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A NONCOMMUTATIVE WEIGHT-DEPENDENT GENERALIZATION
OF THE BINOMIAL THEOREM

MICHAEL J. SCHLOSSER

Dedicated to Christian Krattenthaler on the occasion of his 60th birthday

Abstract. A weight-dependent generalization of the binomial theorem for noncom-
muting variables is presented. This result extends the well-known binomial theorem for
q-commuting variables by a generic weight function depending on two integers. For two
special cases of the weight function, in both cases restricting it to depend only on a single
integer, the noncommutative binomial theorem involves an expansion involving complete
symmetric functions, and elementary symmetric functions, respectively. Another special
case concerns the weight function to be a suitably chosen elliptic (i.e., doubly-periodic
meromorphic) function, in which case an elliptic generalization of the binomial theorem
is obtained. The latter is utilized to quickly recover Frenkel and Turaev’s elliptic hy-
pergeometric 10V9 summation formula, an identity fundamental to the theory of elliptic
hypergeometric series. Further specializations yield noncommutative binomial theorems
of basic hypergeometric type.

1. Introduction

For an indeterminate q, let Cq[x, y] be the associative unital algebra over C generated
by x and y, satisfying the relation

yx = qxy. (1.1)

Cq[x, y] can be regarded as a q-deformation of the commutative algebra C[x, y]. The
variables x, y forming Cq[x, y] are referred to as q-commuting variables.

The following binomial theorem for q-commuting variables is well known and usually
attributed to M.-P. Schützenberger [17]. However, for the case of x and y being n × n
square matrices with complex entries and q (then necessarily) being a root of unity (else
(1.1) cannot be satisfied), a proof, which extends verbatim to the general case, was already
given in 1950 by the Scottish mathematician H.S.A. Potter [13]. For an excellent account
of the history of (1.1) in the context of matrix theory, see [7].
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Proposition 1. The following identity is valid in Cq[x, y]:

(x+ y)n =
n∑
k=0

[
n
k

]
q

xkyn−k. (1.2)

Here, [
n
k

]
q

:=
(q; q)n

(q; q)k(q; q)n−k
(1.3)

is the q-binomial coefficient, defined for nonnegative integers n and k with n ≥ k, where,
for an indeterminate a, the q-shifted factorial is defined as

(a; q)k := (1− a)(1− aq) · · · (1− aqk−1), for k = 0, 1, 2, . . . . (1.4)

Proposition 1 plays an important role in the theory of quantum groups and q-special
functions, see [8, 11].

While the author’s initial goal was to generalize Proposition 1 to the “elliptic case”,
investigations led to the discovery of a yet more general result, a noncommutative binomial
theorem involving a generic weight function that depends on two integers.

This paper is organized as follows. In Section 2 a noncommutative algebra is introduced
for a generic weight function depending on two integers. The three commutation relations
which define this algebra are responsible for the validity of the noncommutative binomial
theorem. The chosen weight function uniquely determines the corresponding binomial co-
efficients. These appear as coefficients in the expansion of the noncommutative binomial
theorem in Theorem 1, which is the main result of this paper. This result can also be very
nicely combinatorially interpreted in terms of weighted lattice paths. By multiplying two
instances of the binomial theorem and suitably taking coefficients, a convolution formula
for the weight-dependent binomial coefficients is deduced, while two other convolution
formulae are derived by means of the combinatorics of weighted lattice paths. Section 3
focuses on two specific choices of the weight function where (as is well-known) the bino-
mial coefficients become symmetric functions, namely complete symmetric functions and
elementary symmetric functions, respectively. However, the noncommutative binomial
theorems involving the complete and elementary symmetric functions in (3.1)/(3.2) and
(3.4)/(3.5) already appear to be new (which is quite surprising, given its simplicity). The
situation is particularly interesting in Section 4 where an elliptic (i.e., doubly-periodic
meromorphic) weight function is considered. In this case the noncommutative algebra
can be very elegantly described in terms of shifts on two of the variables. The four
variables forming this algebra are referred to as elliptic-commuting variables, while the
coefficients appearing in the binomial expansion of these variables are elliptic binomial
coefficients (which in fact are even totally elliptic functions). The convolution formula
for the latter turns out to be a variant of Frenkel and Turaev’s elliptic hypergeometric

10V9 summation formula, an identity fundamental to the theory of elliptic hypergeometric
series. While this suggests that the noncommutative elliptic binomial theorem should
be useful in the theory of elliptic hypergeometric series, related elliptic special functions,
and elliptic quantum groups (see [6, Sec. 11], [19], and [4], respectively), it is possible
that the more general weight-dependent result in Theorem 1, or at least its symmetric
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function specializations in (3.1)/(3.2) and (3.4)/(3.5), will be similarly useful, e.g., in
symmetric function theory in general or, speculatively, even in the construction of quan-
tum groups involving symmetric functions. A further challenge of combinatorial nature
consists in finding possible weight-dependent noncommutative extensions of MacMahon’s
Master Theorem (which would maybe generalize the results of [10]). Already working out
an elliptic extension of MacMahon’s Master Theorem would be an exciting achievement.
In Appendix A the whole set-up of Section 2 is extended by introducing an additional
weight function, again depending on two integers. This leads to a further extension of the
noncommutative algebra and corresponding binomial theorem by which one in principle
is able to consider more general cases (which however is not pursued further in this pa-
per). Finally, in Appendix B, particularly attractive basic hypergeometric specializations
of the elliptic case are considered and made explicit. (This section may serve as a teaser.
Some readers, who are familiar with basic hypergeometric series, may enjoy looking at
Subsections B.2 and B.3 first, and verify, say, the n = 2, 3 cases of the binomial theorems
in (B.8) and (B.12) by hand.)

Acknowledgements. I would like to thank Tom Koornwinder for private discussions
on the problem of finding an elliptic extension of the binomial theorem for q-commuting
variables. These discussions took place during the workshop on “Elliptic integrable sys-
tems, isomonodromy problems, and hypergeometric functions” at the Max Planck Insti-
tute for Mathematics in Bonn, July 21–25, 2008. I would further like to thank Tom for
his continued interest and encouragement. I would also like to thank Johann Cigler for
fruitful discussions on the noncommutative binomial theorem. Finally, I would like to
thank Volker Strehl for his interest and for suggesting to add the alternative combinato-
rial interpretation (2.6) to the discussion of the weight-dependent binomial coefficients in
Subsection 2.2.

The main results of this paper were presented at the “Discrete Systems and Special
Functions” workshop at the Isaac Newton Institute for Mathematical Sciences in Cam-
bridge, June 29 – July 3, 2009. (The elliptic case was already presented at several occasions
before, the first time at a seminar at Nagoya University on September 3, 2008.) I am
indebted to the organizers of both of these meetings (Yu.I. Manin, M. Noumi, E.M. Rains,
H. Rosengren, V.P. Spiridonov, and P. Clarkson, R. Halburd, M. Noumi, A.O. Daalhuis,
respectively) for inviting me to these workshops which have been highly stimulating.

2. Weight-dependent commutation relations and binomial theorem

2.1. A noncommutative algebra. Let N and N0 denote the sets of positive and non-
negative integers, respectively. We will work in the following noncommutative algebra.
(A slight extension of this algebra is considered in Appendix A.)

Definition 1. For a doubly-indexed sequence of indeterminates (w(s, t))s,t∈N let Cw[x, y]
be the associative unital algebra over C generated by x, y and the w(s, t), with s, t ∈ N,
satisfying the following three relations:

yx = w(1, 1)xy, (2.1a)

xw(s, t) = w(s+ 1, t)x, (2.1b)
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y w(s, t) = w(s, t+ 1) y, (2.1c)

for all (s, t) ∈ N2.

We refer to the w(s, t), and more generally, products (and even polynomials) of the
w(s, t), as “weights” (in consideration of the combinatorial interpretation in Subsec-
tion 2.2). Notice that, for w(s, t) = q for all s, t ∈ N, where q is some indeterminate,
Cw[x, y] reduces to Cq[x, y], the algebra of two q-commuting variables considered in the
Introduction.

The relations in (2.1) for generic weights w(s, t) are indeed well-defined. Define the
canonical form of an element in Cw[x, y] to be of the form∑

k,l≥0

ck,lx
kyl,

where ck,l 6= 0 for finitely many k, l. Here the coefficients ck,l are elements of
C[(w(s, t))s,t∈N], the polynomial ring over C of the indeterminates (w(s, t))s,t∈N. Since,
according to (2.1b) and (2.1c), x and y act as independent shift operators on the compo-
nents of the weights, it is straightforward to verify that the canonical form of an arbitrary
expression in Cw[x, y] is unique. (In the terminology of [1], all elements of Cw[x, y] are
reduction-unique.) This follows by induction (on the minimal number of commutation
relations needed to bring an expression into canonical form) and observing that the simple
expression yxw(s, t) reduces to a unique canonical form regardless in which order (e.g.,
y and x, or x and w(s, t), are swapped first, etc.) the commutation relations are applied
for this purpose.

2.2. Weight-dependent binomial coefficients. As before, we consider a doubly-in-
dexed sequence of indeterminate weights (w(s, t))s,t∈N. For s ∈ N and t ∈ N0, we write

W (s, t) :=
t∏

j=1

w(s, j) (2.2a)

(the empty product, which occurs when t = 0, being defined as 1) for brevity. Note that
for s, t ∈ N we have

w(s, t) =
W (s, t)

W (s, t− 1)
. (2.2b)

To distinguish, we refer to the W (s, t) as big weights, and to the w(s, t) as small weights.
Let the weight-dependent binomial coefficients be defined by

w

[
0
0

]
= 1,

w

[
n
k

]
= 0, for n ∈ N0, and k ∈ −N or k > n, (2.3a)

and

w

[
n+ 1
k

]
=

w

[
n
k

]
+

w

[
n

k − 1

]
W (k, n+ 1− k), for n, k ∈ N0. (2.3b)

The more general double weight-dependent binomial coefficients involving two generic
weight functions are defined in Equation (A.2). To avoid possible misconception, it should
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be stressed that the weight-dependent binomial coefficients in (2.3) in general do not
satisfy the symmetry

w
[ nk ] =

w
[ n
n−k ]. (In case they are symmetric, a second recursion

from (2.3b) can be immediately deduced, from which together with (2.3b) a closed product
formula for the weight-dependent binomial coefficients can be derived.) It follows from
(2.3) immediately by induction that

w

[
n
0

]
=

w

[
n
n

]
= 1 for n ∈ N0. (2.4)

The big weights W (s, t) and the weight-dependent binomial coefficients
w

[ nk ] have an
elegant combinatorial interpretation in terms of weighted lattice paths. Consider lattice
paths in the planar integer lattice consisting of positively directed unit vertical and hori-
zontal steps. Such paths can be “enumerated” with respect to a generic weight function w.
In particular, assign the big weight W (s, t) to each horizontal step (s− 1, t)→ (s, t),

u
(s− 1, t)

u
(s, t)

W (s, t)

and (for the moment) assign weight 1 to each vertical step (s, t − 1) → (s, t). (We will
consider the more general case of having an additional weight function v defined on the
vertical steps in Appendix A.) Further, define the weight ω(P ) of a path P to be the
product of the weights of all its steps. For instance, the following path P0(A→ Ω) from
A = (0, 0) to Ω = (5, 2)

u
u

A

Ω

r r r r r r rr r r r r r rr r r r r r rr r r r r r r
P0 :

has weight

ω(P0) = 1 · 1 ·W (3, 1) ·W (4, 1) ·W (5, 2) = w(3, 1)w(4, 1)w(5, 1)w(5, 2).

(Equivalently, this corresponds to picking up the weights w(s, t) for each of the points
(s, t− 1) strictly below the path, for s, t ≥ 1). We will come back to this specific example
shortly after the proof of Theorem 1.

Given two points A,Ω ∈ N2
0, let P(A → Ω) be the set of all paths from A to Ω.

Further, define

ω(P(A→ Ω)) :=
∑

P∈P(A→Ω)

ω(P )

to be the generating function with respect to the weight function ω of all paths from A
to Ω. Now it is clear that

ω(P((0, 0)→ (k, n− k))) =
w

[
n
k

]
. (2.5)
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Indeed, the path generating function satisfies the same relations as the binomial coef-
ficients in (2.3). The initial conditions (2.3a) being clear, the validity of the recursion
(2.3b) stems from the fact that the final step of a path ending in (k, n + 1− k) is either
vertical or horizontal.

If one thinks of lattice paths consisting of East and North steps as 0-1-sequences (0 cor-
responding to an East step and 1 to a North step), then the relation (2.5) can also be
interpreted as a weighted enumeration of 0-1-sequences of length n with exactly k occur-
rences of 0, with respect to a weighted inversion statistic that keeps track not only of the
position of the respective inversion in the sequence but also of the number of 0’s and 1’s
that have already appeared before in the respective subsequence. Specifically, under this
interpretation, Equation (2.5) now reads∑

0-1-sequences α of length n

with k occurrences of 0

∏
inversions (s, t) of α

W (s, t) =
w

[
n
k

]
, (2.6)

where (s, t) is an inversion of α = (α1 . . . , αn) (for α1, . . . , αn ∈ {0, 1} with k occurrences
of 0 and n−k occurrences of 1) if and only if αs+t = 0 and the subsequence (α1, . . . , αs+t−1)
contains s− 1 occurrences of 0 and t occurrences of 1.

It should be clear that the relations (2.3), (2.5) and (2.6) are equivalent. So one could
also just define the weight-dependent binomial coefficients by (2.5) or (2.6), and then show
that they satisfy the recursion (2.3). (The combinatorial interpretations (2.5) and (2.6) are
certainly nice and show how the weight-dependent binomial coefficients naturally appear,
while the Pascal triangle relation (2.3) describes how they are recursively computed.)

In [16], lattice paths in Z2 were enumerated with respect to the specific elliptic weight
function w(s, t) = wa,b;q,p(s, t) as defined in (4.7), giving as generating functions the
(closed form) elliptic binomial coefficients [ nk ]a,b;q,p in (4.4). It was exactly this result

which inspired the search for the algebra Cw[x, y] and the binomial theorem in Theorem 1.
We will have a closer look at the elliptic case in Section 4.

2.3. A noncommutative binomial theorem. We have the following elegant result.

Theorem 1 (Weight-dependent binomial theorem). Let n ∈ N0. Then the fol-
lowing identity is valid in Cw[x, y]:

(x+ y)n =
n∑
k=0

w

[
n
k

]
xkyn−k. (2.7)

Proof. We proceed by induction on n. For n = 0 the formula is trivial. Now let n ≥ 0
(n being fixed) and assume that we have already shown the formula for all nonnegative
integers ≤ n. We need to show

(x+ y)n+1 =
n+1∑
k=0

w

[
n+ 1
k

]
xkyn+1−k. (2.8)

By the recursion formula (2.3b), the right-hand side is
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n+1∑
k=0

w

[
n
k

]
xkyn+1−k +

n+1∑
k=0

w

[
n

k − 1

]
W (k, n+ 1− k)xkyn+1−k

=
n∑
k=0

w

[
n
k

]
xkyn−ky +

n∑
k=0

w

[
n
k

]
W (k + 1, n− k)xk+1yn−k,

where the range of summation in each of the sums was delimited due to (2.3a). It remains
to be shown that

W (k + 1, n− k)xk+1yn−k = xkyn−k x. (2.9)

In particular, using (2.1b) (and induction) we have

W (k + 1, n− k)xk+1yn−k = xkW (1, n− k)xyn−k,

so (2.9) is shown as soon as we establish

W (1, n− k)xyn−k = yn−kx. (2.10)

The left-hand side is( n−k∏
j=1

w(1, j)

)
xyyn−k−1 =

( n−k∏
j=2

w(1, j)

)
yxyn−k−1 = y

( n−k−1∏
j=1

w(1, j)

)
xyn−k−1

= yW (1, n− k − 1)xyn−k−1, (2.11)

where we have first used (2.1a) and then (2.1c). The identity (2.10) follows now from
(2.11) immediately by induction on n− k ≥ 0. �

Coming back to the interpretation of the weight-dependent binomial coefficients as
generating functions for weighted lattice paths (see Subsection 2.2), the expansion (2.7) in
Theorem 1 itself has an accordingly nice interpretation. The identification of expressions
(or “words” consisting of concatenated symbols) in Cw[x, y] and lattice paths in Z2 works
locally (variable by variable, or step by step) as follows:

x ←→ horizontal step,

y ←→ vertical step.

Under this correspondence, “xy” means that a horizontal step is followed by a vertical step,
while “yx” means that a vertical step is followed by a horizontal step (we read from left to
right). The relations of the algebra Cw[x, y] in Definition 1 exactly take into account the
changes of the respective weights when consecutive horizontal and vertical steps are being
interchanged. For instance, the specific path P0 considered in Subsection 2.2 corresponds
to the algebraic expression

x x y x x y x = x xw(1, 1)x y xw(1, 1)x y = w(3, 1)w(5, 2)x3w(1, 1)x y x y

= w(3, 1)w(5, 2)w(4, 1)x4w(1, 1)x y2 = w(3, 1)w(5, 2)w(4, 1)w(5, 1)x5y2 = w(P0)x
5y2,

where the left coefficient (of the double monomial x5y2) in the canonical form of the
algebraic expression is the weight of the path. Concluding, the left-hand side of (2.7),
i.e., (x + y)n, translates into paths of length n having for each step a choice of going
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in horizontal or vertical positive direction, while the right-hand side of (2.7) refines the
counting according to the number of horizontal steps k (for 0 ≤ k ≤ n).

2.4. Convolution formulae. We are ready to apply the weight-dependent binomial the-
orem in Theorem 1 to derive weight-dependent extensions of the well-known (Vander-
monde) convolution of binomial coefficients,(

n+m

k

)
=

min(k,n)∑
j=0

(
n

j

)(
m

k − j

)
. (2.12)

The following corollaries, although being derived with the help of noncommuting vari-
ables, themselves concern identities of commuting elements.

Corollary 1 (First weight-dependent binomial convolution formula). Let
n, m, and k be nonnegative integers. For the binomial coefficients in (2.3), defined by
the doubly-indexed sequence of indeterminate weights (w(s, t))s,t∈N, we have the following
formal identity in C[(w(s, t))s,t∈N]:

w

[
n+m
k

]
=

min(k,n)∑
j=0

w

[
n
j

](
xjyn−j

w

[
m

k − j

]
yj−nx−j

) k−j∏
i=1

W (i+ j, n− j). (2.13)

The above identity in C[(w(s, t))s,t∈N] is formal as it contains the expression

xjyn−j
w

[
m

k − j

]
yj−nx−j (2.14)

(which evaluates to an expression in C[(w(s, t))s,t∈N]) in the summand, where x, y /∈
C[(w(s, t))s,t∈N]. The x and y are understood to be shift operators as defined in (2.1b)
and (2.1c). Formally, xjyn−j has to commute with

w
[ m
k−j ] which will involve various shifts

of the weight functions implicitly appearing in the w-binomial coefficient. Afterwards
xjyn−j will cancel with its formal inverse yj−nx−j.

First we state a useful lemma.

Lemma 1. The following identity holds in Cw[x, y]:

ykxl =

( l∏
i=1

W (i, k)

)
xlyk, for k, l ∈ N0. (2.15)

Proof. The k = 0 or l = 0 cases are trivial. For k, l ≥ 1, the identity (2.15) follows
straightforwardly by double induction starting with the k = l = 1 case which is (2.1a).
To prove the validity of (2.15) for k = 1 and l > 1, assume that yxs =

(∏s
i=1W (i, 1)

)
xsy

has already been shown for 1 ≤ s < l. Then

yxl = w(1, 1)xyxl−1 = W (1, 1)x

( l−1∏
i=1

W (i, 1)

)
xl−1y

=

(
W (1, 1)

l−1∏
i=1

W (i+ 1, 1)

)
xly =

( l∏
i=1

W (i, 1)

)
xly,
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as to be shown. Now, for fixed k, l ≥ 1, assume that ytxl =
(∏l

i=1W (i, t)
)
xlyt has already

been shown for 1 ≤ t < k. Then

ykxl = y

( l∏
i=1

W (i, k − 1)

)
xlyk−1 = y

( l∏
i=1

k−1∏
j=1

w(i, j)

)
xlyk−1

=

( l∏
i=1

k−1∏
j=1

w(i, j + 1)

)
yxlyk−1 =

( l∏
i=1

k∏
j=1

w(i, j)

)
xlyk =

( l∏
i=1

W (i, k)

)
xlyk,

which establishes the lemma. �

Proof of Corollary 1. Working in Cw[x, y], we expand (x + y)n+m in two different ways
and suitably extracts coefficients. On the one hand,

(x+ y)n+m =
n+m∑
k=0

w

[
n+m
k

]
xkyn+m−k. (2.16)

On the other hand,

(x+ y)n+m = (x+ y)n (x+ y)m

=
n∑
j=0

m∑
l=0

w

[
n
j

]
xjyn−j

w

[
m
l

]
xlym−l

=
n∑
j=0

m∑
l=0

w

[
n
j

]
xjyn−j

w

[
m
l

]
yj−nx−j xjyn−jxlym−l. (2.17)

Now use Lemma 1 to apply

xjyn−jxlym−l =

( l∏
i=1

W (i+ j, n− j)
)
xj+lyn+m−j−l, for n ≥ j,

and extract and equate (left) coefficients of xkyn+m−k in (2.16) and (2.17). We thus
immediately establish the convolution formula (2.13). �

In terms of interpreting the weight-dependent binomial coefficients as generating func-
tions for weighted lattice paths (see Eq. (2.5)), the identity (2.13) translates into a con-
volution of paths with respect to a diagonal,

u u

u

(0, 0)

(0, n)

(n, 0)

(k, n+m− k)

(j, n− j)

r r r r r r r r r r r r rr r r r r r r r r r r r rr r r r r r r r r r r r rr r r r r r r r r r r r rr r r r r r r r r r r r rr r r r r r r r r r r r r

p p p p p pppppp p p p p p p p p p p p p p p p
ppppp p p p p pp

pppp p p p p ppp
ppp p p p p p p p p p p p p p p@

@
@
@
@
@
@

@
@
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where the corresponding generating function identity is immediately seen to be

ω
(
P((0, 0)→ (k, n+m− k))

)
=

min(k,n)∑
j=0

ω
(
P((0, 0)→ (j, n− j))

)
ω
(
P((j, n− j)→ (k, n+m− k))

)
. (2.18)

We can also consider convolution with respect to a vertical line,

u
u u

u

(0, 0)

(l − 1, k)

(l, k)

(n,m)

x = l
r r r r r r r r r r r r rr r r r r r r r r r r r rr r r r r r r r r r r r rr r r r r r r r r r r r rr r r r r r r r r r r r rr r r r r r r r r r r r r

p p p p p p p p p p p p p p p pppppp p p p p p p p p p p
pppp pppppp p p p p p

ppppp p p p p p p p p p p p p p p

which corresponds to the identity

ω
(
P((0, 0)→ (n,m))

)
=

m∑
k=0

ω
(
P((0, 0)→ (l − 1, k))

)
W (l, k)ω

(
P((l, k)→ (n,m))

)
. (2.19)

Here, l is fixed (1 ≤ l ≤ n), while the nonnegative integer k is uniquely determined by
the height of the path when it reaches the vertical line x = l first.

In terms of our weights w, we have the following result.

Corollary 2 (Second weight-dependent binomial convolution formula). Let
n, m, and k be nonnegative integers with 1 ≤ l ≤ n. For the binomial coefficients in (2.3),
defined by the doubly-indexed sequence of indeterminate weights (w(s, t))s,t∈N, we have the
following formal identity in C[(w(s, t))s,t∈N]:

w

[
n+m
n

]
=

m∑
k=0

w

[
k + l − 1
l − 1

](
xlyk

w

[
n+m− l − k

n− l

]
y−kx−l

) n−l∏
i=0

W (i+ l, k). (2.20)

Proof. Translating the generating function identity (2.19) into an identity in Cw[x, y] with
weight function w, we immediately obtain

w

[
n+m
n

]
xnym =

m∑
k=0

w

[
k + l − 1
l − 1

]
W (l, k)xlyk

w

[
n+m− l − k

n− l

]
xn−lym−k.

The further analysis is now similar to the proof of Corollary 1. The y’s have to be moved
to the far right, then the x’s, hereby creating weights and shifts, while in the end the left
coefficients of xnym have to be extracted and equated to establish (2.20). �

Finally, we can also consider convolution with respect to a horizontal line,
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u
uu

u

(0, 0)

(l, k − 1)

(l, k)

(n,m)

y = k

r r r r r r r r r r r r rr r r r r r r r r r r r rr r r r r r r r r r r r rr r r r r r r r r r r r rr r r r r r r r r r r r rr r r r r r r r r r r r rr r r r r r r r r r r r r

p p p p p pppppp p p p p p p p p p p
ppppp p p p p p p p p p

p p p p p pppppp p p p p p
ppppp p p p p p p p p p p p p p p

which corresponds to the identity

ω
(
P((0, 0)→ (n,m))

)
=

n∑
l=0

ω
(
P((0, 0)→ (l, k − 1))

)
ω
(
P((l, k)→ (n,m))

)
. (2.21)

Here, k is fixed (1 ≤ k ≤ m), while the nonnegative integer l is the uniquely determined
abscissa of the path when it reaches the horizontal line y = k first.

In terms of our weights w, we have the following result.

Corollary 3 (Third weight-dependent binomial convolution formula). Let n,
m, and k be nonnegative integers with 1 ≤ k ≤ m. For the binomial coefficients in (2.3),
defined by the doubly-indexed sequence of indeterminate weights (w(s, t))s,t∈N, we have the
following formal identity in C[(w(s, t))s,t∈N]:

w

[
n+m
n

]
=

n∑
l=0

w

[
l + k − 1

l

](
xlyk

w

[
n+m− l − k

n− l

]
y−kx−l

) n−l∏
i=1

W (i+ l, k). (2.22)

Proof. Translating the generating function identity (2.21) into an identity in Cw[x, y] with
weight function w, we immediately obtain

w

[
n+m
n

]
xnym =

n∑
l=0

w

[
l + k − 1

l

]
xlyk−1y

w

[
n+m− l − k

n− l

]
xn−lym−k.

The convolution formula (2.22) follows immediately after application of Lemma 1 (where
we have k ≥ 1, thus do not have to distinguish cases), moving first the y’s, then the x’s,
to the right and finally extracting and equating the left coefficients of xnym. �

3. Symmetric functions

Here we take a closer look at two important specializations of the weights w(s, t), both
involving symmetric functions. (See [12] for a classical textbook on symmetric function
theory).

3.1. Complete symmetric functions. The first choice is w(s, t) = at/at−1. In this case
we have (essentially corresponding to the h-labeling of lattice paths in [15, Sec. 4.5])

w

[
n
k

]
= hk(a0, a1, . . . , an−k) a

−k
0 ,
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where hk(a0, a1, . . . , am) is the complete symmetric function of order k, defined by

h0(a0, a1, . . . , am) := 1

and

hk(a0, a1, . . . , am) :=
∑

0≤j1≤j2≤···≤jk≤m

aj1aj2 · · · ajk , for k > 0.

Indeed, the complete symmetric functions satisfy the recursion

hk(a0, a1, . . . , am+1) = hk(a0, a1, . . . , am) + am+1hk−1(a0, a1, . . . , am+1),

which readily follows from specializing the recursion (2.3) for the weight-dependent bino-
mial coefficients.

The relations of the algebra Cw[x, y] in Definition 1 now reduce to

yx =
a1
a0
xy, (3.1a)

x
at
at−1

=
at
at−1

x, (3.1b)

y
at
at−1

=
at+1

at
y, (3.1c)

for all t ∈ N.
The noncommutative binomial theorem in Theorem 1 now becomes

(x+ y)n =
n∑
k=0

hk(a0, a1, . . . , an−k) a
−k
0 xkyn−k, (3.2)

which, despite its simplicity, appears to be new.
From Corollary 1 and (3.1b)/(3.1c), the convolution

hk(a0, a1, . . . , an+m−k) =

min(k,n)∑
j=0

hj(a0, . . . , an−j)hk−j(an−j, . . . , an+m−k) (3.3a)

is obtained. On the other hand, Corollaries 2 and 3 reduce to the identities

hn(a0, a1, . . . , am) =
m∑
k=0

hl−1(a0, . . . , ak) ak hn−l(ak, . . . , am), for a fixed 1 ≤ l ≤ n,

(3.3b)
and

hn(a0, a1, . . . , am) =
n∑
l=0

hl(a0, . . . , ak−1)hn−l(ak, . . . , am), for a fixed 1 ≤ k ≤ m, (3.3c)

respectively. The identity in (3.3c) is the special case of a well-known convolution formula
for Schur functions [12, p. 72, Eq. (5.10)], for which the indexing partitions are reduced
to at most one row. The other two identities, (3.3a) and (3.3b), are most likely already
known as well, although the author has not been able to find them explicitly in the
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literature. (It is in any case not very difficult to establish them directly by combinatorial
arguments.)

3.2. Elementary symmetric functions. Another choice is w(s, t) = as+t/as+t−1. In
this case we have (essentially corresponding to the e-labeling of lattice paths in [15,
Sec. 4.5])

w

[
n
k

]
=
ek(a1, . . . , an)

a1 · · · ak
,

where ek(a1, . . . , an) is the elementary symmetric function of order k, defined by

e0(a1, . . . , an) := 1

and

ek(a1, . . . , an) :=
∑

1≤j1<j2<···<jk≤n

aj1aj2 · · · ajk , for k > 0.

Indeed, the elementary symmetric functions satisfy the recursion

ek(a1, . . . , an+1) = ek(a1, . . . , an) + an+1ek−1(a1, . . . , an),

which again readily follows from specializing (2.3).
The relations of the algebra Cw[x, y] in Definition 1 now reduce to

yx =
a2
a1
xy, (3.4a)

x
as+t
as+t−1

=
as+t+1

as+t
x, (3.4b)

y
as+t
as+t−1

=
as+t+1

as+t
y, (3.4c)

for all s, t ∈ N.
The noncommutative binomial theorem in Theorem 1 now becomes

(x+ y)n =
n∑
k=0

ek(a1, . . . , an)

a1 · · · ak
xkyn−k, (3.5)

which, despite its simplicity, appears to be new.
The convolutions in Corollaries 1, 2, and 3, respectively, give

ek(a1, a2, . . . , an+m) =

min(k,n)∑
j=0

ej(a1, . . . , an) ek−j(an+1, . . . , an+m), (3.6a)

en(a1, a2, . . . , an+m) =
m∑
k=0

el−1(a1, . . . , al+k−1) al+k en−l(al+k+1, . . . , an+m),

for a fixed 1 ≤ l ≤ n, (3.6b)

and
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en(a1, a2, . . . , an+m) =
n∑
l=0

el(a1, . . . , al+k−1) en−l(al+k+1, . . . , an+m),

for a fixed 1 ≤ k ≤ m. (3.6c)

The identity in (3.6a) is another special case (compare with (3.3c)) of the convolution
formula for Schur functions in [12, p. 72, Eq. (5.10)], for which the indexing partitions
are now reduced to at most one column. The other two identities, (3.6b) and (3.6c), are
most likely already known as well, although the author has not been able to find them
explicitly in the literature. (Again, it is not very difficult to establish them directly by
combinatorial arguments.)

4. Elliptic hypergeometric series

In this section we concentrate on the so-called elliptic case. It was this case which,
for the author, served as a motivation to look out for generalizations of the q-commuting
variables (1.1).

We explain some important notions from the theory of elliptic hypergeometric series
which we will use here (see also [6, Ch. 11]).

Let the modified Jacobi theta function with argument x and nome p be defined by

θ(x) = θ(x; p) := (x; p)∞(p/x; p)∞ , θ(x1, . . . , xm) =
m∏
k=1

θ(xk),

where x, x1, . . . , xm 6= 0, |p| < 1, and (x; p)∞ =
∏∞

k=0(1− xpk).
These functions satisfy the simple properties

θ(x) = −x θ(1/x), (4.1a)

θ(px) = −1

x
θ(x), (4.1b)

and the three-term addition formula (cf. [22, p. 451, Example 5])

θ(xy, x/y, uv, u/v)− θ(xv, x/v, uy, u/y) =
u

y
θ(yv, y/v, xu, x/u). (4.2)

The relation (4.2) is not obvious but crucial for the theory of elliptic hypergeometric
series. (Inductive proofs of summation formulae usually involve functional equations or
recursions which are established by means of the theta addition formula.) A proof of (4.2)
(and more general results) is given in [14, Eq. (3.4) being a special case of Lemma 3.3].

Now define the theta shifted factorial (or q, p-shifted factorial) by

(a; q, p)n =


∏n−1

k=0 θ(aq
k), n = 1, 2, . . . ,

1, n = 0,

1/
∏−n−1

k=0 θ(aqn+k), n = −1,−2, . . . .

For compact notation, we write

(a1, a2, . . . , am; q, p)n =
m∏
k=1

(ak; q, p)n.
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Notice that θ(x; 0) = 1−x and, hence, (a; q, 0)n = (a; q)n is a q-shifted factorial in base q.
Observe that

(pa; q, p)n = (−1)na−nq−(n
2) (a; q, p)n, (4.3)

which follows from (4.1b). A list of other useful identities for manipulating the q, p-shifted
factorials is given in [6, Sec. 11.2].

By definition, a function g(u) is elliptic if it is a doubly-periodic meromorphic function
of the complex variable u.

Without loss of generality, by the theory of theta functions, we may assume that

g(u) =
θ(a1q

u, a2q
u, . . . , asq

u; p)

θ(b1qu, b2qu, . . . , bsqu; p)
z

(i.e., an abelian function of some degree s), for a constant z and some a1, a2, . . . , as,
b1, . . . , bs, and p, q with |p| < 1, where the elliptic balancing condition (cf. [18]), namely

a1a2 · · · as = b1b2 · · · bs,

holds. If we write q = e2πiσ, p = e2πiτ , with complex σ, τ , then g(u) is indeed periodic in u
with periods σ−1 and τσ−1. Keeping this notation for p and q, denote the field of elliptic
functions over C of the complex variable u, meromorphic in u with the two periods σ−1

and τσ−1 by Equ;q,p.
More generally, denote the field of totally elliptic multivariate functions over C of the

complex variables u1, . . . , un, meromorphic in each variable with equal periods, σ−1 and
τσ−1, of double periodicity, by Equ1 ,...,qun ;q,p.

After these prerequisites, we are ready to turn to our elliptic generalization of the
q-binomial coefficient. (The corresponding elliptic weight function will come out auto-
matically.) For indeterminates a, b, complex numbers q, p (with |p| < 1), and nonneg-
ative integers n, k, define the elliptic binomial coefficient as follows (this is exactly the
expression for ω(P((0, 0)→ (k, n− k))) in [16, Th. 2.1]):[

n
k

]
a,b;q,p

:=
(q1+k, aq1+k, bq1+k, aq1−k/b; q, p)n−k

(q, aq, bq1+2k, aq/b; q, p)n−k
. (4.4)

Note that this definition of the elliptic binomial coefficient (which reduces to the usual
q-binomial coefficient after taking the limits p → 0, a → 0, and b → 0, in this order)
is different from the much simpler one given in [6, Eq. (11.2.61)], the latter being a
straightforward theta shifted factorial extension of the q-binomial coefficient but actually
not being elliptic. In fact, as pointed out in [16], it is not difficult to see that the expression
in (4.4) is totally elliptic, i.e., elliptic in each of logq a, logq b, k, and n (viewed as complex
parameters), with equal periods of double periodicity, which fully justifies the notion
“elliptic”. In particular, [ nk ]a,b;q,p ∈ Ea,b,qn,qk;q,p.

It is immediate from the definition of (4.4) that (for integers n, k) we have[
n
0

]
a,b;q,p

=

[
n
n

]
a,b;q,p

= 1, (4.5a)
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and [
n
k

]
a,b;q,p

= 0, whenever k = −1,−2, . . . , or k > n. (4.5b)

Furthermore, using the theta addition formula in (4.2) one can verify the following recur-
sion formula for the elliptic binomial coefficients:[

n+ 1
k

]
a,b;q,p

=

[
n
k

]
a,b;q,p

+

[
n

k − 1

]
a,b;q,p

Wa,b;q,p(k, n+ 1− k), (4.5c)

for nonnegative integers n and k, where

Wa,b;q,p(s, t) :=
θ(aqs+2t, bq2s, bq2s−1, aq1−s/b, aq−s/b)

θ(aqs, bq2s+t, bq2s+t−1, aq1+t−s/b, aqt−s/b)
qt. (4.6)

Clearly, Wa,b;q,p(s, 0) = 1, for all s. If we let p→ 0, a→ 0, then b→ 0 (in this order),
the relations in (4.5) reduce to [

n
0

]
q

=

[
n
n

]
q

= 1,[
n+ 1
k

]
q

=

[
n
k

]
q

+

[
n

k − 1

]
q

qn+1−k,

for positive integers n and k with n ≥ k, which is a well-known recursion for the q-binomial
coefficients.

According to (2.2b) we have for the small weights

wa,b;q,p(s, t) :=
Wa,b;q,p(s, t)

Wa,b;q,p(s, t− 1)
=
θ(aqs+2t, bq2s+t−2, aqt−s−1/b)

θ(aqs+2t−2, bq2s+t, aqt−s+1/b)
q, (4.7)

for s, t ∈ N.
We refer to wa,b;q,p(s, t) (and to Wa,b;q,p(s, t)) as an elliptic weight function. Recall that

in [16] lattice paths in the integer lattice Z2 were enumerated with respect to precisely
this weight function. A similar weight function was subsequently used by A. Borodin,
V. Gorin and E.M. Rains in [2, Sec. 10] (see in particular the expression obtained for
w(i,j+1)
w(i,j)

on p. 780 of that paper) in the context of weighted lozenge tilings.

4.1. An elliptic binomial theorem. For the elliptic case, the commutation relations
from Definition 1 are particularly elegant and can be formulated as follows. Recall (see the
prerequisites we just covered in between Equations (4.3) and (4.4)) that Ea,b;q,p denotes
the field of totally elliptic functions over C, in the complex variables logq a and logq b,

with equal periods σ−1, τσ−1 (where q = e2πiσ, p = e2πiτ , σ, τ ∈ C), of double periodicity.

Definition 2. For four noncommuting variables x, y, a, b, where a and b commute with
each other, and two complex numbers q, p with |p| < 1, let Ca,b;q,p[x, y] denote the asso-
ciative unital algebra over C, generated by x, y and the set of all totally elliptic functions
Ea,b;q,p, satisfying the following three relations:

yx =
θ(aq3, bq, a/bq; p)

θ(aq, bq3, aq/b; p)
qxy, (4.8a)
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xf(a, b) = f(aq, bq2)x, (4.8b)

yf(a, b) = f(aq2, bq)y, (4.8c)

for all f ∈ Ea,b;q,p.

We refer to the variables x, y, a, b forming Ca,b;q,p[x, y] as elliptic-commuting variables.
Notice that, in comparison with (2.1) the pair of positive integers (s, t) does not appear

explicitly in the commutation relations (4.8). It is easy to verify that the actions of x,
respectively y, on a weight w(s, t) exactly correspond to shifts of the parameters a and b
as described in (4.8b) and (4.8c).

The algebra Ca,b;q,p[x, y] reduces to Cq[x, y] if we formally let p→ 0, a→ 0, then b→ 0
(in this order), while (having eliminated the nome p) relaxing the condition of ellipticity.

As in (2.1), the relations in (4.8) are well-defined as any expression in Ca,b;q,p[x, y] can
be put in a unique canonical form regardless in which order the commutation relations
are applied for this purpose.

The generic weight-dependent noncommutative binomial theorem in Theorem 1 reduces
now to the following identity.

Theorem 2 (Elliptic binomial theorem). Let n ∈ N0. Then

(x+ y)n =
n∑
k=0

[
n
k

]
a,b;q,p

xkyn−k (4.9)

holds in Ca,b;q,p[x, y].

Remark 1. As Erik Koelink has kindly pointed out, a result very similar to Theorem 2
has been proved in [9, Eq. (3.5)], as an identity in the elliptic U(2) quantum group (or,
equivalently, the h-Hopf algebroid FR(U(2))). Nevertheless, although both results involve
a “binomial” expansion of noncommuting variables, the correspondence between the two
results is not entirely clear. It is possible, however, that such a correspondence would be
easier to make out for another (yet to be established) version of elliptic binomial theorem
in the framework of the more general situation in Appendix A with two weight functions
v and w (where v and W contribute about the same number of factors).

4.2. Frenkel and Turaev’s 10V9 summation. Elliptic hypergeometric series are series∑
k≥0 ck where c0 = 1 and g(k) = ck+1/ck is an elliptic function of k, with k considered

as a complex variable.
Elliptic hypergeometric series first appeared as elliptic solutions of the Yang–Baxter

equation (or elliptic 6j-symbols) in work by E. Date, M. Jimbo, A. Kuniba, T. Miwa,
and M. Okado [3] in 1987, and a decade later by E. Frenkel and V. Turaev [5]. The
latter authors were the first to find summation and transformation formulae satisfied by
elliptic hypergeometric series. In particular, by exploiting the symmetries of the elliptic
6j-symbols they derived the (now-called) 12V11 transformation. By specializing this result
they obtained the (now-called) 10V9 summation (see also [6, Eq. (11.4.1)]), an identity
which is fundamental to the theory of elliptic hypergeometric series.
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Proposition 2 (Frenkel and Turaev’s 10V9 summation). Let n ∈ N0 and a, b, c, d, e,
q, p ∈ C with |p| < 1. Then we have

n∑
k=0

θ(aq2k; p)

θ(a; p)

(a, b, c, d, e, q−n; q, p)k
(q, aq/b, aq/c, aq/d, aq/e, aqn+1; q, p)k

qk

=
(aq, aq/bc, aq/bd, aq/cd; q, p)n
(aq/b, aq/c, aq/d, aq/bcd; q, p)n

, (4.10)

where a2qn+1 = bcde.

For p = 0, the 10V9 summation reduces to Jackson’s 8φ7 summation [6, Eq. (II.22)].
Interestingly, the 10V9 stands at the “bottom” of the hierarchy of identities that are direct
elliptic extensions of any of the classical basic hypergeometric series identities listed in
Appendices II and III of Gasper and Raman’s book [6]. We point out that, while one
cannot take confluent limits in an elliptic hypergeometric series, identities of lower order
can be obtained by suitably specializing the parameters. In particular, the specialization
e = aq/d in (4.10) leads to an 8V7 summation. The systematic study of elliptic hyperge-
ometric series commenced at about the turn of the millennium, after further pioneering
work of V.P. Spiridonov and A.S. Zhedanov [20], and of S.O. Warnaar [21].

By the elliptic specialization of the convolution formula in Corollary 1, we recover
Frenkel and Turaev’s [5] 10V9 summation in the following form (where the requirement of
n and m being nonnegative integers can be removed by repeated analytic continuation).

Corollary 4. Let n,m, k ∈ N0 and a, b, q, p ∈ C with |p| < 1. Then we have[
n+m
k

]
a,b;q,p

=
k∑
j=0

[
n
j

]
a,b;q,p

[
m

k − j

]
aq2n−j ,bqn+j ;q,p

k−j∏
i=1

Wa,b;q,p(i+ j, n− j), (4.11)

where the elliptic binomial coefficients and the weight function Wa,b;q,p are defined in (4.5)
and (4.6).

To see the correspondence with Proposition 2, replace the summation index k in Equa-
tion (4.10) by j and substitute the 6-tuple of parameters (a, b, c, d, e, n) appearing in
Equation (4.10) by (bq−n/a, q−n/a, bq1+n+m, bq−n−m+k/a, q−n, k). (This substitution is re-
versible if q−n and q−m are treated as complex variables. This is fine, as the terminating
parameter has changed from n to k.) The resulting summation can be written, after
some elementary manipulations of theta shifted factorials, exactly in the form of Equa-
tion (4.11).

Interestingly, Corollaries 2 and 3 also yield essentially the same result, namely variants
of Frenkel and Turaev’s 10V9 summation. In particular, from Corollary 2 we obtain the
identity[

n+m
n

]
a,b;q,p

=
m∑
k=0

[
k + l − 1
l − 1

]
a,b;q,p

[
n+m− l − k

n− l

]
aql+2k,bq2l+k;q,p

n−l∏
i=0

wa,b;q,p(i+ l, k)
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(which is the (a, b, c, d, e, n) 7→ (aql, bql, aq1+n+m, aq−n/b, ql,m) case of Equation (4.10)),
where the requirement of n and l being nonnegative integers can be removed by repeated
analytic continuation.

On the other hand, from Corollary 3 we obtain[
n+m
n

]
a,b;q,p

=
n∑
l=0

[
l + k − 1

l

]
a,b;q,p

[
n+m− l − k

n− l

]
aql+2k,bq2l+k;q,p

n−l∏
i=1

wa,b;q,p(i+ l, k)

(which is the (k 7→ l, then) (a, b, c, d, e, n) 7→ (bqk, aqk, bq1+n+m, bq−m/a, qk, n) case of
Equation (4.10)), where again the requirement of m and k being nonnegative integers can
be removed by repeated analytic continuation.

Appendix A. A generalization involving an additional weight function

A substantial amount of the analysis of Section 2 can be readily generalized to the
situation where one not only has weights w(s, t) attributed to the horizontal steps but
also additional indeterminate weights v(s, t) on the vertical steps. More precisely, the
weight of a vertical step in the (first quadrant of the) integer lattice Z2 from (s, t− 1) to
(s, t) shall be v(s, t).

r
(s, t− 1)

r(s, t)

v(s, t)

For instance, the path P0 from Subsection 2.2 now has the weight

ω(P0) = 1 · 1 · v(2, 1) ·W (3, 1) ·W (4, 1) · v(4, 2) ·W (5, 2)

= v(2, 1)w(3, 1)w(4, 1)v(4, 2)w(5, 1)w(5, 2).

Keeping the other notions from Section 2, let us describe how the results look like in
this generalized setting.

First we have the following extension of the noncommutative algebra Cw[x; y]:

Definition 3. For two doubly-indexed sequences of indeterminates (v(s, t))s,t∈N and
(w(s, t))s,t∈N, let Cv,w[x, y] be the associative unital algebra over C generated by x, y
and the v(s, t) and w(s, t), s, t ∈ N, satisfying the following five relations:

yx = w(1, 1)xy, (A.1a)

x v(s, t) = v(s+ 1, t)x, (A.1b)

xw(s, t) = w(s+ 1, t)x, (A.1c)

y v(s, t) = v(s, t+ 1) y, (A.1d)

y w(s, t) = w(s, t+ 1) y, (A.1e)

for all (s, t) ∈ N2.

As in Subsection 2.2, we define the big weight W (s, t) to be the product
∏t

j=1w(s, j)
of the small w-weights.
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Let the double weight-dependent binomial coefficients be defined by

v,w

[
0
0

]
= 1,

v,w

[
n
k

]
= 0 for n ∈ N0, and k ∈ −N or k > n, (A.2a)

and

v,w

[
n+ 1
k

]
=
v,w

[
n
k

]
v(k, n+ 1− k) +

v,w

[
n

k − 1

]
W (k, n+ 1− k) for n, k ∈ N0. (A.2b)

It is obvious that the double weight-dependent binomial coefficients
v,w

[ nk ] have again

a nice combinatorial interpretation in terms of weighted lattice paths. The generating
function ωv,w with respect to the weights v and w of all paths from (0, 0) to (k, n− k) is
clearly

ωv,w(P((0, 0)→ (k, n− k))) =
v,w

[
n
k

]
. (A.3)

The noncommutative binomial theorem in Theorem 1 extends to the following.

Theorem 3 (Double weight-dependent binomial theorem). Let n ∈ N0. Then

(x+ v(0, 1) y)n =
n∑
k=0

v,w

[
n
k

]
xkyn−k. (A.4)

holds in Cv,w[x, y].

The proof of this theorem is a simple extension of the proof of Theorem 1.
The double weight-dependent binomial coefficients

v,w
[ nk ] have the advantage that they

also cover various (generalizations of) important sequences. In particular, the (q-)Stirling
numbers of the first kind arise when v(s, t) = 1 − s − t (respectively v(s, t) = (qs+t−1 −
1)/(1− q)) and w(s, t) = 1, for all s, t ∈ Z, whereas the (q-)Stirling numbers of the second
kind arise when v(s, t) = s (respectively v(s, t) = (1− qs)/(1− q)) and w(s, t) = 1, for all
s, t ∈ Z.

Notice that the algebra Cv,w[x, y] is not very interesting when w(s, t) = 1 for all s, t ∈ Z.
It is certainly worthwhile to look for nontrivial (and “nice”) applications of Theorem 3
for suitable choices of the weight functions v and w (where none of them is the identity
function). This is not pursued further here, the focus being laid on symmetric functions,
elliptic hypergeometric series and some basic hypergeometric specializations.

Appendix B. Basic hypergeometric specializations

Here some particularly attractive specializations of the elliptic weights wa,b;q,p(s, t) from
Section 4 are considered. The corresponding binomial coefficients and associated commu-
tation relations are given explicitly, while the summations that are obtained by convolu-
tion are identified.

For some standard terminology related to basic hypergeometric series, in particular the
terms balanced, well-poised, very-well-poised, and the definition of an rφs basic hypergeo-
metric series, the reader is referred to the classical textbook [6].
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B.1. The balanced very-well-poised case. If we specialize the elliptic weight function
in (4.7) by letting p→ 0, we obtain the weights

wa,b;q(s, t) =
(1− aqs+2t)(1− bq2s+t−2)(1− aqt−s−1/b)
(1− aqs+2t−2)(1− bq2s+t)(1− aqt−s+1/b)

q, (B.1a)

the associated big weights being

Wa,b;q(s, t) =
(1− aqs+2t)(1− bq2s)(1− bq2s−1)(1− aq1−s/b)(1− aq−s/b)

(1− aqs)(1− bq2s+t)(1− bq2s+t−1)(1− aq1+t−s/b)(1− aqt−s/b)
qt. (B.1b)

The corresponding binomial coefficients are[
n
k

]
a,b;q

=
(q1+k, aq1+k, bq1+k, aq1−k/b; q)n−k

(q, aq, bq1+2k, aq/b; q)n−k
, (B.2)

where we are using the suggestive compact notation (a1, . . . , am; q)j =
∏m

l=1(al; q)j for
products of q-shifted factorials.

Now, in the unital algebra Ca,b;q[x, y] over C defined by the five commutation relations

yx =
(1− aq3)(1− bq)(1− a/bq)
(1− aq)(1− bq3)(1− aq/b)

qxy, (B.3a)

xa = qax, (B.3b)

xb = q2bx, (B.3c)

ya = q2ay, (B.3d)

yb = qby, (B.3e)

the binomial theorem

(x+ y)n =
n∑
k=0

[
n
k

]
a,b;q

xkyn−k (B.4)

holds. Convolution yields Jackson’s balanced very-well-poised terminating 8φ7 summa-
tion [6, Appendix (II.22)] (which of course is the p→ 0 case of Frenkel and Turaev’s 10V9
summation, see Corollary 4 and the two identities appearing thereafter).

B.2. The balanced case. If in (B.1a) we let a→ 0, we obtain the weights

w0,b;q(s, t) =
(1− bq2s+t−2)
(1− bq2s+t)

q, (B.5a)

the associated big weights being

W0,b;q(s, t) =
(1− bq2s)(1− bq2s−1)

(1− bq2s+t)(1− bq2s+t−1)
qt. (B.5b)

The corresponding binomial coefficients are[
n
k

]
0,b;q

=
(q1+k, bq1+k; q)n−k
(q, bq1+2k; q)n−k

. (B.6)
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Now, in the unital algebra C0,b;q[x, y] over C defined by the three commutation relations

yx =
(1− bq)
(1− bq3)

qxy, (B.7a)

xb = q2bx, (B.7b)

yb = qby, (B.7c)

the binomial theorem

(x+ y)n =
n∑
k=0

[
n
k

]
0,b;q

xkyn−k (B.8)

holds. Convolution yields the balanced q-Pfaff–Saalschütz summation [6, Appendix (II.12)],
which is a summation for a balanced terminating 3φ2 series. It is clear that reducing the
weight in (B.5a) yet further by letting b → 0, one arrives at the standard q-weight con-
nected to q-commuting variables. In this case, convolution gives the q-Chu–Vandermonde
summation [6, Appendix (II.6)/(II.7)], a summation for a terminating 2φ1 series.

B.3. The very-well-poised case. If in (B.1a) we let b→ 0, we obtain the weights

wa,0;q(s, t) =
(1− aqs+2t)

(1− aqs+2t−2)
q−1, (B.9a)

the associated big weights being

Wa,0;q(s, t) =
(1− aqs+2t)

(1− aqs)
q−t. (B.9b)

The corresponding binomial coefficients are[
n
k

]
a,0;q

=
(q1+k, aq1+k; q)n−k

(q, aq; q)n−k
qk(k−n). (B.10)

Now, in the unital algebra Ca,0;q[x, y] over C defined by the three commutation relations

yx =
(1− aq3)
(1− aq)

q−1xy, (B.11a)

xa = qax, (B.11b)

ya = q2ay, (B.11c)

the binomial theorem

(x+ y)n =
n∑
k=0

[
n
k

]
a,0;q

xkyn−k (B.12)

holds. Convolution yields the very-well-poised terminating 6φ5 summation [6, Appen-
dix (II.21)]. It is clear that the further a→∞ limit of (B.9a) leads again to the classical
case of q-commuting variables (whereas a→ 0 leads to the same with q replaced by q−1).
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