Skew Hook Formula for d-Complete Posets

Soichi OKADA
(Nagoya University)
joint work with Hiroshi NARUSE (University of Yamanashi)
based on arXiv:1802.09748

80th Séminaire Lotharingien de Combinatoire
Lyon, March 27, 2018



Young Diagrams and Standard Tableaux
For a partition A of n, we define its diagram by
D) ={(i,j) € Z*:1 < j < \}.
Let A and p be partitions such that A D p (i.e., D(A) D D(u)). A

standard tableau of skew shape \/u is a filling T of the cells of D(\)
with numbers 1,2,...,n = |\| — || satisfying

e each integer appears exactly once,

e the entries in each row and each column are increasing.

Example
1121416 2|3
31518 1|56
7 4

are standard tableaux of shape (4,3,1) and skew shape (4,3,1)/(2) re-
spectively.



Frame—Robinson—Thrall’'s Hook Formulas for Young Diagrams

Theorem (Frame—Robinson-Thrall) The number f* of standard tableaux
of shape A is given by

f)\

n!
 luepp) ma()’
where hy(,7) = )\,L-—F)\;- —1— 7+ 1 is the hook length of (7, 7) in D(\).

Example The hook of (1,2) in D(4, 3, 1) and the hook lengths are given
by

n=|Al,

614131
41211
1

Hence we have

|
(4,3.1) _ 5! _ 70
/ 6-4-3-1-4-2-1-1 .




Naruse’s Hook Formulas for skew Young Diagrams
Theorem (Naruse) The number fA/# of standard tableaux of skew
shape A/u is given by

FAB n!ZH

where D runs over all excited diagrams of D(u) in D(\).

o N = ’>\| o ‘/L‘,
veD(M\D h)\( )

o If a subset D C D(\) and u = (¢,7) satisfy (¢,5 + 1), ( + 1,7),
(2+1,7+1) € DN\ D, then we define

ay(D) =D\ {(5,5); Ut + 1,7 + 1}

e We say that D is an excited diagram of D(u) in D(\) if D is obtained
from D(u) after a sequence of elementary excitations D — (D).

\
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Naruse’s Hook Formulas for skew Young Diagrams

Theorem (Naruse) The number f*/# of standard tableaux of skew
shape A/u is given by

FMHE = !
%: HUED(

where D runs over all excited diagrams of D(u) in D(\).

Example If A = (4,3,1) and p = (2), then there are three excited
diagrams of D(u) in D()\):

1

’ — )‘ T ’
VNG n=[Al —|u

6431 64131 614131
41211 41211 41211
1 1 1

and we have

1 1 1
(43.1)/(2) — gl = 40.
/ (3-1-4-2-1-1+4-3-1-4-2-1+6-4-3-1-4-1)




Reverse Plane Partitions

For a poset P, a P-partition is a map 7 : P — N satisfying

r<yinP = m7(x)>mn(y) inN,

Let A(P) be the set of P-partitions, and write |7| = > . p7(x) for
T e A(P).

The Young diagrams can be regarded as posets by defining

((,5) 2 (@,j) =i <d, j <

If P = D(\)\ D(u), then P-partitions are called reverse plane partitions
of shape \/p.

Example

T= [0|1]3
2
is a reverse plane partition of shape (4,3,1)/(2).




Univariate Generating Functions of Reverse Plane Partitions

Theorem (Stanley) For a partition A, the generating function of reverse
plane partitions of shape A is given by

7 _ 1
q — .
Z HveP<1 — th(v)>

e A(D()N))

Theorem (Morales—Pak—Panova) For partitions A D u, the generating
function of reverse plane partition of skew shape A/ is given by

th(U>

Z qw B Z HUEB(D)

re A(DOV\D(1) 5 oeppyp(l = "™ V))

where D runs over all excited diagrams of D(u) in D()), and B(D) is
the set of excited peaks of D.



Generalization of Hook Formulas

The Frame—Robinson—T hrall-type hook formula holds for shifted Young
diagrams and rooted trees. Proctor introduced a wide class of posets,
called d-complete posets.

Theorem (Peterson—Proctor) Let P be a d-complete poset. Then the
univariate generating function of P-partitions is given by

7| _ 1
q :
Z HveP(l - th@))

More generally, the muItlvanate generating function of P-partitions is
given by

1
2"
; " Thcp(l— 2lHp0))
Goal Generalize Naruse's and Morales—Pak—Panova's skew hook formu-
las to d-complete posets (in other words, generalize Peterson—Proctor’s

hook formula to skew setting).



Double-tailed Diamond

e The double-tailed diamond poset d;.(1) (k > 3) is the poset depicted

below:
fItOp
k—2]
side <> side
k—2 i
- @ hottom

e A d;-interval is an interval isomorphic to dj.(1).

e A d, -convex set is a convex subset isomorphic to dj(1) — {top}.



d-Complete Posets

Definition A finite poset P is d-complete if it satisfies the following
three conditions for every £ > 3:

(D1) If I'is a d, -convex set, then there exists an element v such that
v covers the maximal elements of I and [ U {u} is a dj-interval.

(D2) If I = [v,u| is a dj-interval and u covers w in P, then w € I.

(D3) There are no d, -convex sets which differ only in the minimal

elements.

1
SN

<> <> o
A



Example Shapes (Young diagrams, left), shifted shapes (shifted Young
diagrams, middle) and swivels (right) are d-complete posets.



Hook Lengths

Let P be a connected d-complete poset. For each u € P, we define
the hook length / p(u) inductively as follows:

(a) If u is not the top of any dj-interval, then we define

U
hp(u) =#{w e P:w < uj. I
(b) If u is the top of a di-interval [v, u], then we define '
hp(u) = hp(x) +hply) = hp(v),

where = and y are the sides of v, u].
Also we can define the hook monomials z|H p(u)].



Excited Diagrams for d-Complete Posets
Let P be a connected d-complete poset.

e We say that u € D is D-active if there
is a dj-interval [v, u] with v € D such

that
2 is covered by u

z € [v,ul and ¢ or
Z cCovers v Q D ig (D)
— z & D. §Z D

o |If u € D is D-active, then we define
ay(D) =D\ {u} U{v}.
Let F' be an order filter of P.

e We say that D is an excited diagram of F'in P if D is obtained from
F' after a sequence of elementary excitations D — (D).

el) Iézdg>



Excited Peaks for d-Complete Posets

Let P be a d-complete poset and F' an
order filter of P. To an excited diagram D
of I"in P, we associate a subset B(D) C
P, called the subset of excited peaks of
D, as follows:

(a) If D = F', then we define B(F
(b) If D' = ay(D) is obtalned from D

by an elementary excitation at u € D,
then

Blay(D)) = B(D)\ {z c o, u]

where |v, u| is the dj-interval with top w.

(V)

91
61

2 is covered by u
or z covers v

bugen



Example If P is the Swivel and an order filter F' has two elements, then
there are 4 excited diagrams of F'in P.

X

Here the shaded cells form an exited diagram and a cell with X is an
excited peak.



Main Theorem

Theorem  (Naruse-Okada) Let P be a connected d-complete poset
and F' an order filter of P. Then the univariate generating function of

(P \ F)-partitions is given by

Z qw _ Z HUEB(D)

nEA(P\F) b [epp(l ="y

P v)

where D runs over all excited diagrams of F' in P. More generally, the
multivariate generating function of (P \ F')-partitions is given by

" Thenp) =Hp)
> I ()™ vaepwl—zw i)

re A(P\F)velP

where D runs over all excited diagrams of F'in P.




Main Theorem
Theorem  (Naruse-Okada) Let P be a connected d-complete poset
and F' an order filter of P. Then the multivariate generating function of
(P \ F)-partitions is given by

z|Hp(v)

UEB
S T ()™ ‘vaepwl—z[w i)

re A(P\F)veP

where D runs over all excited diagrams of F'in P.

Remark

o If I = (), we recover Peterson—Proctor’'s hook formula, and our gen-
eralization provides an alternate proof.

olf P = D(\) and F' = D(u) are Young diagrams, then the above

theorem reduces to Morales—Pak—Panova's skew hook formula after
specializing z; = q (i € I).



Example If P = 5(3,2,1) and F = 5(1 ) are the shifted Young

diagrams corresponding to strict partitions (4,3,1) and (1) respectlvely,
then we have

>, 7
TEA(S(3,2,1\8(1))
1

(1 — Zozolzlzg)(l — 202122)<1 — 2020/21)(1 — 202’1)(1 — Zo)
ZOZOIZ%ZQ

_|_

(1 — ZQZO/Z%ZQ)<1 — 2020/212’2)<1 — 20212’2>(1 — ZOZO’21>(1 — Z()Zl)
1 — 232p27 29

(1 — Z()ZQ/Z%ZQXl — ZOZO’ZlZQ)(l — 202122><1 — 2020/21><1 — 2021><1 — Z()).

X




Idea of Proof (1) — equivariant K-theory of partial flag variety
Let /° be a connected d-complete poset. Then we can associate

e the Dynkin diagram I' (the top tree of P),
e the Weyl group W,

e the fundamental weight A\ p corresponding to the color 7 p of the max-
iImum element of P,

o the set WP of minimum length coset representatives of W/W)\P,
where W) , is the stabilizer of Ap.

e the Kac—Moody group G and its maximal torus T,

e the maximal parabolic subgroup P_ corresponding to i p,
e the Kashiwara's thick partial flag variety X = “G/P_",
e the T -equivariant K-theory K (X).



Idea of Proof (2) — equivariant K-theory of partial flag variety
Then we have

KEr(x)= ]| Krpt)€" (as K7 (pt)-modules),
veW P
and the localization maps
by + K7 (X) — K7(pt) = Z[A]
& — M
where A is the weight lattice. Also we can associate to each order filter
F of P an element wp € WAP.
Main Theorem follows from
S [lvenp) zlHp(v)
6, 2= Tlyep\p(1 — 2lHp())

Te A(P\F)

where z; = e%i (i € I).



Idea of Proof (3) — equivariant K-theory of partial flag variety
We can prove the first equality

Z 2T = & wp
EVP|wp

e A(P\F)
by showing the both sides satisfy the same recurrence
1 FI\F)—1
ZP/F(Z> — 1 — Z[P \ F] Z/(_l)#( M) ZP/F’(’Z)a
F

where F’ runs over all order filters such that /' C F/ € P and F/'\ F

Is an antichain.
The second equality

§ lwp [Lven(p) zHp(v)]
gwp‘wp h D HvEP\D(l o Z[HP(U)D

can be deduced from the Billey-type formula for equivariant K -theory.




