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k-INDIVISIBLE NONCROSSING PARTITIONS

HENRI MÜHLE, PHILIPPE NADEAU, AND NATHAN WILLIAMS

Dedicated to Christian Krattenthaler on the occasion of his 60th birthday.

Abstract. For a fixed integer k, we consider the set of noncrossing partitions,
where both the block sizes and the difference between adjacent elements in a
block is 1 mod k. We show that these k-indivisible noncrossing partitions can be
recovered in the setting of subgroups of the symmetric group generated by (k+1)-
cycles, and that the poset of k-indivisible noncrossing partitions under refinement
order has many beautiful enumerative and structural properties. We encounter
k-parking functions and some special Cambrian lattices on the way, and show
that a special class of lattice paths constitutes a nonnesting analogue.

1. Introduction

1.1. Classical noncrossing partitions. For an integer n ≥ 0, a (classical) noncross-

ing partition of the set [n+1] def
= {1, 2, . . . , n+1} is a set partition whose blocks

have pairwise disjoint convex hulls when drawn on a regular (n+1)-gon with
vertices labeled clockwise by [n+1] (Figure 1 illustrates some examples).
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Figure 1. The leftmost image represents the noncrossing par-
tition (1 2 7)(3 4 5 6)(8)(9 11)(10)(12). The middle image
then illustrates the computation of its Kreweras complement
(1)(2 6)(7 8 11 12)(3)(4)(5)(9 10), shown on the right.

Recall that the symmetric group Sn+1 is generated by the set of transposi-
tions

{
(i j)

}
1≤i<j≤n+1, and the noncrossing partitions NCn+1 are naturally iden-

tified (by sending blocks to cycles) with the elements occurring as prefixes of
reduced factorizations of the long cycle (1 2 . . . n+1) into transpositions [5].
Noncrossing partitions lie at the intersection of many seemingly unrelated areas
of mathematics—for more information, we refer to the surveys [3, 23, 27].

Key words and phrases. noncrossing partition, Hurwitz action, parking function, Cambrian lattice,
nonnesting partition.
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1.2. k-Indivisible noncrossing partitions. Fix integers k, n ≥ 1. Throughout this
article we write

N def
= kn + 1,

and we denote by SN;k the subgroup of SN generated by the set of all (k+1)-
cycles.

The previous construction of noncrossing partitions as prefixes of reduced fac-
torizations of the long cycle into transpositions naturally generalizes to SN;k as
the set NCN;k of elements occurring as prefixes of reduced factorizations of the

cycle cN
def
= (1 2 . . . N) into (k+1)-cycles. In reference to Edelman and Arm-

strong’s k-divisible noncrossing partitions (noncrossing partitions whose block sizes
are all divisible by k) [1, 10], we call the elements of NCN;k the k-indivisible non-
crossing partitions. Our first result characterizes NCN;k as a condition on block
sizes, explaining the nomenclature “k-indivisible.”

Recall that the Kreweras complement of a noncrossing partition w ∈ NCN is
defined as the coarsest noncrossing partition Krew(w) ∈ NCN that can be drawn
on the dual N-gon without intersecting w (see Figure 1 for an illustration).

Theorem 1.1. Fix k, n ≥ 1 and write N = nk + 1. The following are equivalent.

(i) w is a k-indivisible noncrossing partition on [N].
(ii) w is a noncrossing partition on [N] and all cycles in both w and its Kreweras

complement Krew(w) have lengths 1 mod k.
(iii) w is a noncrossing partition on [N], all its cycles have lengths 1 mod k, and if i < j

are consecutive in a cycle of w, then j− i ≡ 1 (mod k).

We prove Theorem 1.1 in Section 3.3. Note that the k-indivisible noncross-
ing partitions recover the ordinary noncrossing partitions when k = 1 (so that
the congruence constraint on the lengths of blocks is trivially satisfied), and the
constructions of [25] when k = 2.

This combinatorial description allows us to enumerate NCN;k.

Theorem 1.2. The cardinality of NCN;k is

2
N + 1

(
N + n

n

)
.

1.3. The k-indivisible noncrossing partition poset. As with the classical non-
crossing partitions, the set of k-indivisible noncrossing partitions is naturally or-
dered by refinement. We denote this poset by NCN;k. In contrast to when k = 1,
NCN;k is generally not a lattice. Nevertheless, we prove the following formula for
its zeta polynomial at the end of Section 4.

Theorem 1.3. For k, n ≥ 1, the number of q-multichains of NCN;k is

ZN;k(q + 1) =
q + 1

Nq + 1

(
Nq + n

n

)
.

The remainder of the paper is devoted to generalizing enumerative results,
objects, and bijections from the classical noncrossing partition lattice (obtained
by specializing k to 1) to NCN;k.
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1.4. k-Parking functions. In Section 5, we give a bijection from the maximal
chains of NCN;k to k-parking functions, generalizing [30, Theorem 5.1].

1.5. Cambrian lattices. In Section 6, we give a bijection from the maximal chains
of NCN;k up to commutation equivalence, to (2k+2)-angulations of a convex 2N-
gon following [24]. This construction recovers an instance of a 2k-Cambrian lattice
from [32].

1.6. Nonnesting partitions. In Section 7 we construct the k-indivisible nonnesting
partitions as the order ideals of a subposet of a triangular poset. These are shown
to be in bijection with the k-indivisible noncrossing partitions.

1.7. Open problems. We conclude in Section 8 with some open problems: we
conjecture that NCN;k is EL-shellable, and we conjecture many enumerative prop-
erties of a certain poset whose elements are the q-multichains of NCN;k.

2. Preliminaries

2.1. Hurwitz Action. Let G be a group and let n ≥ 1. The i-th standard generator
σi of the braid group Bn sends (g1, g2, . . . , gn) ∈ Gn to

(g1, g2, . . . , gi−1, gi+1, g−1
i+1gigi+1, gi+2, . . . , gn) ∈ Gn.

Its inverse σ−1
i sends (g1, g2, . . . , gn) ∈ Gn to

(g1, g2, . . . , gi−1, gigi+1g−1
i , gi, gi+2, . . . , gn) ∈ Gn.

This is a group action of Bn on Gn, and it is clear that it does not change the
product of such a tuple. We call this the Hurwitz action.

2.2. k-Absolute order. Let K ≥ 1 be an integer, and let SK be the symmetric
group on [K]. For k ≥ 1 let CK;k be the set of all (k+1)-cycles of SK and let
SK;k ≤ SK denote the subgroup generated by CK;k. If k is odd, then SK;k = SK;
if k is even, then SK;k is the alternating group AK on [K].

It will be useful to have some notation regarding multiplication by cycles. Let
(i j) be a transposition. If w ∈ SK has two distinct cycles containing i and j,
we may write w = w′(si)(sj) where si and sj are sequences ending with i and j,
respectively. Then w · (i j) = w′(si sj), and we say that we join the two cycles.
More generally, given m disjoint cycles of w, we may join them in a new cycle by
multiplying by an m-cycle having exactly one element in common with each of
them. The inverse operation is called cutting a cycle.

Let `k : SK;k → N be the map that assigns to w ∈ SK;k the minimum length of
a factorization of w into (k+1)-cycles. The k-absolute order is the following partial
order on SK;k:

w ≤k w′ if and only if `k(w) + `k(w−1w′) = `k(w′).

Since the set of (k+1)-cycles is a full SK-conjugacy class, the map `k is invariant
under SK-conjugation by [25, Proposition 2.3]. We are only aware of simple
formulas for `k for k ∈ {1, 2, 3}. For example, for k = 1, if we let cyc(w) denote
the number of cycles of w ∈ SK, then `1(w) = K − cyc(w). For k = 2, we have
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`2(w) = K− ocyc(w) where ocyc(w) denotes the number of odd cycles of w ∈ AK
[25]. Some general bounds for `k are given in [16].

2.3. (1 mod k)-Permutations. There is a subset of elements of SK;k for which `k
has a similarly simple form.

Definition 2.1. A permutation w ∈ SK;k is 1 mod k if—when written as a product

of disjoint cycles—all cycles of w have length 1 mod k. We denote by S
(1)
K;k the set

of all (1 mod k)-permutations.

Lemma 2.2. A permutation w ∈ SK is 1 mod k if and only if `k(w) =
K−cyc(w)

k .

In particular this specializes to the above mentioned well-known fact that
`1(w) = K− cyc(w) for any permutation w.

Proof. Let w ∈ SK;k, and let t be a (k+1)-cycle. Note that t can be written as a
product of k transpositions, and so by analyzing the cut and join possibilities, we
obtain that cyc(wt) ≥ cyc(w)− k. Furthermore, equality holds if and only if t has
at most one element in common with each cycle of w—in this case wt is obtained
from w by joining the k+1 cycles of w that have a common element with t. Now
fix a minimal factorization of w into (k+1)-cycles. By induction, starting from the
fact that the identity permutation has K cycles of length 1, the previous inequality
implies that any w ∈ SK;k satisfies cyc(w) ≥ K − k`k(w), and equality occurs if
and only if w was built by joining k+1 cycles at a time, as described above.

In the case of equality, w is 1 mod k since joining k + 1 cycles of length 1 mod k
gives back another cycle of length 1 mod k. Conversely, every 1 mod k permu-
tation can be written as a product of K−cyc(w)

k elements of CK;k, for instance by
factoring each of its cycles as follows:

(a1 a2 . . . ask+1) = (a1 . . . ak+1) · (ak+1 . . . a2k+1) · · · (a(s−1)k+1 . . . ask+1). �

The covering relations lk of the partial order ≤k in which the top element
belongs to S

(1)
K;k are particularly simple to describe.

Corollary 2.3. Let w ∈ S
(1)
K;k and u ∈ SK;k. Then one has u lk w if and only if u can

be obtained from w by cutting one cycle of w into k + 1 cycles of length 1 mod k.

Proof. This is an immediate corollary of the proof of Lemma 2.2. �

Corollary 2.4. If w ∈ S
(1)
K;k and u ≤k w, then u ∈ S

(1)
K;k, u−1w ≤k w and u−1w ∈ S

(1)
K;k.

Proof. That u ∈ S
(1)
K;k follows from Corollary 2.3 by induction. So fix a reduced

factorization w = t1 · t2 · · · tl with ti ∈ CK;k for i ∈ [l] such that u = t1t2 · · · ts for
some s ∈ [l]. Now, ts+1ts+2 · · · tl = u−1w. The Hurwitz action allows us to write
w = ts+1 · · · tlt′1t′2 · · · t′s for certain t′i ∈ CK;k, so that u−1w ≤k w as well. �

3. k-Indivisible noncrossing partitions

3.1. k-Indivisible noncrossing partitions. For k, n ≥ 1 and N = kn + 1, we fix

the long cycle cN
def
= (1 2 . . . N). Notice that cN ∈ S

(1)
N,k, so that `k(cN) = n by

Lemma 2.2.
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Definition 3.1. The k-indivisible noncrossing partitions are the elements of

NCN;k
def
= {w ∈ SN,k | w ≤k cN}.

We denote the corresponding poset by NCN;k
def
= (NCN;k,≤k). For k = 1, the

poset NCn+1;1 = NCn+1 is isomorphic to the lattice of noncrossing partitions of
[n+1] [5]. Figure 2 illustrates NCN;k for n = 3 and k = 2.
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Figure 2. The poset NC7;2.

Remark 3.2. Let Π(i)
K;k be defined as the poset of all partitions of [K] with block

sizes congruent to i mod k. Some history and results regarding these posets is
summarized in [35, Examples 4.3.4 and 4.3.5, Exercise 4.3.6, and Remark 4.3.7]—
and we are not aware of any substantive results beyond i = 0, 1.

The lattices Π(0)
K;k first appeared in [33], and were subsequently studied by Stan-

ley and Sagan in [26, 29]. The corresponding noncrossing partitions were consid-
ered by Edelman [10], and extended to finite Coxeter groups by Armstrong [1].

The posets Π(1)
K;k were studied in [9]. However, as far as we know, the cor-

responding noncrossing partitions have not previously been considered. On the
other hand, the study of the maximal chains in NCN;k is a classical problem, for
example when phrased in the language of transitive factorizations and cacti. We
revisit some of the combinatorics related to these maximal chains in Sections 5
and 6.

3.2. The Kreweras complement. As in Section 1.1, we graphically represent w ∈
NCN as the convex hull of the cycles of w on a regular N-gon whose vertices are
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labeled clockwise by [N]. The terminology “noncrossing partition” is justified by
the fact that no two convex hulls intersect in this representation.

The Kreweras complement of w ∈ NCN is the noncrossing partition Krew(w)
def
=

w−1cN . In the graphical representation, this can be visualized by drawing the
convex hulls of w on a 2N-gon labeled clockwise by {1, 1̄, 2, 2̄, . . . , N, N}, where
the blocks of w use only the non-barred vertices. Then Krew(w) corresponds to
the coarsest noncrossing partition that can be drawn using the barred vertices
without intersecting the blocks of w (see Figure 1). The following is immediate
from Corollary 2.4.

Corollary 3.3. For any w ∈ SN;k, w ≤k cN implies Krew(w) ≤k cN ; that is, NCN;k is
stable under Kreweras complementation.

3.3. Combinatorial characterization of k-indivisible noncrossing partitions.

Theorem 1.1. Fix k, n ≥ 1 and write N = nk + 1. The following are equivalent.
(i) w is a k-indivisible noncrossing partition on [N].

(ii) w is a noncrossing partition on [N], and w and Krew(w) are 1 mod k.
(iii) w is a noncrossing partition on [N], w is 1 mod k, and if i < j are consecutive in

a cycle of w, then j− i ≡ 1 (mod k).

Observe that the additional conditions on cycles in (ii) and (iii) are vacuous if
k = 1, so the claim is trivial in this case.

Proof. (i) =⇒ (ii). We assume w ≤k cN . Since cN ∈ S
(1)
N;k, by Corollary 2.4, we

have w, Krew(w) ∈ S
(1)
N;k. Now `k(w) + `k(Krew(w)) = n which can be written

as `1(w) + `1(Krew(w)) = nk by Lemma 2.2. This means that w ≤1 cN , that is, w
is a noncrossing partition.

(ii) =⇒ (iii). Let w ∈ NCN;1 such that both w and Krew(w) are 1 mod k. Let
i, j be two consecutive entries in a cycle of w with i < j. We want to show that
j− i ≡ 1 (mod k). This is trivial if j = i+ 1, and we will assume by induction that
this holds for any consecutive entries i1 < j1 in a cycle of w such that j1 − i1 <
j− i. Consider the maximal (with respect to nesting) cycles of w that are between
i and j: their number is a multiple of k because this number is one less than the
length of a cycle of Krew(w), which is 1 mod k. Order these cycles ζ1, ζ2, . . . , ζmk
so that max(ζp) < min(ζp+1). In fact, if ap = min(ζp) and bp = max(ζp), we
have bp = ap+1 − 1 for p = 1, . . . , mk − 1, with boundary conditions a1 = i + 1
and bmk = j− 1. We can therefore write

j− i =
mk

∑
p=1

(bp − ap) + 1 + mk.

By induction each ζp satisfies the cycle conditions in (iii), which immediately
implies bp − ap ≡ 0 (mod k). Therefore the expression above for j− i is 1 mod k
as desired.

(iii) =⇒ (i). Given w a noncrossing partition satisfying the modk conditions
of (iii), we want to prove w ≤k cN . If w = cN we are done, so we suppose that
w 6= cN . We will construct a w′ ∈ SN;k such that w lk w′ and w′ also satisfies
(iii).
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Consider the cycle ζ0 of w containing 1, ζ0 = (u1 < u2 < · · · < ukr1+1) with
u1 = 1. Since w 6= cN , either there exists q ∈ [kr1] such that uq+1 − uq > 1, or
ui = i for all i, in which case pick q = uq = kr1 + 1 < N and set uq+1 = N + 1.
Now consider the maximal cycles from left to right ζ1, . . . , ζd between uq and
uq+1, so d ≥ 1 by our choice of q . For 1 ≤ p ≤ d, write ap, bp for the minimal and
maximal elements of ζp, so that we get

uq+1 − uq =
d

∑
p=1

(bp − ap) + 1 + d.

Now we have bp − ap ≡ 0 (mod k) as above. Since uq+1 − uq ≡ 1 (mod k), it
follows that d is a multiple of k, and so d ≥ k because d ≥ 1. Now ζ0ζ1 · · · ζk ·
(up b1 . . . bk) is an increasing cycle that is derived from joining ζ0, ζ1, . . . , ζk.
Thus w′ = w · (up b1 . . . bk) satisfies all conditions in (iii), so by induction we
have w′ ≤k cN . Moreover, we have w lk w′ by Corollary 2.3, so that w ≤k cN . �

Remark 3.4. Theorem 1.1 implies that the name “k-indivisible noncrossing par-
tition” for the elements of NCN;k is indeed justified: every such element corre-
sponds to a noncrossing partition of [N]. This property is not a priori clear from
Definition 3.1.

As such, each cycle of w ∈ NCN;k can be written such that its entries form an
increasing sequence of integers.

Theorem 1.1 implies that NCN;k is an interval in (SN;k,≤k).

Corollary 3.5. The posetNCN;k is an induced subposet ofNCN;1: for all w, w′ ∈ NCN;k,
w ≤k w′ if and only if w ≤1 w′.

Proof. The reader may find it helpful to consider the graphical representation of
Krew given in Figure 1. Let w, w′ ∈ NCN;k. By Theorem 1.1, each of w, w′,
Krew(w), Krew(w′) is 1 mod k.

Assume first that w ≤k w′, that is, `k(w) + `k(w−1w′) = `k(w′). Then by
Theorem 1.1 which applies to all three permutations due to Corollary 2.4, we get
`1(w)

k + `1(w−1w′)
k = `1(w′)

k , which after multiplying by k tells us precisely w ≤1 w′.
Conversely, assume w ≤1 w′. Because w, w′ ∈ NCN;k, this simply means that

the supports of the cycles of w are included in those of w′. We can thus assume
without loss of generality that w′ consists of a single cycle. Moreover, because
of the invariance of `k under conjugation, we can even assume w′ = cN′ =
(1 2 . . . N′) for N′ = mk + 1 with m ≤ n. So we have w ≤1 c′N and w is a
noncrossing partition on [N′]. By Theorem 1.1, using the characterization (ii), it
follows that w ≤k cN′ , which achieves the proof. �

4. Enumerative properties of k-indivisible noncrossing partitions

For integers n, p, r ≥ 1, let us define the Raney number by

Ran(n, p, r) def
=

r
np + r

(
np + r

n

)
.

The specialization Ran(n, 2, 1) recovers the Catalan number 1
n+1 (

2n
n ), while

Ran(n, p, 1) recovers the Fuß–Catalan number 1
(p−1)n+1 (

pn
n ).



8 HENRI MÜHLE, PHILIPPE NADEAU, AND NATHAN WILLIAMS

The Raney numbers satisfy the following Catalan-like recurrence.

Lemma 4.1 ([15, p. 202, Equation (5.63)]). For integers n, p, r, s ≥ 1 we have

Ran(n, p, r + s) =
n

∑
i=0

Ran(i, p, r) · Ran(n− i, p, s).

Remark 4.2. Let us say that a plane rooted tree is k-divisible if each vertex has
0 mod k-many children. It is (k+1)-ary if every non-leaf vertex has exactly k + 1
children.

It is well known that k-divisible trees with kn + 1 vertices are enumerated by
the Fuß–Catalan number Ran(n, k+ 1, 1). Such trees T are in bijection with (k+1)-
ary trees T′ with n non-leaf vertices. Indeed, start at the root of T. If it has no
children, it must be that n = 0, and we set T′ = T. Otherwise, by assumption,
the root of T has ik children. We keep the first k of them, and add a new root
child to which we attach all the remaining (i− 1)k root children. We now proceed
inductively, until we obtain the desired tree T′. This process is clearly reversible
(and thus bijective), by contracting along right-most children.

4.1. Cardinality.

Theorem 1.2. The cardinality of NCN;k is

Ran(n, k + 1, 2) =
2

N + 1

(
N + n

n

)
.

Proof. We will prove this bijectively (see Corollary 4.8 for another proof); the
reader is invited to look at Figure 3 which illustrates the bijection.

We first map w ∈ NCN;k to the factorization cN = w · Krew(w) and apply a
classical bijection due to Goulden and Jackson [13, Theorem 2.1]. Since they are
reduced, factorizations of the form w · Krew(w) are in bijection with the set of
plane edge-rooted trees with N edges and N + 1 vertices each of degree 1 mod k,
with vertices alternately colored white and black. The white vertices correspond
to cycles in w, and the black vertices to the cycles in Krew(w) as follows. Starting
from the root edge (moving from white to black), we walk around the tree (keep-
ing the tree to our right). Each of the N edges of the tree is encountered twice,
and we label them by the order in which they are visited when moving from
a white to a black vertex. Reading the cyclic sequence of edge labels clockwise
around the white vertices recovers the cycles of w; and similarly for the black
vertices and Krew(w).

Break this tree into two by deleting the root edge, and root both of the result-
ing trees using the vertex adjacent to the deleted root edge. Since both w and
Krew(w) are 1 mod k, each of the vertices in the resulting pair of trees has a mul-
tiple of k many children. By Remark 4.2, the resulting trees are counted by an
appropriate Fuß–Catalan number, from which we conclude that

(1) |NCN;k| =
n

∑
i=0

Ran(i, k + 1, 1) · Ran(n− i, k + 1, 1).

Hence, |NCN;k| satisfies the recursion given in Lemma 4.1, and by checking the
initial condition, we see that |NCN;k| = Ran(n, k + 1, 2) as desired. �
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Figure 3. Illustration of the bijection from Theorem 1.2 for n = 8,
k = 3, and w = (1 14 15 16 20 21 22)(2 3 4 5 9 10 11) ∈ NC25;3.
On the left is the plane, edge-rooted bicolored tree corresponding
to w ·Krew(w), in the middle the pair of 3-divisible trees with a
total of 26 vertices, and on the right the pair of 4-ary trees with a
total of 8 non-leaf vertices.

Remark 4.3. Recall from [10] that k-divisible noncrossing partitions are counted by
Fuß–Catalan numbers, too. Therefore, (1) essentially states that any k-indivisible
noncrossing partition can be broken into a pair of k-divisible noncrossing parti-
tions.

4.2. Multichains. A q-multichain in NCN;k is a tuple (w1, w2, . . . , wq) ∈
(
SN;k

)q

with w1 ≤k w2 ≤k · · · ≤k wq ≤k cN .

Lemma 4.4. Each q-multichain (u1, u2, . . . , uq) in NCN;k corresponds bijectively to a
factorization v1v2 · · · vq+1 = cN such that

`1(v1) + `1(v2) + · · ·+ `1(vq+1) = kn,

and vi ∈ S
(1)
N;k for i ∈ [q + 1].

Proof. Let u0 = id and uq+1 = cN , and define vi = u−1
i−1ui for i ∈ [q + 1]. We

immediately see that v1v2 · · · vq+1 = cN . Moreover, since ui ≤k ui+1 we conclude
from the definition that `k(vi+1) = `k(ui+1)− `k(ui). We obtain

q+1

∑
i=1

`k(vi) =
q+1

∑
i=1

(
`k(ui)− `k(ui−1)

)
= `k(uq+1)− `k(u0) = `k(cN)− `k(id) = n.

We conclude from Corollary 2.4 that vi ∈ S
(1)
N;k and the final claim follows then

from Lemma 2.2. Conversely, given a factorization v1v2 · · · vq+1 = cN , it is easily
checked that setting um := v1 · · · vm for m ∈ [q] gives the desired q-multichain
(u1, u2, . . . , uq). �
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Let C = (w1, w2, . . . , wq) be a q-multichain in NCN;k, and let w0 = id, wq+1 =

cN . We define the rank jump vector of C by r(C) def
= (r1, r2, . . . , rq+1), where ri =

`k(wi) − `k(wi−1) for i ∈ [q + 1]. We write ZN;k(q + 1) for the number of q-
multichains of NCN;k.

Theorem 4.5. The number of q-multichains of NCN;k that have the rank jump vector
(r1, r2, . . . , rq+1) is

1
N

q+1

∏
i=1

Ran(ri, 1− k, N) =
1
N

q+1

∏
i=1

N
N − (k− 1)ri

(
N − (k− 1)ri

ri

)
.

Proof. Let C = (w1, w2, . . . , wq) be a q-multichain with rank jump vector r(C) =
(r1, r2, . . . , rq+1), where ri = `k(wi)− `k(wi−1). By Lemma 4.4, C corresponds to

a factorization v1v2 · · · vq+1 = cN , where vi ∈ S
(1)
N;k and ri = `k(vi) for i ∈ [q + 1].

By Lemma 2.2 we have ri = `1(vi)/k. If we suppose that vi has exactly p(i)j
cycles of size kj + 1, for j ≥ 1, then [20, Theorem 5] implies that the number of
factorizations is

Nq
q+1

∏
i=1

1
kn− kri + 1

(kn− kri + 1

p(i)1 , p(i)2 , . . .

)
,

where ri = ∑j jp(i)j . We now sum over all such sequences (p(i)1 , p(i)2 , . . .) by using
[20, Lemma 4] and find that the number of all such factorizations is

Nq
q+1

∏
i=1

1
kn− kri + 1

(
kn− (k− 1)ri

ri

)
=

1
N

q+1

∏
i=1

N
N − kri

(
N − 1− (k− 1)ri

ri

)
.

This formula is equivalent to the formula in the statement. �

Corollary 4.6. The number of maximal chains of NCN;k is Nn−1, and the number of
elements of NCN;k of rank l is

N(
N − (k− 1)l

)(
N − (k− 1)(n− l)

)(N − (k− 1)l
l

)(
N − (k− 1)(n− l)

n− l

)
.

Proof. Maximal chains of NCN;k correspond by definition to (n− 1)-multichains
with rank jump vector (1, 1, . . . , 1), while elements of rank l correspond to 1-
multichains with rank jump vector (l, n− l). The result now follows from Theo-
rem 4.5. �

Remark 4.7. The result on the number of maximal chains of NCN;k has been ob-
tained before by Goulden and Jackson in [14, Corollary 5.1], and was later ex-
tended by Biane in [4, Theorem 1].

4.3. Zeta polynomial and Möbius function. We may now conclude Theorem 1.3.

Theorem 1.3. For k, n ≥ 1, the number of q-multichains of NCN;k is

ZN;k(q + 1) =
q + 1

Nq + 1

(
Nq + n

n

)
.
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Proof. In order to determine ZN;k(q + 1), we have to sum the formula from Theo-
rem 4.5 over all possible rank jump vectors. Recall from [25, Lemma 5.5] that for
integers a, a1, a2, . . . , ar, b, n with a = a1 + a2 + · · ·+ ar we have

∑
n1+n2+···+nr=n

r

∏
i=1

Ran(ni, b, ai) = Ran(n, b, a).

We obtain

ZN;k(q + 1) = ∑
r1+r2+···+rq+1=n

1
N

q+1

∏
i=1

Ran(ri, 1− k, N)

=
1
N

 ∑
r1+r2+···+rq+1=n

q+1

∏
i=1

Ran(ri, 1− k, N)


=

Ran(n, 1− k, (q + 1)N)

N
= Ran

(
n, qk + 1, q + 1

)
=

q + 1
Nq + 1

(
Nq + n

n

)
. �

Specializing Theorem 1.3 at q = 1 gives a second (non-bijective) proof of The-
orem 1.2.

Corollary 4.8. The cardinality of NCN;k is Ran(n, k + 1, 2).

Proof. Every element of NCN;k can be regarded as a 1-multichain of NCN;k. The
claim thus follows by plugging in q = 1 into Theorem 1.3. �

Since NCN;k is a poset with a least and a greatest element, we can define the
Möbius invariant of NCN;k; which is the value µ(NCN;k) of the Möbius function of
NCN;k applied to id and cN . See also [31, Sections 3.8 and 3.12].

Corollary 4.9. The Möbius invariant of NCN;k is

µ(NCN;k) = (−1)nRan(n, 2k, 1) =
(−1)n

2nk + 1

(
2nk + 1

n

)
.

Proof. The numbers ZN;k(q) can be regarded as evaluations of a polynomial
over the integers. It follows for instance from [31, Proposition 3.12.1(c)] that
µ(NCN;k) = ZN;k(−1). The claim follows from application of Theorem 1.3, by
using the equality (−a

b ) = (−1)b(a+b−1
b ) for positive integers a, b. �

4.4. m-Divisible k-indivisible noncrossing partitions. In the spirit of [1, 10] we
define a partial order on the set of multichains of NCN;k. For an m-multichain
C = (x1, x2, . . . , xm) of NCN;k we define the delta sequence δo(C) = (d0; d1, . . . , dm),
where di = x−1

i xi+1 for 0 ≤ i ≤ m, and where we denote by x0 the identity and
by xm+1 the long cycle cN .

For two such multichains C, C′ with δo(C) = (d0; d1, . . . , dm) and δo(C′) =

(d′0; d′1, . . . , d′m) set C ≤k C′ if and only if di ≥k d′i for 1 ≤ i ≤ m. Let NC(m)
N;k

denote the corresponding poset.
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An earlier version of this article contained Corollaries 4.11–4.13 as conjectures.
C. Krattenthaler has suggested the following generalization of Theorem 4.5 to us.

Theorem 4.10 (C. Krattenthaler). The number of q-multichains of NC(m)
N;k that have the

rank jump vector (r1, r2, . . . , rq+1) is

1
N

Ran(r1, 1− k, N)
q+1

∏
i=2

Ran(ri, 1− k, mN)

=
1

N − (k− 1)r1

(
N − (k− 1)r1

r1

) q+1

∏
i=2

mN
mN − (k− 1)ri

(
mN − (k− 1)ri

ri

)
.

Proof. Following [20, Corollary 12], any such multichain corresponds to a unique
factorization

(2) cN = u(1)
0
(
v(2)1 v(3)1 · · · v

(q+1)
1

)(
v(2)2 v(3)2 · · · v

(q+1)
2

)
· · ·
(
v(2)m v(3)m · · · v

(q+1)
m

)
into elements from NC(m)

N;k , where

`1
(
u(1)

0
)
+ ∑

i,j
`1
(
v(i)j
)
= kn

with `1
(
u(1)

0
)
= kr1 and

`1
(
v(i)1
)
+ `1

(
v(i)2
)
+ · · ·+ `1

(
v(i)m
)
= kri

for i ∈ {2, 3, . . . , q + 1}.
First suppose that `1

(
v(i)j
)
= ks(i)j , with the s(i)j ’s fixed, such that

(3) s(i)1 + s(i)2 + · · ·+ s(i)m = ri

for i ∈ {2, 3, . . . , q+ 1}. The number of factorizations (2) satisfying (3) is according
to Theorem 4.5 precisely

(4)
1
N

Ran(r1, 1− k, N)
q+1

∏
i=2

m

∏
j=1

Ran
(
s(i)j , 1− k, N

)
.

The desired number of multichains is now obtained by summing (4) over all
possible s(i)j ’s for which (3) holds. In view of Lemma 4.1 we conclude that this
number is

1
N

Ran(r1, 1− k, N)
q+1

∏
i=2

Ran
(
ri, 1− k, mN

)
. �

We obtain the following corollaries.

Corollary 4.11. For k, m, m ≥ 1, the number of q-multichains of NC(m)
N;k is

Z
NC(m)

N;k
(q + 1) = Ran

(
n, mkq + 1, mq + 1

)
=

mq + 1
mNq + 1

(
mNq + n

n

)
.
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Proof. We need to sum the formula from Theorem 4.10 over all possible rank jump
vectors using Lemma 4.1, and obtain

Z
NC(m)

N;k
(q + 1) =

1
N

Ran(n, 1− k, N + qmN).

This formula is equivalent to the formula in the statement. �

Corollary 4.12. For k, m, n ≥ 1, the number of maximal chains in NC(m)
N;k is mnNn−1.

Proof. This follows from Theorem 4.10 by setting q = n and r1 = 0 and r2 = r3 =
· · · = rn+1 = 1. �

Observe that NC(m)
N;k has several minimal elements when m > 1. Let N̂C(m)

N;k

denote the poset that is created from NC(m)
N;k by adding a least element. Let NC(m)

N;k

denote the poset that is created from NC(m)
N;k by merging all minimal elements into

one.

Corollary 4.13. We have

µ
(
N̂C(m)

N;k
)
= (−1)n−1Ran(n, km, m− 1) = (−1)n−1 m− 1

Nm− 1

(
Nm− 1

n

)
,

as well as

µ
(
NC(m)

N;k
)
= (−1)n

(
Ran(n, k(m + 1), m)− Ran(n, km, m− 1)

)
= (−1)n

(
m

N(m + 1)− 1

(
N(m + 1)− 1

n

)
− m− 1

Nm− 1

(
Nm− 1

n

))
.

Proof. As explained in the proof of [1, Theorem 3.7.7], we have µ
(
N̂C(m)

N;k
)

=
Z
NC(m)

N;k
(0), and the claimed formula follows from Corollary 4.11. The formula

for µ
(
NC(m)

N;k
)

follows also from Corollary 4.11 using an argument verbatim to the
one in [2, Section 3]. �

For k = 1, the first equality in Corollary 4.13 is [1, Theorem 3.7.7], and the
second equality is [2, Theorem 3].

Remark 4.14. Corollary 12 of [20] can be used to further refine Theorem 4.10 by
prescribing the block structure of the first element of such a chain.

5. Maximal chains of NCN;k and k-parking functions

5.1. Maximal chains and the Hurwitz action. Let us denote the set of reduced
factorizations of cN = (1 2 . . . N) into (k+1)-cycles by Factk(cN); by construc-
tion, these are in bijection with maximal chains in NCN;k; see also Lemma 4.4.
Since CN;k is invariant under SN-conjugation, the Hurwitz action is a bijection
on the set of reduced factorizations of w ∈ SN;k into (k+1)-cycles.

Theorem 5.1. For k, n ≥ 1 the braid group Bn acts transitively on Factk(cN).

Proof. This is a special case of [21, Theorem 5.4.11]. One may also give a direct
inductive proof as in [25, Proposition 6.2] for the case k = 2. �
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We write the entries of a cycle in a factorization t = t1t2 · · · tn ∈ Factk(cN)
in increasing order as ti = (ti,1 < ti,2 < · · · < ti,k+1), which is well defined by
Remark 3.4. A factorization t ∈ Factk(cN) is non-decreasing if t1,1 ≤ t2,1 ≤ · · · ≤
tn,1.

Lemma 5.2. For k, n ≥ 1 there is an action of the symmetric group Sn on Factk(cN)
which restricts to the permutation action on the set of smallest elements of each factor
{ti,1}n

i=1.

Proof. Such an action is known to exist for k = 1, see [6,30]; we generalize it here.
Consider the simple transposition si = (i i + 1), and a factorization t = t1t2 · · · tn
in Factk(cN). The action of si on t is defined as follows: it acts as the Hurwitz
operator σi if ti,1 < ti+1,1; as the inverse Hurwitz operator σ−1

i if ti,1 > ti+1,1; and
as the identity if ti,1 = ti+1,1.

One verifies that si transposes the values of ti,1 and ti+1,1: this uses the fact that
the product titi+1 is an increasing cycle. From this, one easily checks that one can
extend this to an action of the symmetric group by showing that the defining
relations of Sn hold. �

5.2. k-Parking functions. We proved in Corollary 4.6 that the maximal chains of
NCN;k are enumerated by Nn−1. In this section, we generalize Stanley’s bijection
in [30] between maximal chains in the noncrossing partition lattice and parking
functions. In recent work, J. Irving and A. Rattan found the same generalization
of Stanley’s bijection. We thank them for bringing [17, 18] to our attention at
CanaDAM 2019.

For k, n ≥ 1 define a k-parking function of length n to be any permutation of
an integer tuple (a1, a2, . . . , an) satisfying 1 ≤ ai ≤ k(i − 1) + 1 for i ∈ [n]. We
write PN;k for the set of all k-parking functions. We call (a1, a2, . . . , an) ∈ PN;k
non-decreasing if a1 ≤ a2 ≤ · · · ≤ an.

It is a routine application of the cycle lemma (and follows from [36, Theorem 1])
that the number of k-parking functions of length n is Nn−1. Note also that there
is an obvious Sn-action on PN;k, obtained by permuting the entries.

Theorem 5.3. For k, n ≥ 1, the map from maximal chains in NCN;k to k-parking func-
tions

φ : Factk(cN)→ PN;k

t1t2 · · · tn 7→ (t1,1, t2,1, . . . , tn,1)

is a bijection.

Proof. We give a proof based on the k = 1 case from [6]. It is enough to show that
φ is a bijection between non-decreasing factorizations of cN and non-decreasing k-
parking functions—indeed the map is clearly equivariant with respect to the sym-
metric group actions on parking functions and on factorizations from Lemma 5.2.

We show by induction on n that, if t1t2 · · · tn ∈ Factk(cN) is non-decreasing,
then (t1,1, t2,1, . . . , tn,1) is a non-decreasing k-parking function. To prove this, we
first claim that if t1t2 · · · tn ∈ Factk(cN) with t1,1 ≤ t2,1 ≤ · · · ≤ tn,1, then we must
have

tn,1 = tn,2 − 1 = · · · = tn,k+1 − k.
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Since we may write the factorization

t1t2 · · · tn−1 = cNt−1
n

= (1 2 . . . N)(tn,k+1 . . . tn,2 tn,1)

= (1 2 . . . tn,1 tn,k+1+1 . . . N)(tn,1+1 . . . tn,2) · · · (tn,k+1 . . . tn,k+1),

where the last factorization is into disjoint cycles, each of t1, t2, . . . , tn−1 must
have support in the set {1, 2, . . . , tn,1, tn,k+1 + 1, . . . , N} (by [6, (F)]). Therefore,
each cycle (tn,i+1 . . . tn,i+1) is trivial, from which the claim follows.

By induction, (t1,1, t2,1, . . . , tn−1,1) is a non-decreasing k-parking function of
length n− 1. By assumption we have tn−1,1 ≤ tn,1, and since tn,1 + k = tn,k+1 ≤
kn+ 1 we conclude tn,1 ≤ k(n− 1)+ 1. Thus, (t1,1, t2,1, . . . , tn,1) is a non-decreasing
k-parking function of length n. �

6. Cambrian Lattices

Let u = u1u2 · · · un and v = v1v2 · · · vn be two reduced factorizations of cN into
(k+1)-cycles. We say that u and v are commutation equivalent if u can be obtained
from v by a sequence of Hurwitz moves on adjacent cycles with disjoint support
(so that each move acts as a commutation).

Theorem 6.1 ([14, Theorem 5.5]). The number of reduced factorizations of cN
into (k+1)-cycles up to commutation equivalence is the Fuß–Catalan number
Ran(n, 2k+1, 1).

Remark 6.2. This result was proven for k = 1 by Eidswick and Longyear [11, 22],
while Springer solved a more general factorization problem in [28].

More recently, such factorizations for k = 1 were considered in the context of
the associahedron by McCammond [24], which led us to develop the combina-
torics of this section.

There is another well-known set with this same cardinality.

Theorem 6.3 ([34]). The number of (2k+2)-angulations of a convex 2N-gon is given
by Ran(n, 2k+1, 1).

Following [24, Section 3], we now describe a bijection between the objects of
Theorem 6.3 and Theorem 6.1.

Theorem 6.4. For k, n ≥ 1, there is a bijection Θ between the commutation equivalence
classes of reduced factorizations of (1 2 . . . N) into (k+1)-cycles, and the set of (2k+2)-
angulations of a convex 2N-gon.

Proof. Let t = t1t2 · · · tn ∈ Factk(cN). We visualize t by drawing the convex
hulls of the factors t1, t2, . . ., tn on a convex polygon with N labeled vertices.
Since t is a minimal factorization of cN , these convex hulls intersect pairwise in
at most one vertex, and every vertex is contained in at least one convex hull. If
we were to label these hulls with the order in which the factor appeared this
would be a bijection—forgoing these labels records only the commutation class
of the factorization: for every vertex at which at least two convex hulls meet,
we can determine the order of the corresponding factors by taking the order
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inverse Hurwitz move clockwise diagonal move

Figure 4. Illustration of the bijection Θ from Theorem 6.4 for
n = 5 and k = 3.

counterclockwise around the vertex inside the polygon. This produces a partial
order on the convex hulls, every linear extension of this partial order is a reduced
factorization of cN , and any two linear extensions differ only by a commutation
of letters.

We now perform a procedure very similar to the Kreweras complement on
these unlabeled convex hulls. Insert a vertex labeled ā in between a and a + 1
(where we identify N + 1 and 1). When two convex hulls intersect in a vertex a,
there is a unique vertex b̄ that lies “opposite” to a between the convex hulls
intersecting in a. Connect a and b̄ by a line segment, which we call a diagonal.
Two diagonals are adjacent if they intersect a common convex hull. Removing
the convex hulls leaves only the diagonals, which by construction form a (2k+2)-
angulation Θ(t) of a 2N-gon.

Conversely, any diagonal connects an even and an odd node in a (2k+2)-
angulation of a convex 2N-gon. The convex hulls of the odd vertices in each
(2k+2)-gon now give the factors in a commutation class of a factorization from
Factk(cN). �

Proposition 6.5. A Hurwitz move on a commutation-class of a reduced factorization
corresponds to rotating a diagonal in the corresponding (2k+2)-angulation one step.

Proof. Let t = t1t2 · · · tn ∈ Factk(cN), and choose i ∈ [n− 1] such that ti and ti+1
do not commute. Then there is a unique integer a which belongs to both ti and
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ti+1. Let b̄ be the unique vertex in between the convex hulls of ti and ti+1 visible
from a. Moreover, let bi denote the smallest element of ti greater or equal to b + 1,
and let bi+1 denote the biggest element of ti+1 less or equal to b.

Now, σi is obtained by removing a from ti and adding bi+1 in the appropriate
position (thus obtaining t−1

i+1titi+1), and by exchanging the order of these two
factors. Analogously, σ−1

i is obtained by removing a from ti+1 and adding bi in
the appropriate position (thus obtaining titi+1t−1

i ), and by exchanging the order
of these two factors.

In view of the bijection Θ from Theorem 6.4 the (2k+2)-angulations Θ(t) and
Θ(σit) (respectively Θ(σ−1

i t)) differ by only shifting a unique diagonal. More
precisely, the diagonal connecting a and b̄ in Θ(t) is replaced by the diagonal
connecting bi+1 and ā − 1 in Θ(σit) (respectively by the diagonal connecting bi
and ā in Θ(σ−1

i t)). Hence, the action of σi (respectively σ−1
i ) corresponds to

shifting a diagonal in counterclockwise (respectively clockwise) direction under
Θ. �

In [32, Section 6.6], a lattice was constructed parametrized by a Coxeter group
W, a Coxeter element c ∈ W, and an integer m; the m-Cambrian lattice of W with
respect to the orientation c. In the case where W = Sn, and c is given as the
product of the simple transpositions in lexicographic order, the corresponding
m-Cambrian lattice was realized combinatorially in [12, Chapter 3] as a lattice
on (m+2)-angulations of a convex (mn+2)-gon, where the cover relations are
given by rotating a diagonal one step clockwise. Let us refer to this lattice as the
(m, n)-Cambrian lattice.

Corollary 6.6. The (2k, n)-Cambrian lattice is isomorphic to the poset whose elements
are the reduced factorizations of cN up to commutation equivalence, with the cover rela-
tions given by Hurwitz moves.

Proof. Consider the (2kn + 2)-gon from the proof of Theorem 6.4, labeled clock-
wise by the numbers 1, 1̄, 2, 2̄, . . . , N, N̄. We replace these labels as described in
[12, Section 3.2] starting from N̄. Under this substitution, the reduced factoriza-
tion

(1, 2, . . . , k+1) · (k+1, k+2, . . . , 2k+1) · · · (N−k, N−k+1, . . . , N)

corresponds to the (2k+2)-angulation of the (2kn + 2)-gon that is minimal in the
(2k, n)-Cambrian lattice, and the reduced factorization

(k+1, k+2, . . . , 2k+1) · (2k+1, 2k+2, . . . , 3k+1) · · · (1, 2, . . . , k, N)

corresponds to the (2k+2)-angulation of the (2kn + 2)-gon that is maximal. The
claim then follows by Theorem 6.4 and Proposition 6.5. �

Figure 5 illustrates Corollary 6.6 for n = 3 and k = 1.

7. Nonnesting Partitions

We also find analogues of the above construction in the world of nonnesting
partitions. Consider the triangular poset defined by

∆K
def
=
({

(a, b) | 1 ≤ a < b ≤ K
}

,�
)

,
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Figure 5. For k = 1 and n = 3, the (2, 3)-Cambrian lattice re-
alized as a lattice of reduced factorizations of (1 2 3 4) up to
commutation equivalence (left), and realized as a lattice of quad-
rangulations of an 8-gon (right).

where (a, b) � (c, d) if and only if a ≥ c and b ≤ d.
We define ∆N;k to be the induced subposet of ∆N−(k−1) that consists of all

pairs (a, b) with a ≡ 1 (mod k). For k = 3 and n = 4 the poset ∆13;3 is shown in
Figure 6.

We call an order ideal of ∆N;k a k-indivisible nonnesting partition, and we write
NNN;k for their set; for k = 1 we get the usual nonnesting partitions. We may
equivalently view k-indivisible nonnesting partitions as north-east paths from

(0, 0) to (N, n + 1) that stay above the boundary path bN,k
def
= UR(URk)n. Here

we use the letter U to indicate north-steps (U for up), and the letter R to indicate
east-steps (R for right).

Let PN;k denote the set of all such paths. Recall that a k-Dyck path of height n
is a north-east path from (0, 0) to (kn, n) that stays weakly above the boundary
path (URk)n. Let us write D(k)

n to denote the set of all k-Dyck paths. It follows
from [7] that the cardinality of D(k)

n is the Fuß–Catalan number Ran(n, k + 1, 1).

Theorem 7.1. For k, n ≥ 1, the set of order ideals of ∆N;k is in bijection with the set
of pairs of k-Dyck paths whose heights sum to n. Consequently, we have

∣∣NNN;k
∣∣ =

Ran(n, k + 1, 2).

Proof. In terms of paths, this bijection is a standard decomposition that we detail
here for completeness. For p ∈ PN;k we say that p touches bN;k at step i, if the
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Figure 6. The poset ∆13;3 inside ∆11. It has 340 = Ran(4, 4, 2)
order ideals.

i-th east steps of p and bN;k agree. Every path in PN;k touches bN;k at steps
N − k + 1, N − k + 2, . . . , N.

Now let p ∈ PN;k and fix the smallest i ∈ {0, 1, . . . , n} such that p touches bN;k
at step ik + 1. We break p in two pieces, by removing the first north-step and the
(ik+1)-st east-step. Let p1 and p2 denote the resulting paths. Clearly, p1 is a north-
east path from (0, 1) to (ik, i + 1) that stays weakly above R(URk)(i−1)UR(k−1),
and p2 is a north-east path from (ik + 1, i + 1) to (N, n + 1) that stays weakly
above (URk)n−i. Since i was chosen minimal p1 does not touch bN;k at jk + 1

for j < i, which means that p1 in fact stays above (URk)i. Thus, p1 ∈ D
(k)
i and

p2 ∈ D
(k)
n−i. We have just established

∣∣PN;k
∣∣ = n

∑
i=0

∣∣D(k)
i

∣∣ · ∣∣D(k)
n−i

∣∣
=

n

∑
i=0

Ran(i, k + 1, 1) · Ran(n− i, k + 1, 1).

Moreover, it is easily checked that for n = 1 we have∣∣Pk+1;k
∣∣ = 2 = Ran(1, k + 1, 2).

By Lemma 4.1, we find that the numbers
∣∣PN;k

∣∣ and Ran(n, k + 1, 2) satisfy the
same recurrence relation with the same initial conditions, and must therefore be
equal. �

Figure 7 illustrates the decomposition from the proof of Theorem 7.1.
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p ∈ P31;5

p1 ∈ D
(5)
4 p2 ∈ D

(5)
2

Figure 7. Illustration of the decomposition in the proof of Theo-
rem 7.1 for n = 6 and k = 5. By construction, the path p1 never
enters the light-gray boxes.

Corollary 7.2. For n > 2 and k ≥ 1 we have

Ran(n, k + 1, 2) =
n−1

∑
i=1

(−1)(i+1)
(
(n− i)k + 2

i

)
Ran(n− i, k + 1, 2).

Proof. We have argued in Theorem 7.1 that the order ideals of ∆N;k are in bijection
with north-east paths weakly above the boundary path UR(URk)n. If we flip such
a path together with the boundary path along the bottom border and rotate it by
90 degrees clockwise, we see that order ideals of ∆N;k are in bijection with north-
east paths weakly above (UkR)nUR. Note that for such a path, the first k steps
must be north-steps, and the last step must be an east-step, so that we can forget
these steps. Consequently, the order ideals of ∆N;k are in bijection with north-east
paths weakly above R(UkR)n−1U.

In view of [19, Theorem 10.7.1] the number of such paths is given by the de-
terminant of the matrix

Mn;k =

((
(n− j)k + 2

j− i + 1

))
1≤i,j≤n

.

By Laplace expansion we see that for n > 2 the determinant of Mn,k satisfies
the recursion given in the statement, and from Theorem 7.1 we conclude the
result. �

Remark 7.3. The set of k-Dyck paths of height n is classically in bijection with the
set of (k+1)-ary trees with n non-leaf vertices. The bijections described in Theo-
rem 1.2 and Theorem 7.1 thus extend to a bijection from NCN;k to NNN;k.

8. Open Problems

8.1. EL-shellability. From a topological point of view, the lattice NCN;1 of non-
crossing partitions is particularly interesting: its order complex is a wedge of
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Catalan-many spheres. This was established by Björner and Edelman [8, Re-
mark 2] by showing that NCN;1 admits a particular edge-labeling. Such an EL-
labeling induces a shelling of the order complex, from which the mentioned prop-
erty follows.

We have attempted to extend this result to NCN;k, but many natural choices for
such a labeling did not have the desired properties. Nevertheless, we still pose
the following conjecture.

Conjecture 8.1. The poset NCN;k admits an EL-labeling. Consequently, the order com-
plex ofNCN;k with least and greatest elements removed is homotopic to a wedge of spheres.

8.2. Other types. We give some conjectures for extending the combinatorics of
this article to type B. Fix simple reflections s0, s1, . . . , skn−1 in the hyperoctahe-
dral group of type Bkn with (s0s1)

4 = 1. Analogously to the symmetric group,
we group the transpositions of the factorization c = s0s1 · · · skn−1 of the linear
Coxeter element as

t = (s0 · · · sk−1) · (sk · · · s2k−1) · · · (skn−k · · · skn−1).

Conjecture 8.2. The Hurwitz orbit of t contains kn−1nn elements.

We can take elements that occur as prefixes of the factorizations in the Hurwitz
orbit of t to form the type Bn k-indivisible noncrossing partitions.

Conjecture 8.3. There are 2(nk+n−1
n−1 ) type Bn k-indivisible noncrossing partitions. The

zeta function of the restriction of the absolute order to those elements is q(nk(q−1)+n−1
n−1 ).
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