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INTERLACED RECTANGULAR PARKING FUNCTIONS

JEAN-CHRISTOPHE AVAL AND FRANÇOIS BERGERON

Abstract. The aim of this work is to extend the Grossman–Bizley [Scripta Math.
16 (1950), 207–212; J. Inst. Actuar. 80 (1954), 55–62] paradigm that allows the
enumeration of Dyck paths in an m×n-rectangle to a general Sm×Sn-module context.
We obtain an explicit formula for the the “bi-Frobenius” characteristic of what we call
interlaced rectangular parking functions in an m × n-rectangle. These are obtained
by labeling the n vertical steps of an m × n-Dyck path by the numbers from 1 to n,
together with an independent labeling of its horizontal steps by integers from 1 to m.
Our formula specializes to give the Frobenius characteristic of the Sn-module of m×n-
parking functions in the general situation. Hence, it subsumes the result of Armstrong,
Loehr and Warrington of [Ann. Combin. 20 (2016), 21–58], which furnishes such a
formula for the special case where m and n are coprime integers.
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Introduction

The purpose of this paper is to extend the Grossman–Bizley enumeration formula
(see [9, 14]) for the number of Dyck-like paths in an m × n-rectangle to the context of
parking functions. These are the south-east lattice paths that start from the north-west
corner of the rectangle, end at its south-east corner, and stay below the line between
these corners. To each such path we associate a family of parking functions, seen as
labelings of the vertical steps of the path. We therefore consider enumeration problems
for the global set of such functions, which is called the set of (m,n)-parking functions.
More precisely, we obtain explicit formulas for the character (Pólya-enumeration) of the
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Sn-module of (m,n)-parking function in the general context. Such formulas have already
been established (see [1]) in the special “coprime” case, i.e., when m and n are coprime.

We then extend our approach to get formulas for bi-labeled paths. This means that we
independently label south-steps by the numbers 1 to n, and east-steps by the numbers
from 1 to m. We give an explicit formula (see 4.3) for the character of the resulting
Sn × Sm-module, thus characterizing its decomposition into irreducibles for the joint
(commuting) actions of Sn and Sm.

1. Rectangular Dyck paths

An (m,n)-Dyck path is a south-east lattice path, going from (0, n) to (m, 0), which
stays below the (m,n)-diagonal, which is the line segment joining (0, n) to (m, 0). See
Figure 1 for an example.

(0,5)

(10,0)
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HHH
HHH7

6
3
0
0

Figure 1. The (10, 5)-Dyck path encoded as 76300

We encode such paths as decreasing integer sequences

α = a1a2 · · · an, with 0 ≤ ak ≤ (n− k)m/n.

with each ak giving the distance between the y-axis of the (unique) south-step that starts
at level k. In other terms, α is an integer partition, with added 0-parts to make it of
length n, lying inside the (m,n)-staircase

δm,n := d1d2 · · · dn, with dk := b(n− k)m/nc.

Hence it makes sense to say that the conjugate path of an (m,n)-path α, denoted
by α′, is the (n,m)-path that corresponds to the conjugate partition. As an example,
δ6,4 = 4310. It is easy to check that δkn,n = δkn+1,n. We denote by Dm,n, the set of
(m,n)-Dyck paths, and by Cm,n its cardinality. It follows from the observation that
δkn,n = δkn+1,n that we have the set equality

Dkn,n = Dkn+1,n. (1.1)

Examples of values of Cm,n = |Dm,n| are given in the following table (observe the obvious
symmetry in m and n).
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m \ n 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1

2 1 2 2 3 3 4 4 5 5

3 1 2 5 5 7 12 12 15 22

4 1 3 5 14 14 23 30 55 55

5 1 3 7 14 42 42 66 99 143

6 1 4 12 23 42 132 132 227 377

7 1 4 12 30 66 132 429 429 715

Observe that it is only when k takes the form k = n − j b, with d = gcd(m,n) and
(m,n) = (ad, bd), that we may have (n − k)m/n lying in N. Thus (m,n)-paths α may
only return to the diagonal at such positions k. The set of such return positions clearly
forms a subset of {1, . . . , d− 1}, which is encoded in the usual manner1 as a composition
of d.

If m and n are coprime, the enumeration of (m,n)-Dyck path is given by the long
known formula2

Cm,n =
1

m+ n

(
m+ n

n

)
.

Observation (1.1), and a simple calculation, implies that the classical Catalan numbers
(or more generally Fuss–Catalan numbers) can be obtained from this.

If m and n have a greatest common divisor d other than 1, the relevant formula is
more complicated and seems to have escaped the attention of many until recently. In
fact, it appears that it was first stated in 1950 by Grossman [14], and then proved by
Bizley [9] in 1954. As we will see more clearly later, it is useful to recast this formula
in terms of ring homomorphisms applied to symmetric functions. More specifically, for
each fixed coprime pair (a, b), consider the ring homomorphism

θa,b : Λ −→ Z

defined by

θa,b(pk(x)) :=
1

a+ b

(
ak + bk

ak

)
,

where x = x1, x2, . . . is an infinite alphabet, and pk(x) stands for the classical power
sum symmetric function of degree k in x. Then, for (m,n) = (ad, bd) with d =

1Recall that, to a composition γ = (c1, . . . , ck), this correspondence associates the set of partial sums
S(γ) = {s1, s2, . . . , sk−1}, where si = c1 + c2 + · · ·+ ci, with 1 ≤ i < k.

2which may be obtained by a classical cycle argument maybe due to Dvoretzky and Motzkin (see [12]),
or even earlier to  Lukasiewicz.
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gcd(m,n), Grossman–Bizley formula may be very simply written as

Cad,bd = θa,b(hd(x)), (1.2)

where hd(x) stands3 for the usual complete homogeneous symmetric function of
degree d. Recall that, in generating function format, the link between power sum and
complete homogeneous symmetric functions may be expressed as

∞∑
d=0

hd(x)wd = exp

(∑
k≥1

pk(x)
wk

k

)
. (1.3)

Hence, in generating function terms, Formula (1.2) may be written as

∞∑
d=0

Cad,bdw
d = exp

(∑
k≥1

1

a+ b

(
ak + bk

ak

)
wk

k

)
. (1.4)

This will be derived from a more general formula in the sequel (see Proposition 3). Bizley
also showed (and we will see in the sequel that this generalizes as well) that the number
C ′ad,bd of primitive (ad, bd)-Dyck paths is given by

C ′ad,bd = θa,b((−1)d−1ed(x)), (1.5)

where ed(x) is the elementary symmetric functions of degree d. Recall that prim-
itive paths are those that remain strictly below the diagonal. From this, it easily follows
that one can enumerate the set of (m,n)-Dyck paths with returns to the diagonal en-
coded by a composition γ = (c1, . . . , ck) of d. These are the (m,n)-Dyck paths that
go through the points (a si, n − b si), with the notation of Footnote 1. The relevant
enumeration formula is then

|Da/b
γ | = θa,b((−1)d−kec1(x) · · · eck(x)), (1.6)

where we write Da/b
γ for the set of (m,n)-Dyck paths having returns to the diagonal

exactly at the points specified by γ. Clearly, the set Dm,n of all (m,n)-Dyck paths
decomposes as the disjoint union4

Dm,n =
∑
γ|=d

Da/b
γ ,

where γ |= d means that γ is a composition of d. The set D′m,n of primitive (ad, bd)-Dyck
paths simply corresponds to the case of the one part composition γ = (d), i.e.,

D′m,n = D
a/b
(d) .

3We are using Macdonald’s [21] notations here.
4We use summation to denote disjoint union.
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2. (m,n)Parking functions

To each (m,n)-Dyck path α = a1a2 · · · an, we associate the set Pα of α-parking
functions:

Pα := {aσ(1)aσ(2) · · · aσ(n) | σ ∈ Sn}.
For π ∈ Pα, we also say that α is the shape of π. Observe that α-parking functions may
be identified with standard Young tableaux5 of skew shape (α + 1n)/α, where α + 1n is
the partition having parts ak + 1. Indeed, if k sits in row j of (α+ 1n)/α, then one sets
π := b1b2 . . . bn, with bk := aj.

By definition, the symmetric group acts transitively on Pα. Indeed, for π = b1b2 · · · bn
and σ ∈ Sn, this action is defined by

σ · π := bσ−1(1)bσ−1(2) · · · bσ−1(n).

The set of (m,n)-parking functions, denoted by Pm,n, is the set of α-parking functions
with α varying in the set of (m,n)-Dyck paths,

Pm,n :=
∑

α∈Dm,n

Pα.

It clearly affords a permutation action of Sn, whose orbits are the Pα’s. Obviously, the
stabilizer of an (m,n)-Dyck path α (considered as a special (m,n)-parking-function) is
the Young subgroup

Sρ := Sr0 × Sr1 × · · · × Srm ,
where ρ = ρ(α) := (r0, r1, . . . , rm), with ri equal to the number of occurrences of i in α.
We may as well remove zero parts from ρ(α), since these parts play no role. The result
is said to be the riser composition of α. It follows that the number of α-parking
functions is given by the multinomial coefficient

|Pα| =
(

n

ρ(α)

)
:=

n!

r0! r1! · · · rk!
, (2.1)

and thus

|Pm,n| =
∑

α∈Dm,n

(
n

ρ(α)

)
. (2.2)

If m and n are coprime, (m,n)-parking functions may be seen to give canonical coset
representatives of the subgroup H := uZ, with u = (1, 1, . . . , 1), inside the abelian
group Znm. Here, elements of Znm correspond to general sequences of length n, with
entries between 0 and m− 1, whereas (m,n)-parking functions correspond to the special
case for which such a sequence becomes an (m,n)-Dyck path when its entries are sorted
(from smallest to largest). Indeed, it may be shown that each coset contains a unique
(m,n)-parking function. These considerations have the following consequence.

5naturally using french notation.
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Lemma 1 (Armstrong, Loehr, Warrington [1]). For coprime m and n, the num-
ber of (m,n)-parking functions is

|Pm,n| = mn−1. (2.3)

If m and n are not coprime, cosets of H will contain up to d (> 0) elements that are
(m,n)-parking functions. Exploiting this fact, one can get an analog of Formula (1.2).
We will not do this, since this actually follows from a finer result discussed in Section 3.
Table 1 gives small explicit values in the general case. From now on, we set (m,n) =
(ad, bd) with a and b coprime (thus d = gcd(m,n)).

n \m 1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1 1

2 1 3 3 5 5 7 7 9

3 1 4 16 16 25 49 49 64

4 1 11 27 125 125 243 343 729

5 1 16 81 256 1296 1296 2401 4096

6 1 42 378 1184 3125 16807 16807 35328

7 1 64 729 4096 15625 46656 262144 262144

Table 1. Number of (m,n)-parking functions

3. Frobenius characteristic of the parking function representations

For a fixed integer composition ρ of n, consider the transitive permutation action of
Sn on the set of ρ-set partitions of {1, 2, . . . , n}. These are the set partitions that
have block sizes specified by ρ. One may consider this as a representation of Sn, having
dimension equal to the multinomial coefficient(

n

ρ

)
=

n!

ρ1! ρ2! · · · ρk!
.

It is classical that the Frobenius transform6 of the character of the resulting Sn-module
is hρ(x) := hρ1(x)hρ2(x) · · ·hρk(x). Recall that this means that the coefficients of the
Schur function expansion of hρ(x) correspond to multiplicities of irreducibles.

For a given (m,n)-Dyck path α of height n, the Sn-action on α-parking functions is
isomorphic to the action of Sn on ρ-set partitions, with ρ = ρ(α) equal to the riser-
composition α. Thus hρ(α)(x) is the associated Frobenius characteristic.

6We simply say: Frobenius characteristic.
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It follows from this that the Frobenius characteristic of the Sn-action on (m,n)-parking
functions, which we denote by Pm,n(x), can be calculated as follows

Pm,n(x) =
∑

α∈Dm,n

hρ(α)(x). (3.1)

As discussed in [1], and borrowing a presentation format inspired by [24], we have the
following formulas.

Proposition 2 (Armstrong, Loehr, Warrington). For coprime positive integers
m and n, we have

Pm,n(x) =
1

m

∑
λ`n

m`(λ) pλ(x)

zλ
(3.2)

=
1

m

∑
λ`n

sλ(1
m) sλ(x) (3.3)

=
∑
λ`n

(m− 1) (m− 2) · · · (m− `(λ) + 1)

d1(λ)! · · · dk(λ)!
hλ(x),

where di(λ) is the number of parts of size i in λ and zλ =
∏

i≥1 i
di(λ)di(λ)!.

From (3.3), we may calculate that the respective multiplicities of the trivial and the
sign representation in Pm,n are given (as expected) by

1

m
hn(1m) =

1

m+ n

(
m+ n

n

)
, and

1

m
en(1m) =

1

m

(
m

n

)
,

since these occur as coefficients of sn(x) and s1n(x), respectively. More generally, the
other multiplicities may be obtained using the classical evaluation (involving hook
lengths)

sλ(1
m) =

∏
(i,j)∈λ

m+ i− j
(λj − i) + (λ′i − j) + 1

.

It is also worth recalling that the sign-twisted version7 of Pn,n(x) is the Frobenius char-
acteristic of the space of “diagonal harmonics” [15].

Formula for the non-coprime case. To get formulas for the non-coprime case, we
generalize (1.2) in a natural manner as below. Once again, we assume that (m,n) =
(ad, bd) with (a, b) coprime, and consider γ a composition of d. We adapt our notations

from Section 1 to parking functions. Consequently, we write P
a/b
γ for the set of (ad, bd)-

parking function whose underlying path lies in the set D
a/b
γ :

Pa/bγ :=
∑

α∈Da/bγ

Pα.

7This simply means that we replace pk(x) by (−1)k−1pk(x) in (3.2).
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Likewise, P′m,n is the set of primitive (m,n)-parking functions, i.e., those whose
underlying paths only touch the diagonal at both ends. Maintaining our previous con-
ventions, we set

Pa/bγ (x) :=
∑

α∈Da/bγ

hρ(α)(x), and P′m.n(x) :=
∑

α∈D′m,n

hρ(α)(x).

In the same spirit as previously, we consider a ring homomorphism Θa,b : Λ −→ Λ
that sends degree d homogeneous symmetric functions to degree n = bd homogeneous
symmetric functions. Just as before, this homomorphism is characterized by its effect
on the algebraic generators pk(x), setting

Θa,b(pk(x)) :=
1

a

∑
λ`ak

(ak)`(λ)
pλ(x)

zλ
,

For a degree d symmetric function fd(x), we also write f
a/b
d (x) for the image of fd(x)

under the homomorphism Θa,b, i.e.,

f
a/b
d (x) := Θa,b(fd(x)). (3.4)

The following proposition extends the approach of Bizley (see [9]) for the enumeration
of (m,n)-Dyck paths to the (m,n)-parking function Frobenius characteristic. Its proof
makes use of the notion of rank of points along (m,n)-paths, which is simply defined as

rank(x, y) := my + nx.

Proposition 3. Let (m,n) = (ad, bd), with a and b coprime, and consider γ=(c1, . . . , ck)
a composition of d. Then we have

Pm,n(x) = Θa,b(hd(x)), (3.5)

P′m,n(x) = Θa,b((−1)d−1ed(x)), (3.6)

Pa/bγ (x) = Θa,b((−1)d−kec1(x) · · · eck(x)). (3.7)

Proof. The proof is essentially an adaptation of Bizley’s original proof, integrating sym-
metric functions arguments.

For the purpose of our argument, we consider the set Bm,n of all south-east lattice
paths going from (0, n) to (m, 0), which end with an east-step (without any condition
relative to the diagonal). We think of these as length m + n “words” in the letters y
and x, which encode the successive steps, with y standing for a south-step and x for an
east-step. Thus, the paths in Bm,n bijectively correspond to all possible words containing
n copies of y and m copies of x, with final letter equal to x. It clearly follows that the
number of such words/paths is

|Bm,n| =
(
m+ n− 1

n

)
. (3.8)
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We bijectively label the n south-steps of such paths with the integers 1 to n, just as we
earlier did for parking functions. This is to say that labels decrease along consecutive
south-steps. The resulting set of labeled paths is denoted by Lm,n. The symmetric
group Sn acts on Lm,n by permuting labels, and the Frobenius characteristic of this
(permutation) action is∑

α∈Bm,n

hρ(α)(x) =
∑
λ`n

(m)`(λ)
pλ(x)

zλ
= a p

a/b
d (x). (3.9)

To see this, observe that the stabilizer of an orbit of Lm,n (which corresponds to some
fixed underlying path α) is the Young subgroup Sr1 × Sr2 × · · · × Srj , where ρ(α) =
(r1, r2, . . . , rj), and that the action is the action induced by the trivial action of Sr1 ×
Sr2 ×· · ·×Srj . The second equality in (3.9) is by definition (3.4). The first equality may
be derived from the Cauchy identity [11] as follows. Let y = y1, y2, . . . denote a (second)
infinite alphabet. We have

∞∏
i=1

∞∏
j=1

1

1− xiyj
=
∑
λ

hλ(x)hλ(y) =
∑
λ

1

zλ
pλ(x)pλ(y). (3.10)

Setting the first m variables yj to t and the other ones to 0 in (3.10), and then taking
the coefficient of tn, we obtain∑

λ`n

hλ(x)

(
m

m1, . . . ,mn,m− `(λ)

)
=
∑
λ`n

1

zλ
pλ(x)m`(λ), (3.11)

with λ = (1m1 , 2m2 , . . . ). The left-hand side of (3.11) is precisely
∑

α∈Bm,n hρ(α)(x).

We next consider highest rank points along a path α in Bm,n. Namely, these are the
points (i, j) on the path for which rank(i, j) reaches its maximal value. To simplify our
discussion, we remove the point (m, 0) from those considered. Clearly, a path α may
have more than one highest rank point, but the number of such points is at most d. We
denote by Bt

m,n (respectively Dt
m,n) the subset of Bm,n (respectively Dm,n) consisting of

paths with exactly t highest points.
We then consider cyclic permutations of α = `1 · · · `m+n (where either `i = x or `i = y)

in the following sense. Choosing any occurrence of x in α, say at `i, we cut the path
after this x, and build a new word β by switching the two resulting components of α:

α = `1 · · · `i `i+1 · · · `m+n 7→ β = `i+1 · · · `m+n `1 · · · `i.
Observe that the number of highest rank points is invariant under such cyclic permuta-
tions, and that these highest rank points can be brought to the diagonal by some cyclic
permutation. Moreover, the riser-composition of α is cyclically preserved. Hence, the
Frobenius characteristic is left unchanged, and it equals hρ(α)(x) for both the action of Sn
on labelings with underlying path α or β. Figure 2 illustrates the notion of highest point
(two in this case, represented by blue dots) and the procedure of cyclic permutation (the
cut `i appears as a black cross).
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(0,5)

(10,0)

HHH
HHH

HHH
HHH

•

•

(0,5)

(10,0)

HHH
HHH

HHH
HHH

•

•

Figure 2. Cyclic permutation of an element of B10,5 with 2 highest points

The key point is the following: the cyclic permutation allows us to build a bijection

Dt
m,n × [m]

∼−→ Bt
m,n × [t]. (3.12)

Consider (α, j) ∈ Dt
m,n × [m]. By cutting α after its j-th east step, and performing the

corresponding cyclic permutation, we get an element γ of Bt
m,n. We may keep track of

the final point of α, which corresponds to one of the t highest points of γ (call it h). The
reverse bijection consists in applying the cyclic permutation to γ in position h: we get
back α, and we keep track of the final point of γ as the index j.

Now recall from our hypothesis that (m,n) = (ad, bd) with (a, b) coprime. Denote by
Ptad,bd(x) the Frobenius characteristic of the parking functions associated with (ad, bd)-
Dyck paths having exactly t contact points with the diagonal. From bijection (3.12),

we get that
∑d

t=1(da/t)P
t
ad,bd(x) is the Frobenius characteristic of Lad,bd. Consequently,

because of (3.9) and after simplification, we obtain

d∑
t=1

1

t
Ptad,bd(x) =

1

d
p
a/b
d (x). (3.13)

Since the case t = 1 of Ptad,bd(x) corresponds to the Frobenius characteristic of the
primitive (ad, bd)-Dyck path, we clearly have

Ptad,bd(x) =
∑
γ|=td

P′ac1,bc1(x)P′ac2,bc2(x) · · · P′act,bct(x), (3.14)

where the sum is over length t compositions γ = (c1, c2, . . . , ct) of d. In other terms, if
we set

P′a,b(x; z) :=
∞∑
j=1

P′aj,bj(x) zj,
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then Ptak,bk(x) is the coefficient of zk in
(
P′a,b(x; z)

)t
. We may thus argue that Equa-

tion (3.13) says that 1
k
p
a/b
k (x) is the coefficient of zk in log(1/(1− P′a,b(x; z)), so that

P′a,b(x; z) = 1− exp
(
−
∞∑
k=1

p
a/b
k (x) zk/k

)
(3.15)

= Θa,b

(
∞∑
d=1

(−1)d−1ed(x) zd

)
, (3.16)

which is equivalent to (3.6), which in turn readily implies (3.7). Clearly,

Pad,bd(x) =
∑
t>0

Ptak,bk(x),

so that

Pa,b(x; z) =
1

1− P′a,b(x; z)
= exp

( ∞∑
k=1

p
a/b
k (x) zk/k

)
(3.17)

= Θa,b

(
∞∑
d=0

hd(x) zd

)
, (3.18)

which concludes the proof of Proposition 3. �

For example, for any coprime a and b, we get

P2a,2b(x) =
1

2a
h2b[2ax] +

1

2

(
1

a
hb[ax]

)2

,

P′2a,2b(x) =
1

2a
h2b[2ax]− 1

2

(
1

a
hb[ax]

)2

,

which give the Frobenius characteristic that correspond to (2a, 2b)-Dyck paths and prim-
itive (2a, 2b)-Dyck paths, respectively. The notation hn[mx] refers to the well-known
plethystic substitution (see for example [19]). To get explicit formulas for the number of
(m,n)-parking functions, we need simply compute the scalar product 〈Pm,n(x), hn1 (x)〉.
Likewise for P′m,n or P

a/b
γ .

4. Bi-Frobenius characteristic

As before, let (m,n) = (ad, bd) with a and b coprime. We can now consider the
“riser-step“ bi-Frobenius characteristic of (m,n)-parking function, which may be de-
fined/calculated to be

Pm,n(x,y) :=
∑

α∈Dm,n

hρ(α)(x)hρ(α′)(y), (4.1)
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where, as before, y = y1, y2, . . . stands for another denumerable alphabet of variables.
Hence, α(x) encodes the “riser structure” of α, whereas α′(y) encodes its “step structure”
(which are the risers of the conjugate path α′). Clearly this bi-Frobenius characteristic
affords the symmetry

Pm,n(x,y) = Pn,m(y,x). (4.2)

Once again, there is a Bizley-like formula for Pm,n(x,y), which subsumes (up to some
calculations) all of our previous results. This formula is the subject of the following
theorem.

Theorem 4. For coprime positive integers a and b, we have
∞∑
d=0

Pad,bd(x,y) zd = exp

(∑
k≥1

p
a/b
k (x,y)zk/k

)
, (4.3)

where we set

p
a/b
k (x,y) :=

k∑
j=1

k

j

∑
ρ|=jbk, σ|=jak

hρ(x)hσ(y), (4.4)

and where, as before, we write ρ |=j n to say that ρ is a composition of n having j parts.

Proof. The proof of Theorem 4 uses a refinement of the argument used to prove Propo-
sition 3. We introduce the set Cm,n of lattice paths in Bm,n with the additional condition
that they start with a south step. By definition, corners of a south-east lattice path
are the points that lie between an east-step and a following south-step. We consider
(m,n)-Dyck paths α having t highest points and j corners, and modify the argument of
Proposition 3 by restricting cuts to points that lie at one of the j corners. In the same
way as (3.12), we get a bijection

Dt,j
m,n × [j]

∼−→ Ct,jm,n × [t], (4.5)

where the superscripts t, j indicate a restriction to paths with exactly t highest points
and j corners.

Set
Pt,jm,n(x,y) :=

∑
α∈Dj,jm,n

hρ(α)(x)hρ(α′)(y).

Bijection (4.5) implies

1

t
Pt,jm,n(x,y) =

1

j

∑
ρ|=jn, σ|=jm

hρ(x)hσ(y).

Summing both sides over j (writing (m,n) as (ad, bd)), we obtain

d∑
t=1

1

t
Ptad,bd(x,y) =

d∑
j=1

1

j

∑
ρ|=jbd, σ|=jad

hρ(x)hσ(y) =
1

d
p
a/b
d (x,y). (4.6)

Then (4.3) is deduced from (4.6) just as (3.15) was deduced from (3.13). �
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An alternate formula for p
a/b
k (x,y), which involves much less terms, is easily seen to

be

p
a/b
k (x,y) := k

k∑
j=1

1

j

∑
µ`jbk, ν`jak

(
j

λ(µ)

)(
j

λ(ν)

)
hµ(x)hν(y). (4.7)

The second sum is now over j-part partitions, with λ(µ) denoting the partition of j that
indicates the multiplicities of the parts of µ (likewise for ν), and

(
j

λ( . )

)
stands for the

corresponding multinomial coefficient. Hence, the above formula is simply obtained by
collecting the compositions that have the same parts, up to re-ordering, in (4.4).

Observe that we get back Proposition 3 from Theorem 4 if we take the usual symmetric
function scalar product with hn(y) on each side of (4.6). Indeed, we first recall that this
scalar product is such that

〈hµ(y), hn(y)〉 = 1,

for any partition (or composition) of n. This implies that 〈−, hn(y)〉 is a ring homomor-
phism. Hence, we need only prove that

〈pa/bk (x,y), hn(y)〉 = k
k∑
j=1

1

j

∑
µ`jbk, ν`jak

(
j

λ(µ)

)(
j

λ(ν)

)
hρ(x) (4.8)

reduces to

p
a/b
k (x) =

1

a

∑
λ`bk

(ak)`(λ)
pλ(x)

zλ
. (4.9)

This is obtained as follows. The right-hand side of (4.8) is equal to

k
∑
t,j

1

j

∑
γ∈Ct,jm,n

hρ(γ)(x),

whereas the right-hand side of (4.9) is equal to

k

m

∑
γ∈Bm,n

hρ(γ)(x).

Because of bijections (3.12) and (4.5), these two expressions are equal (and equal to
k
∑

t
1
t

∑
α∈Dtm,n

hρ(γ)(x)).

5. Further considerations

Extensions of these considerations, linked to several interesting questions (see [3, 4, 7,
16, 17]), take into account parameters on parking functions such as “area” and “dinv”.
To formulate the analogous results, one needs to work with an algebra of operators on
symmetric functions isomorphic to the elliptic Hall algebra studied in [10, 13, 23]. In
this framework, the homomorphism Θa,b sends a symmetric function to an operator on
symmetric functions. In turn, formulas are obtained by applying the resulting operator
to the symmetric function 1.



14 J.-C. AVAL AND F. BERGERON

In this light, it is worth observing that the image under Θa,b of other symmetric
functions gives rise to significant formulas. The interesting feature of these formulas
is that their Schur function expansion has positive integer coefficients. It is usual to
say that they are “Schur-positive”. This is the case for hook Schur functions8 s(k|j)(x),
for which we can easily show h-positivity of Θa,b((−1)js(k|j)(x)), which implies Schur-
positivity. Indeed, one easily verifies that the symmetric function (−1)js(k|j)(x) expands

with positive integer coefficients in the basis (−1)|µ|−`(µ) eµ(x); and we have seen that
Θa,b((−1)j−1ej(x)) expands with positive integer coefficients in the basis hν(x). Hence,
application of the homomorphism Θa,b to (−1)js(k|j)(x) gives rise to an h-positive ex-
pression. This expression is also Schur-positive, since any hν(x) is.

Extensive experiments suggest that, for all µ, Θa,b((−1)ι(µ)sµ(x)) is Schur-positive,
where ι(µ) is the number of cells (i, j) of the diagram of µ, such that j > i. Moreover, all
of this seems to carry over to the study of the bi-Frobenius characteristic. An intriguing
question is to expand the elliptic Hall algebra techniques to cover these bi-Frobenius
characteristic. The hope is that this would lead to more explicit formulas for three
parameter expressions such as ∑

α∈Dm,n

qarea(α)α(x; t)α′(y; r), (5.1)

were α(x; t) is an LLT-polynomial calculated using the dinv-statistic on (m,n)-parking
functions (see [7] for more details on all this):

α(x; t) :=
∑
πPα

tdinv(π) sco(π)(x),

where co(π) is a composition that encodes “descents” of the parking function π. Recall
that composition-indexed Schur functions may be defined by a suitable adaptation of the
Jacobi–Trudi identity. Up to a sign-twist, Expression (5.1) specializes to the right-hand
side of (4.1). It is known that the LLT-polynomial α(x; t) is Schur-positive.
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