number Theory

2/32

T, 1o poser erics mod 7

e p, a prime number

e N, a positive integer

o IF},, the finite field with p elements

eacl,

e E(t,y) € Fylt,y|, irreducible with E(0,a) = 0 and %(O,a) #£0

e f(t) = Ly fut", the unique root in IF,[[t]] of E(t, f(t)) = 0 with f(0) =a

3/32

e p, a prime number

e N, a positive integer

o IF},, the finite field with p elements

eacl,

e E(t,y) € Fylt,y|, irreducible with E(0,a) = 0 and %(O,a) #0

e f(t) = Ly fut", the unique root in IF,[[t]] of E(t, f(t)) = 0 with f(0) =a

Goal: design efficient algorithms for computing fy

3/32

Main

e p, a prime number

e N, a positive integer

o IF},, the finite field with p elements

eacl,

e E(t,y) € Fylt,y|, irreducible with E(0,a) = 0 and %(O,a) #0

e f(t) = Ly fut", the unique root in IF,[[t]] of E(t, f(t)) = 0 with f(0) =a

Goal: design efficient algorithms for computing fy

> Efficiency: measured in terms of bit operations (Turing machine model)
> Assume: input E has degree d = deg, E and height / = deg, E, both O(1)

T, 1o poser erics mod 7

A special case:

o f(t) =Ly fut" € Fp[[t]] NFp(t) <= (fn)n satisfies a recurrence

fotn = Chiforn1+-+cofn, n2>0.
e This recurrence rewrites in matrix form

fn 1 N1 fo
N . N i
. = . = o, N > 1.
: 1 . .
N+h—1 c €1 - Cp N+h—2 h—1
—_——— ——
Vn C Vn-1 Vo

e Binary powering: compute CN recursively, using
N _ (CN/ZA): if N is even,
C-(C7)2, else.
e Cost: O(log N) ops. in [Fp, thus O(log N - log p) bit ops.

> This is an ideal complexity result!
> Open question: 37 algorithm of complexity Poly(log N, log p) for d > 2?

> Concrete challenge: for f = \/ﬁ, compute fy mod p = (21\1}1) mod p.

Ten methods to compute fy

Problem: count 2-3-4 trees — f; = nb. of trees with n internal nodes l

TV

> Generating function:

f=Y fat" =1+3t+27t + 3333 + 4752 + 73764 + - -,
n

root of
E(ty) =y —1—t*+y° +y*).

6/32

(log p)-algorithms

e Starting point: the sequence (f,),>0 satisfies a non-linear recurrence.

e This yields an algorithm for fy using Poly(N“) operations in IFp, thus of
bit complexity O(log p - Poly(N)).

e E.g., for 2-3-4 trees, with

E(t,y) =y—1—ty* + v +y*) € Fplt,y],

we have for n > 1:

fa= Y, fifi+ Y fififi+ Y. fififife

i+j=n—1 i+j+k=n—1 i+jt+k+l=n—1
> fn can be computed in O(N*) ops. in [Fp, i.e., in O(N* - log p) bit ops.

8/32

U, 1o poser erics mod 7

Method 2 fredpoint heorem

e Starting point: f is the limit of the sequence (Fy) of power series in IFp[[t]]
defined by Fy = a, and Fy,(t) = F(t) — E(t, F(t)) for k > 0.

e This yields an algorithm for fy using N products of power series mod
e Each such product can be performed in O(N) ops. in F,, via FFT

e E.g., for 2-3-4 trees, with

E(by) =y -1t +y° +y') € Fplty),
compute:

Fo=1 Fyq=1+tF +tF +tF} mod "™ for 0<k<N.

> fn can be computed in O(N?) ops. in Fp, i.e., in O(N? - log p) bit ops.

U, 1o poser erics mod 7

Method 3:

e Starting point: f is the limit of the sequence (Gy) of power series in IF(]t]]

defined by Gy = a, and Gy, 1(t) = G (t) — M for k > 0.
% (1,Gyl1)

e This yields an algorithm for fx using products of power series mod 2,
fork=1,...,logN

e Each such product can be done in O(2F) ops. in IF,, for a total of O(N)
e E.g., for 2-3-4 trees, with

E(ty) =y—1—ty* + v +y*) € Fplt,y],
compute:

G — (14 tG? + G} +tG})
1—2tGy — 3tG? — 4tG;

Go=1, Gppq=Gp— mod 2 for k> 0.

> fn can be computed in O(N) ops. in FFp, i.e., in O(N -log p) bit ops.
[Lipson, 1976; Kung, Traub, 1978]

10 /32

" AunBostan Algebraic power series mod p

Method 4: linear

e Starting point:

Abel’s theorem (1827)

The sequence (f;); satisfies a linear recurrence with polynomial coefficients

pr(n) fatr + -+ po(n)fu =0, (n € N)

e This yields an algorithm for fy using O(N) operations in]F,,(+)
e E.g., for 2-3-4 trees, with

E(ty) =y—1-t("+y> +v*) € Fplty),
determine, then unroll, the recurrence:

1627 (n+1) (21 +1) fu + 108 (n+1) (2612 + 771+ 63) fus1+
<+ +75 (3n+17) (B3n+19) (n+6) frie =0.

> fi can be computed in O(N) ops. in Fy, i.e., in O(N - log p) bit ops.(")

() Under the additional assumption that p,(n) #0 forn =0,...,N.

11/32

Method 5: linear recur

e Starting point: Abel’s theorem, combined with the following strategy
o Uy = (fu,---, f,H_r_l)T satisfies the 1st order matrix recurrence
pr(n)

1 - —
WA(H)U" with A(n) = pr(n)

—po(n) —p1(n) ... —pya(n)

un+l =

— fy reads off the matrix factorial A(N —1)--- A(0)(*)
e [Chudnovsky-Chudnovsky, 1987]: (BS)—(GS) strategy

(BS) Compute P = A(x+ /N —1)--- A(x +1)A(x) O(VN)
(GS) Evaluate P at0, v/N, 2V/N, ..., (VN —1)VN O(VN)
Return P((v/'N —1)v/N) --- P(v/N) - P(0) O(V/N)

> fi can be computed in O(v/N) ops. in Fy, i.e., in O(v/N - log p) bit ops.(*)

(1) Under the additional assumption that p,(n) # 0 forn =0,...,N.

12/32

| Method | arithmetic complexity | bit complexity |
1. non-linear recurrences O(NY) O(N? -log p)
2. fixed-point theorem O(N?) O(N? -1logp)
3. Newton iteration O(N) O(N -logp)
4. linear recurrences O(N) O(N -logp)
5. baby-steps / giant-steps O(V/N) O(VN -logp)

13 /32

(log N)-algorithms

General strategy

e Starting point:

Christol’s theorem (1979)

If f € IF,[[t]] is algebraic, then there exists an IF,-vector space V such that:
o dim]pp V < +oo,
o V contains f,
o V is left stable by the section (Cartier) operators S, (0 < r < p)

Sr(cotcit+eat? 4+) =cr+crppt+ Crpapt® + - .

e Each choice of V yields an algorithm for fy using log, N applications of
the section operators on elements in V:

it N=(rg---nry), then fy= (Sr, -+ 51 S f)(0)
> The choice of V has an impact on the complexity!

> Different proofs of Christol’s theorem lead to different (log N)-algorithms.

 Method & Malerequatons

e Starting point: If f € IFp[[t]] is algebraic, then it satisfies a Mahler equation

ag()f(#) +ar(Df (1) +- - +ar(f (") =0,

with coefficients a; in TFp[t] with deg(a;) < Poly(p?), and ag # 0.

e Then for some N < Poly(p?), one may take in Christol’s theorem

T .

V= VeCt]Fp <Z ci(f/ag)?, ci €]Fp[t]§N>
i=0

[Christol, Kamae, Mendes France, Rauzy, 1980]

e This yields an algorithm for fy using O(log N) sections in V.

& fy can be computed using O(Poly(p?) - log N) bit ops.

16 / 32

U, 1o poser erics mod 7

Example:

Problem: count 2-3-4 trees — f; = nb. of trees with n internal nodes l

KO T A

f= Efnt”f1+3t+27t2+333t3 oot of E=y—1—ty2 +y°> +y*)

> Mahler equation ¢ + f(t) + (> + t + 1) f (1) + tf(*) + 2 £(}) =0 mod 2

fin-1)/2 mod 2, if n = 3 mod 4.
fn1)/2+ fn-1)/4 mod 2, ifn=1mod 4,
> f, mod 2 = .
fu fus2+ fur2-1+ fn—2)g mod 2, if n=2modS8,
fus2+ fuj2-1 mod?2, else.

> Computation of fy modulo 2 in O(log N) bit operations.

U, 1o poser erics mod 7

e Starting point:

If E(0,0) = 0 and §£(0,0) # 0, then

-Gy
y 1 E(xyy)

f(t) = Diag(g) where g(x,y) =

a(x,y)

o Christol’s argument (1979): Since f(t) = Diag b(x,y)

Sef(t)

18 /32

e Starting point:

If E(0,0) = 0 and §£(0,0) # 0, then

-Gy
y 1 E(xyy)

f(t) = Diag(g) where g(x,y) =

o Christol’s argument (1979): Since f(t) = Diag bé 2 ;, we have

S.f(1) =S, (Diag Ex y;)

18 /32

e Starting point:

If E(0,0) = 0 and §£(0,0) # 0, then

-Gy
y 1 E(xyy)

f(t) = Diag(g) where g(x,y) =

a(x,y)
b(x,y)

o Christol’s argument (1979): Since f(t) = Diag

Srf(t) =S, (Diag Zgz;) — Diag Sr(a(x,y))

18 /32

e Starting point:

If E(0,0) = 0 and §£(0,0) # 0, then

-Gy

f(t) = Diag(g) where g(x,y) =

y~1-E(xyy)
e Christol’s argument (1979): Since f(t) = Diag Zg'i; , we have
o (e alxy)\ a(x,y)\ _ . Sr(a(xy)b(x,y)P ")
S f(t) =S, (Dlag b(x,y)) = Diag Sr(b(x,y)) = Diag b(x,y) ,

18 /32

Method 7: diago:

e Starting point:

Furstenberg’s theorem (1967)
If £(0,0) = 0 and %(O' 0) # 0, then

. OE
f(t) = Diag (g) where g(x,y) = Y W(xy 2

y 1 E(xyy)

e Christol’s argument (1979): Since f(t) = Diag bg 2 ;, we have
a(%Y)\ _ o a(x,y)\ _ o Sr(a(y)b(xy)’)
Sef(t) S,(Dlag b,)) = Diag Sr(b(x—,y)) = Diag b(x,) ,

so one may take in Christol’s thm V = Diag(b(%y) “Fp[x, Y] < (deg, b, deg, b))
e This yields an algorithm for fy using O(log N) sections in V.
> fy can be computed using O(p? - log N) bit ops.

18/32

Method 8: Partial diagonals

e Starting point: Only a small part of b(x,y)?~! is enough to compute a
section in method 7: O(1) strips of width O(1) and length O(p)
e Example: p =109, E = (1 +t)(t —y) + 2y% + (1 + t)y® + v*

300

200

100

0

0 100 200

> fiy can be computed using O(p - log N) bit ops. [B., Christol, Dumas, 2016]

Alin Bostan Algebraic power series mod p

Method 9: Furstenberg-lik

e Starting point:

Theorem [B., Caruso, Christol, Dumas, 2018]

One may take in Christol’s theorem

P(t, f(t
V:{%((t,—jff((t)))) | PeFplt,y], deg, P <dand degtP<h}.

e This yields an algorithm for fy using O(log N) sections in V.

P(LA(1)
T (1f(1)

o expanding ¢ mod %7 O(p) by Newton iterations

amounts to:

> Applying a section to ¢ =

o solving a Hermite-Padé approximation problem at order 2dh = O(1).

> fn can be computed using O(p - log N) bit ops.

Method 10: Her

e Starting point: Only O(1) coefficients (of index from p to p) of g = fE—((tt%
oy \br

are needed in Method 9! (since we are only interested in one of its sections)

e Idea: g is algebraic, hence D-finite, so use baby-steps / giant-steps to
compute those coefficients in O(,/p) ops.

e Main difficulty to overcome: divisions by p (as in Method 5)
e Solution: lift to p-adics, control precision loss

> fn can be computed using O(,/p - log N) bit ops.
[B., Caruso, Christol, Dumas, 2018]

Overvi

| Method | bit complexity |
1. non-linear recurrences Poly(N? -log p)
2. fixed-point theorem O(N?-logp)
3. Newton iteration O(N -logp)
4. linear recurrences O(N -logp)
5. baby-steps / giant-steps O(V/N -logp)
6. Mahler equations Poly(p? - log N)
7. diagonals O(p?* -1ogN)
8. partial diagonals O(p -logN)
9. Furstenberg + Hermite-Padé O(p -logN)

10. Hermite-Padé + BS-GS O(/p -logN)

U, 1o poser erics mod 7

Bonus

23 /32

(areas Sof) s ur N 105 dwn Suruuny

o
o
o
o
2
o
P
e
<
2
&
. =
=
kS
A
=] — — o o
— | | |
(=1 o (=1
= = =
(ares Bo)s ur d 10y swmy uogenduwodsrd
E
L] £ o
=
=)
=
=3
=
)
& s
23
%0
L)
]
80
Rl
128
-z
E
=]
=2
=5
]
Et
S T
— =] =]
=2 =2

O(p)

O(logN)

24 /32

For
f= (1—a1t)2—4t2
and
ozl

computing f mod p reduces to computing the number of points
(x,y) € Fp x FF}, on the elliptic curve

y? = x(1+ax +x2).

This can be done in polynomial time in log p by Schoof’s algorithm (1985).

25/ 32

Let 1)
n
Cn=3 +1 (n)
be the nth Catalan number. Then:

o The last digit (in base 10) of C;, is never 3;
o For n > 0, the last digit of any odd C, is always 5.

26 / 32

Thanks for your attention!

[Schénhage-Strassen, 1971]: FFT-multiplication in IFp[x] -y using O(N) ops.

[Sieveking-Kung, 1972]: Newton iteration for the reciprocal of f € IFp[[x]]:

1 K
0= and g1 =ge+ge(l - f3r) mod x*"" forx >0

R(N) =R(N/2)+O(N) == R(N)=0(N)

Corollary: Division of power series at precision N in O(N)

28 /32

Application:

Given F, G € FFy[x]<n, compute (Q, R) in Euclidean division F = QG 4+ R

Schoolbook algorithm: O(N?)

Better idea: look at F = QG + R from the infinity: Q ~4 F/G

Formally: Let N = deg(F), n = deg(G), then deg(Q) = N —n, deg(R) < n
and

F(1/x)xN = G(1/x)x™ - Q(1/x)xN~" + R(1/x)x9e8(R) .xN—deg(R)
—_———— ~—

rev(F) rev(G) rev(Q) rev(R)

Strassen’s algorithm [1973]: o (
o Compute rev(Q) = rev(F) /rev(G) mod xN—"+1 o
(0]

0

o Recover Q
o Deduce R=F — QG

" AunBostan Algebraic power series mod p

Problem: Given ay, ...,a,-1 € IFp, compute A = H?;Ol (x —a;)

Cost: S(n) =2-S(n/2)+0(n) = S(n) =0(n).

30 /32

| Given ag,...,a,—1 € Fp, P € Fp[x]<,, compute P(ap), ..., P(a,_1) |

Naive algorithm: Compute the P(a;) independently O(n?)
Idea: Use recursively Bézout's identity P(a) = P(x) mod (x —a)

Divide and conquer: FFT-type idea, evaluation by repeated division
© Py=P mod (x—ag)- - (x—ay2-1)
o Pp=P mod (x—ay) - (x—ay_1)

Py(ao) = P(ag), ..., Polayso-1) = P(an/2-1)
— { Pi(ay/2) = P(ays), .., Pl%us—l):P(‘/li—i)

31/32

U, 1o poser erics mod 7

| Given ag,...,a,—1 € Fp, P € Fp[x]<y, compute P(ap), ..., P(a,_1) |

[P mod (z — ag)(z —a1)

mod / \mod mod / \rAnod

‘P mod (z — ao)] ‘P mod (z — al)] e [P mod (z — a,_3) ‘P mod (z — ay_1)

‘P mod (z — ap—2)(T — an_1)

Cost: E(n) =2-E(n/2)+0(n) = E(n)=0(n).

32/32

Algebraic power series mod p

