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Abstract. We extend and generalize many of the enumerative results concerning West’s
stack-sorting map s. First, we prove a useful theorem that allows one to efficiently compute
|s−1(π)| for any permutation π, answering a question of Bousquet-Mélou. This method
relies on combinatorial objects called “valid hook configurations.” We then enumerate per-
mutations in various sets of the form s−1(Av(τ (1), . . . , τ (r))), where Av(τ (1), . . . , τ (r)) is the
set of permutations avoiding the patterns τ (1), . . . , τ (r). In many cases studied in this paper,
these preimage sets are permutation classes themselves. In one case, we solve a problem
previously posed by Bruner. We are often able to refine our counts by enumerating these
permutations according to their number of descents or peaks. Our investigation not only
provides several new combinatorial interpretations and identities involving known sequences,
but also paves the way for several new enumerative problems.

1. Introduction

Throughout this paper, we write permutations as words in one-line notation. Let Sn
denote the set of permutations of {1, . . . , n}. A descent of a permutation π = π1 · · · πn ∈ Sn
is an index i ∈ [n− 1] such that πi > πi+1. A peak of π is an index i ∈ {2, . . . , n− 1} such
that πi−1 < πi > πi+1.

Definition 1. We say the permutation σ = σ1 · · ·σn contains the pattern τ = τ1 · · · τm
if there are indices i1 < · · · < im such that σi1 · · ·σim has the same relative order as
τ . Otherwise, we say σ avoids τ . Denote by Av(τ (1), . . . , τ (r)) the set of permutations
that avoid the patterns τ (1), . . . , τ (r). Let Avn(τ (1), . . . , τ (r)) = Av(τ (1), . . . , τ (r)) ∩ Sn. Let
Avn,k(τ

(1), . . . , τ (r)) be the set of permutations in Avn(τ (1), . . . , τ (r)) with exactly k descents.

A set of permutations is called a permutation class if it is the set of permutations avoiding
some (possibly infinite) collection of patterns. Equivalently, a permutation class is a downset
in the poset of all permutations ordered by containment. The basis of a class is the set of
minimal permutations (in the containment ordering) not in the class.

E-mail address: cdefant@princeton.edu.



2 COLIN DEFANT

3142 142 42 42

3 3
1

1

3

4213 132

4

1324213

4

13

4
2

Figure 1. The stack-sorting map s sends 3142 to 1324.

The notion of pattern avoidance in permutations, which has blossomed into an enormous
area of research (see [4, 31, 36]) and which plays a lead role in the present article, began
its development with Knuth’s book The Art of Computer Programming [32]. In this book,
Knuth described a so-called stack-sorting algorithm; it was the study of the combinatorial
properties of this algorithm that led him to introduce the idea of pattern avoidance. In
his 1990 Ph.D. thesis [40], West defined a deterministic version of Knuth’s stack-sorting
algorithm, which we call the stack-sorting map and denote by s. The stack-sorting map is a
function defined by the following procedure.

Suppose we are given an input permutation π ∈ Sn. Place this permutation on the right
side of a vertical “stack.” Throughout this process, if the next entry in the input permutation
is smaller than the entry at the top of the stack or if the stack is empty, the next entry in
the input permutation is placed at the top of the stack. Otherwise, the entry at the top of
the stack is appended to the end of the growing output permutation. This procedure stops
when the output permutation has size n. We then define s(π) to be this output permutation.
Figure 1 illustrates this procedure and shows that s(3142) = 1324.

If π ∈ Sn, we can write π = LnR, where L (respectively, R) is the (possibly empty)
substring of π to the left (respectively, right) of the entry n. West observed that the stack-
sorting map can be defined recursively by s(π) = s(L)s(R)n (here, we also have to allow s
to take permutations of arbitrary finite sets of positive integers as arguments). There is also
a natural definition of the stack-sorting map in terms of tree traversals of decreasing binary
plane trees (see [4, 21,22]).

The “purpose” of the stack-sorting map is to sort the input permutation into increasing
order. Hence, we say a permutation π ∈ Sn is sortable if s(π) = 123 · · ·n. The above example
illustrates that the stack-sorting map does not always do its job. In other words, not all
permutations are sortable. In fact, the following characterization of sortable permutations
follows from Knuth’s work.

Theorem 2 ([32]). A permutation π is sortable if and only if it avoids the pattern 231.

Even if a permutation is not sortable, we can still try to sort it via iterated use of the
stack-sorting map. In what follows, st denotes the composition of s with itself t times.

Definition 3. A permutation π ∈ Sn is called t-stack-sortable if st(π) = 123 · · ·n. Let
Wt(n) denote the set of t-stack-sortable permutations in Sn. Let Wt(n) = |Wt(n)|.

Theorem 2 states that W1(n) = Avn(231), so it follows from the well-known enumeration
of 231-avoiding permutations that W1(n) = Cn = 1

n+1

(
2n
n

)
is the nth Catalan number. In his

thesis, West proved [40] that a permutation is 2-stack-sortable if and only if it avoids the
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pattern 2341 and also avoids any 3241 pattern that is not part of a 35241 pattern. He also
conjectured the following theorem, which Zeilberger proved in 1992.

Theorem 4 ([42]). We have

(1) W2(n) =
2

(n+ 1)(2n+ 1)

(
3n

n

)
.

Combinatorial proofs of this theorem arose later in [18, 26, 27, 30]. Some authors have
studied the enumerations of 2-stack-sortable permutations according to certain statistics
[5, 9, 12, 26]. Recently, the authors of [25] introduced new combinatorial objects known as
fighting fish and showed that they are counted by the numbers W2(n). Fang has now given
a bijection between fighting fish and 2-stack-sortable permutations [28]. The authors of [3]
study what they call n-point dominoes, and they have made the fascinating discovery that
the number of these objects is W2(n+ 1).

The primary purpose of this article is to enumerate preimages of permutation classes un-
der the stack-sorting map. This is a natural generalization of the study of sortable and
2-stack-sortable permutations since W1(n) = s−1(Avn(21)) and W2(n) = s−1(Avn(231)).
In fact, Bouvel and Guibert [12] have already considered stack-sorting preimages of cer-
tain classes in their study of permutations that are sortable via multiple stacks and D8

symmetries (we state some of their results in Section 3). Claesson and Úlfarsson [17] have
also studied this problem in relation to a generalization of classical permutation patterns
known as mesh patterns, which were introduced in [15]. They showed that each set of the
form s−1(Av(τ (1), . . . , τ (r))) can be described as the set of permutations avoiding a spe-
cific collection of mesh patterns, and they provided an algorithm for computing this collec-
tion. In specific cases, s−1(Av(τ (1), . . . , τ (r))) is a genuine permutation class. For example,
s−1(Av(m(m− 1) · · · 321)) is a permutation class.

The idea to count the preimages of a permutation under the stack-sorting map dates back
to West, who called |s−1(π)| the fertility of the permutation π and went to great lengths to
compute the fertilities of the permutations of the forms

23 · · · k1(k+ 1) · · ·n, 12 · · · (k− 2)k(k− 1)(k+ 1) · · ·n, and k12 · · · (k− 1)(k+ 1) · · ·n.
The very specific forms of these permutations indicates the initial difficulty of computing
fertilities. We define the fertility of a set of permutations to be the sum of the fertilities
of the permutations in that set. With this terminology, our main goal in this paper is to
compute the fertilities of sets of the form Avn(τ (1), . . . , τ (r)). Let us stress that although these
sets are often easy to understand (for example, Avn(231, 312, 321) consists of the “layered
permutations” in which each layer has size 1 or 2), computing the fertilities of these sets is
a much more difficult problem.

Bousquet-Mélou [10] studied permutations with positive fertilities, which she termed sorted
permutations. She mentioned that it would be interesting to find a method for computing
the fertility of any given permutation. This was achieved in [21] using new combinatorial
objects called “valid hook configurations.” The theory of valid hook configurations was the
key ingredient used in [22] in order to improve the best-known upper bounds for W3(n)
and W4(n), and it will be one of our primary tools in subsequent sections. Recently, the
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authors of [23] used valid hook configurations to establish connections between permutations
with fertility 1 and free probability theory. The current author has also investigated which
numbers arise as the fertilities of permutations [19].

In Section 2, we review the definitions and necessary theorems concerning valid hook
configurations. We also prove a theorem that ameliorates the computation of fertilities in
many cases. This theorem was stated in [22], but the proof was omitted because the result
was not needed in that paper. We have decided to prove the result here because we will
make use of it in our computations. This result is also used in [19].

Section 3 reviews some facts about generalized patterns and stack-sorting preimages of per-
mutation classes. In Section 4, we enumerate the set s−1(Av(132, 231, 312, 321)), which is a
permutation class. In Section 5, we study s−1(Av(132, 231, 321)) and s−1(Av(132, 312, 321)),
the latter of which is a permutation class. We show that these sets are both enumerated by
central binomial coefficients. A corollary of the results in this section actually settles a prob-
lem of Bruner [16]. In Section 6, we consider s−1(Av(231, 312, 321)), which turns out to be
a permutation class. We enumerate this class both directly and by using valid hook config-
urations, leading to a new identity involving well-studied orderings on integer compositions
and integer partitions. Section 7 considers the set s−1(Av(132, 231, 312)). Finding the fertil-
ities of permutations in Av(132, 231, 312) allows us to prove that some of the estimates used
in [22] are sharp (see Section 7 for details). In addition, we will find that the permutations
in s−1(Av(132, 231, 312)) are enumerated by the Fine numbers, giving a new interpreta-
tion for this well-studied sequence. Section 8 is brief and is merely intended to state that
s−1(Av(312, 321)) is the permutation class Av(3412, 3421), which Kremer [33] has proven to
be enumerated by the large Schröder numbers. Section 9 enumerates the permutations in
s−1(Av(132, 321)). In Section 10, we prove that |s−1(Avn(132, 312))| = |s−1(Avn(231, 312))|.
Finally, we prove that

8.4199 ≤ lim
n→∞

|s−1(Avn(321))|1/n ≤ 11.6569

in Section 11. This is notable because s−1(Av(321)) is a permutation class. In most of these
sections, we actually refine our counts by enumerating stack-sorting preimages of permutation
classes according to the number of descents and according to the number of peaks. These
results are summarized in Table 1.

The basic idea in most of our proofs is to express the fertility of a set of permutations
as a sum of products of Catalan numbers. The sum ranges over compositions indexed by
valid hook configurations, as explained in the next section. Our results lead to several open
problems and conjectures, which we accumulate in Section 12.

2. Valid Hook Configurations and Valid Compositions

To construct a valid hook configuration, begin by choosing a permutation π = π1 · · · πn ∈
Sn. Recall that a descent of π is an index i such that πi > πi+1. Let d1 < · · · < dk be the
descents of π. We use the example permutation 3142567 to illustrate the construction. The
plot of π is the graph displaying the points (i, πi) for 1 ≤ i ≤ n. The left image in Figure 2
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τ (1), . . . , τ (r) |s−1(Avn(τ (1), . . . , τ (r)))| Section How proved OEIS

123 0 for n ≥ 4 3 Easy A130713

213 Catalan numbers 3 Knuth [32] A000108

231 Closed formula 3 Zeilberger [42] A000139

132 Closed formula 3 Bouvel–Guibert [12] A000139

312 Baxter numbers 3 Bouvel–Guibert [12] A001181

321 Estimates for growth rate 11 VHCs A319027

132, 231 Unknown 10 A071356†

132, 312 Unknown 10 A071356†

231, 312 Equal to 10 VHCs A071356†

|s−1(Avn(132, 312))|
231, 321 Unknown 12 A165543†

132, 321 Explicit gen. function∗ 9 VHCs A319028

312, 321 Large Schröder numbers 8 Kremer’s result [33] A006318

132, 231, 312 Fine numbers∗ 7 VHCs A000957

231, 312, 321 Complicated sum formula 6 VHCs A049124

Simple sum formula 6 Classical argument

132, 231, 321 Closed formula∗ 5 VHCs A000984

132, 312, 321 Closed formula∗ 5 VHCs A000984

132, 231, 312, 321 Closed formula∗ 4 VHCs A071721

Table 1. Summary of the enumeration of stack-sorting preimages of permu-
tation classes with bases consisting of size-3 patterns. The appearance of a
∗ indicates that we can also refine the enumeration according to certain per-
mutation statistics. The symbol † indicates that the given OEIS sequence is
only conjectured to count the corresponding preimage set. The abbreviation
“VHCs” stands for “valid hook configurations.”

shows the plot of our example permutation. A point (i, πi) is a descent top if i is a descent.
The descent tops in our example are (1, 3) and (3, 4).

A hook of π is drawn by starting at a point (i, πi) in the plot of π, moving vertically
upward, and then moving to the right until reaching another point (j, πj). In order for this
to make sense, we must have i < j and πi < πj. The point (i, πi) is called the southwest
endpoint of the hook, while (j, πj) is called the northeast endpoint. The right image in
Figure 2 shows our example permutation with a hook that has southwest endpoint (3, 4) and
northeast endpoint (6, 6).

Definition 5. Let π be a permutations with descents d1 < · · · < dk. A valid hook configu-
ration of π is a tuple H = (H1, . . . , Hk) of hooks of π subject to the following constraints:
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Figure 2. The left image is the plot of 3142567. The right image shows this
plot along with a single hook.

Figure 3. Four configurations of hooks that are forbidden in a valid hook
configuration.
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Figure 4. All of the valid hook configurations of 3142567.

1. The southwest endpoint of Hi is (di, πdi).
2. A point in the plot cannot lie above a hook.
3. Hooks cannot intersect each other except in the case that the northeast endpoint of one

hook is the southwest endpoint of the other.

Figure 3 shows four placements of hooks that are forbidden by Conditions 2 and 3. Figure 4
shows all of the valid hook configurations of 3142567.

A valid hook configuration of π induces a coloring of the plot of π. To color the plot, draw
a “sky” over the entire diagram and color the sky blue. Assign arbitrary distinct colors other
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than blue to the k hooks in the valid hook configuration. There are k northeast endpoints
of hooks, and these points remain uncolored. However, all of the other n − k points will
be colored. In order to decide how to color a point (i, πi) that is not a northeast endpoint,
imagine that this point looks upward. If this point sees a hook when looking upward, it
receives the same color as the hook that it sees. If the point does not see a hook, it must see
the sky, so it receives the color blue. However, if (i, πi) is the southwest endpoint of a hook,
then it must look around (on the left side of) the vertical part of that hook. See Figure 5 for
the colorings induced by the valid hook configurations in Figure 4. Note that the leftmost
point (1, 3) is blue in each of these colorings because this point looks around the first (red)
hook and sees the sky.

To summarize, we started with a permutation π with exactly k descents. We chose a valid
hook configuration of π by drawing k hooks according to Conditions 1, 2, and 3 in Defini-
tion 5. This valid hook configuration then induced a coloring of the plot of π. Specifically,
n − k points were colored, and k + 1 colors were used (one for each hook and one for the
sky). Let qi be the number of points colored the same color as the ith hook, and let q0 be
the number of points colored blue (the color of the sky). Then (q0, . . . , qk) is a composition1

of n − k into k + 1 parts; we say the valid hook configuration induces this composition.
Let V(π) be the set of compositions induced by valid hook configurations of π. We call the
elements of V(π) the valid compositions of π.

We will often make implicit use of the following result, which is Lemma 3.1 in [22].

Theorem 6 ([22]). Each valid composition of a permutation π ∈ Sn is induced by a unique
valid hook configuration of π.

Let Cj = 1
j+1

(
2j
j

)
denote the jth Catalan number. Given a composition (q0, . . . , qk), let

C(q0,...,qk) =
k∏
t=0

Cqt .

The following theorem explains why valid hook configurations are so useful when studying
the stack-sorting map.

Theorem 7 ([21]). If π ∈ Sn has exactly k descents, then the fertility of π is given by the
formula

|s−1(π)| =
∑

(q0,...,qk)∈V(π)

C(q0,...,qk).

Example 8. The permutation 3142567 has six valid hook configurations, which are shown in
Figure 4. The colorings induced by these valid hook configurations are displayed in Figure 5.
The valid compositions induced by these valid hook configurations are (reading the first row
before the second row, each from left to right)

(3, 1, 1), (2, 2, 1), (1, 3, 1), (2, 1, 2), (1, 2, 2), (1, 1, 3).

It follows from Theorem 7 that

|s−1(3142567)| = C(3,1,1) + C(2,2,1) + C(1,3,1) + C(2,1,2) + C(1,2,2) + C(1,1,3) = 27.

1Throughout this paper, a composition of b into a parts is an a-tuple of positive integers whose sum is b.
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Figure 5. The different colorings induced by the valid hook configurations
of 3142567.

Remark 9. One immediate consequence of Theorem 7 is that a permutation is sorted if and
only if it has a valid hook configuration.

It is also possible to refine Theorem 7 according to certain permutation statistics such
as the number of descents and the number of peaks2. Recall that a peak of a permutation
π = π1 · · · πn ∈ Sn is an index i such that πi−1 < πi > πi+1. In what follows, we consider the
Narayana numbers N(i, j) = 1

i

(
i
j

)(
i

j−1

)
. Let us also define

V (i, j) = 2i−2j+1

(
i− 1

2j − 2

)
Cj−1.

It is known3 that V (i, j) is the number of decreasing binary plane trees with i vertices and
j leaves, and this is actually why these numbers arise in this context. In what follows, let
Compa(b) be the set of compositions of b into a parts (that is, a-tuples of positive integers
that sum to b).

Theorem 10 ([21]). If π ∈ Sn has exactly k descents, then the number of permutations in
s−1(π) with exactly m descents is∑

(q0,...,qk)∈V(π)

∑
(j0,...,jk)∈Compk+1(m+1)

k∏
t=0

N(qt, jt).

2Theorem 10 was originally stated in [21] in terms of “valleys” instead of peaks, but the formulation we give
here is equivalent.

3See sequence A091894 in [37].
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The number of permutations in s−1(π) with exactly m peaks is

∑
(q0,...,qk)∈V(π)

∑
(j0,...,jk)∈Compk+1(m+1)

k∏
t=0

V (qt, jt).

In her study of sorted permutations (permutations with positive fertilities), Bousquet-
Mélou introduced the notion of the tree of the canonical preimage of a sorted permutation π
and showed that this tree determines the fertility of π [10]. She asked for an explicit method
for computing the fertility of a permutation from the tree of its canonical preimage. The
current author reformulated the notion of a canonical tree in the language of valid hook
configurations, defining the canonical hook configuration of a permutation [22].4 Here, we
describe a method for computing a permutation’s fertility from its canonical hook configu-
ration. Specifically, we show how to describe all valid compositions of π from the canonical
hook configuration. This method was stated in [21], but the proof was omitted.

As before, let d1 < · · · < dk be the descents of π. We will construct the canonical hook
configuration of π, which we denote by H∗ = (H∗1 , . . . , H

∗
k). That is, H∗i is the hook in H∗

whose southwest endpoint is (di, πdi). In order to define H∗, we need to choose the northeast
endpoints of the hooks H∗1 , . . . , H

∗
k . To start, consider all possible points that could be

northeast endpoints of H∗k ; because dk is the largest descent of π, these are precisely the
points above and to the right of (dk, πdk). Among these points, choose the leftmost one
(equivalently, the lowest one) to be the northeast endpoint of H∗k . Next, consider all possible
points that could be northeast endpoints of H∗k−1 (given that we already know H∗k and that we
need to satisfy the conditions in Definition 5). Among these points, choose the leftmost one
to be the northeast endpoint of H∗k−1. Continue in this fashion, always choosing the leftmost
possible point as the northeast endpoint of H∗` given that H∗`+1, . . . , H

∗
k have already been

chosen. If it is ever impossible to find a northeast endpoint for H∗` , then π has no valid hook
configurations (meaning π is not sorted by Remark 9). Otherwise, we obtain the canonical
hook configuration of π from this process. Figure 6 shows the canonical hook configuration
of a permutation.

Let us assume π is sorted so that it has a canonical hook configuration H∗ = (H∗1 , . . . , H
∗
k).

We extend the sequence d1 < · · · < dk of descents of π by making the conventions d0 = 0
and dk+1 = n. For 1 ≤ i ≤ k + 1, the ith ascending run of π is the string πdi−1+1 · · · πdi . We
use H∗ to define certain parameters as follows.

• Let (b∗i , πb∗i ) be the northeast endpoint of H∗i .
• Let (q∗0, . . . , q

∗
k) be the valid composition of π induced by H∗.

• For 1 ≤ i ≤ k, define ei by requiring that πb∗i is in the ethi ascending run of π. In
other words, dei−1 < b∗i ≤ dei . Furthermore, put e0 = k + 1.

4Given a valid hook configuration of a permutation π, we obtain a binary plane tree on the vertex set
{1, . . . , n} as follows. If i is a descent of π, then (i, πi) is the southwest endpoint of a hook. Let (j, πj)
be the northeast endpoint of this hook. In this case, we make πi the left child of πj in the tree. If
i ∈ {1, . . . , n − 1} is not a descent of π, we make πi the left child of πi+1. The labeled tree obtained from
the canonical hook configuration of π is the tree of the canonical preimage of π defined by Bousquet-Mélou.
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Figure 6. The canonical hook configuration of
2 7 3 5 9 10 11 4 8 1 6 12 13 14 15 16.

• For 1 ≤ j ≤ k+ 1, let αj = |{i ∈ {1, . . . , k} : ei = j}| denote the number of northeast
endpoints (b∗i , πb∗i ) such that πb∗i is in the jth ascending run of π.

Example 11. Let π = 2 7 3 5 9 10 11 4 8 1 6 12 13 14 15 16 be the permutation whose
canonical hook configuration appears in Figure 6. We have d0 = 0, d1 = 2, d2 = 7, d3 = 9,
and d4 = 16. Furthermore,

• (b∗1, b
∗
2, b
∗
3) = (5, 13, 12);

• (q∗0, q
∗
1, q
∗
2, q
∗
3) = (7, 2, 2, 2);

• (e0, e1, e2, e3) = (4, 2, 4, 4);
• (α1, α2, α3, α4) = (0, 1, 0, 2).

Notice that the fact that e0 = k + 1 does not influence the value of αk+1.

We are now in a position to state and prove the theorem that allows one to combine the
above pieces of data in order to describe the valid compositions of π. The reader who is
interested only in the enumerative results of the forthcoming sections can safely bypass the
proof of this theorem.

Theorem 12. Let π ∈ Sn be a sorted permutation with k descents, and preserve the notation
from above. A composition (q0, . . . , qk) of n− k into k + 1 parts is a valid composition of π
if and only if the following two conditions hold:

(a) For every m ∈ {0, . . . , k},
em−1∑
j=m

qj ≥
em−1∑
j=m

q∗j .

(b) For all m, p ∈ {0, 1, . . . , k} with m ≤ p ≤ em − 2, we have

p∑
j=m

qj ≥ dp+1 − dm −
p+1∑

j=m+1

αj.
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Proof. To ease notation, let P (i) = (i, πi). Suppose (q0, . . . , qk) ∈ V(π), and let H =
(H1, . . . , Hk) be the valid hook configuration inducing (q0, . . . , qk). Let P (bi) be the northeast
endpoint ofHi. Put π0 = n+1, πn+1 = n+2, and b0 = b∗0 = n+1. It will be convenient to view
the “sky” as a hook H0 = H∗0 with southwest endpoint (d0, πd0) = (0, n + 1) and northeast
endpoint (b0, πb0) = (n + 1, n + 2) (this conflicts with our definition of a hook since these
points are not in the plot of π, but we will ignore this technicality). Put B∗ = {b∗0, . . . , b∗k}
and B = {b0, . . . , bk}. If we build H by choosing the northeast endpoints P (bk), . . . , P (b1) in
this order, then every point lying below Hi also lies below H∗i (since we chose b∗i as small as
possible). This means that every possible choice for P (bm) was also a choice for P (b∗m) when
we built H∗. It follows from our choice of P (b∗m) that b∗m ≤ bm and πb∗m ≤ πbm . This implies
that Hm lies above H∗m or is equal to H∗m for every m ∈ {0, . . . , k}.

Suppose m, p ∈ {0, . . . , k} and m ≤ p ≤ em− 1 (recall that πb∗m is in the ethm ascending run
of π). Let X = {dm + 1, dm + 2, . . . ,min{b∗m, dp+1}}. Suppose bγ ∈ X ∩ B, where γ 6= m.
Because b∗m ≤ bm, we must have dm < bγ < bm. This means that bγ lies below the hook
Hm, so Hγ lies below Hm. Deducing that m + 1 ≤ γ, we find that dm < b∗γ. We also know
that b∗γ ≤ bγ, so dm < b∗γ ≤ min{b∗m, dp+1} (because bγ ∈ X). This proves the implication
bγ ∈ X ∩B =⇒ b∗γ ∈ X ∩B∗. The map X ∩B → X ∩B∗ given by bj 7→ b∗j is an injection, so

(2) |X ∩ B| ≤ |X ∩ B∗|.

Choose x ∈ X \ B. Recall that H induces a coloring of the plot of π. The point
P (x) lies below the hook Hm. None of the hooks H0, H1, . . . , Hm−1 lie below Hm, and
all of the hooks Hp+1, Hp+2, . . . , Hk appear to the right of P (x) (although Hp+1 could have
P (x) as its southwest endpoint). Therefore, if P (x) looks upward, it sees one of the hooks
Hm, Hm+1, . . . , Hp. Letting Am,p be the set of points that are given the same color as one of
the hooks Hm, Hm+1, . . . , Hp, we see that x ∈ Am,p. This shows that (X \B) ⊆ Am,p. Hence,

(3)

p∑
j=m

qj = |Am,p| ≥ |X \ B| ≥ |X \ B∗|,

where the last inequality follows from (2).

Suppose p ≤ em − 2 (meaning min{b∗m, dp+1} = dp+1). We have |X ∩ B∗| =

p+1∑
j=m+1

αj and

|X| = dp+1 − dm, so we can use (3) to find that

p∑
j=m

qj ≥ |X| − |X ∩ B∗| = dp+1 − dm −
p+1∑

j=m+1

αj.

This yields (b).

Next, suppose p = em − 1 (meaning min{b∗m, dp+1} = b∗m). In this case, the elements of
X \ B∗ are the indices x such that P (x) lies below H∗m and is not a northeast endpoint of
a hook in H∗. These points are precisely those that are given the same color as one of the
hooks H∗m, . . . , H

∗
em−1 in the coloring induced by H∗ (by the definition of em, these are the
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hooks equal to or lying below H∗m). The number of such points is
em−1∑
j=m

q∗j , so we deduce from

(3) that

(4)
em−1∑
j=m

qj ≥ |X \ B∗| =
em−1∑
j=m

q∗j .

This proves (a).

To prove the converse, suppose we are given a composition (q0, . . . , qk) of n − k into
k + 1 parts that satisfies (a) and (b). We wish to construct a valid hook configuration
H = (H1, . . . , Hk) of π that induces the composition (q0, . . . , qk). To do so, it suffices to
specify the northeast endpoints of the hooks. Letting P (bi) denote the northeast endpoint
of Hi as before, we see that we need only choose the indices bi. We will choose them in the
order bk, . . . , b1.

Let ` ∈ {1, . . . , k}. Suppose that we have already chosen bk, . . . , b`+1 and that we are now
ready to choose b`. Let Z = Z` be the set of indices z ∈ {d` + 1, . . . , n} \ {b`+1, . . . , bk}
such that P (z) does not lie below any of the hooks H`+1, . . . , Hk. Let us write Z =
{z`(1), . . . , z`(θ`)}, where θ` = |Z| and z`(1) < · · · < z`(θ`). Put b` = z`(q` + 1) (we
will see in the next paragraph that θ` ≥ q` + 1 so that this definition makes sense). This
choice of b` is actually forced upon us. Indeed, we must put b` = z`(w) for some w. The
points P (z`(1)), . . . , P (z`(w − 1)) are precisely the points that see the hook H` when they
look upward. Therefore, if we can show that this construction actually produces a valid hook
configuration H, we will know that (q0, . . . , qk) is the valid composition of π induced by H.

Let us verify that θ` ≥ q` + 1 so that z`(q` + 1) actually exists. There are n− d` − (k− `)

indices z ∈ {d` + 1, . . . , n}\{b`+1, . . . , bk}, and
k∑

j=`+1

qj of them are such that P (z) lies below

one of the hooks H`+1, . . . , Hk. Consequently,

(5) θ` = |Z| = n− d` − (k − `)−
k∑

j=`+1

qj.

We know that b∗i > di for all i. Therefore, among the numbers b∗1, . . . , b
∗
k, only b∗1, . . . , b

∗
`−1

could possibly lie in the first ` ascending runs of π. This shows that
∑̀
j=1

αj ≤ `−1. Combining

this with (5) and the fact that
∑̀
j=0

qj = n− k −
k∑

j=`+1

qj, we get

θ` = `− d` +
∑̀
j=0

qj = `− 1− d` +
`−1∑
j=0

qj + q` + 1 ≥
`−1∑
j=0

qj −

(
d` −

∑̀
j=1

αj

)
+ q` + 1.
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Setting m = 0 and p = `− 1 in condition (b), we obtain

`−1∑
j=0

qj ≥ d` −
∑̀
j=1

αj,

so θ` ≥ q` + 1.

Now that we have defined the indices b`, we can construct the candidate hook H` (we use
the term “candidate hook” because we still need to prove that it is a hook). Specifically,
H` is the candidate hook with southwest endpoint P (d`) and northeast endpoint P (b`). To
check that this is in fact a hook, we must verify that d` < b` and πd` < πb` for all `. We
constructed b` so that d` < b`. We also know that πd` < πb∗` because H∗` is a hook with
southwest endpoint P (d`) and northeast endpoint P (b∗`). Hence, it suffices to show that
πb∗` ≤ πb` .

Observe that b∗k = dk + q∗k + 1 because the points lying below H∗k are precisely P (dk + 1),
. . . , P (dk + q∗k). Likewise, bk = dk + qk + 1. Setting m = k in condition (a), we get qk ≥ q∗k
because ek = k + 1. This shows that b∗k ≤ bk. This also forces the inequality πb∗k ≤ πbk since

πb∗k and πbk both lie in the (k + 1)th ascending run of π. It follows that Hk lies above H∗k or
is equal to H∗k .

Now, choose some ` ∈ {1, . . . , k − 1}, and suppose that b∗r ≤ br and πb∗r ≤ πbr for all
r ∈ {`+ 1, . . . , k}. For each such r, this means that Hr lies above or is equal to H∗r . Recall
the definition of Z from above. The entries πz`(1), . . . , πz`(θ`) are left-to-right maxima of the
string πd`+1 · · · πn (a left-to-right maximum of a string of positive integers w1 · · ·wr is an
entry wj such that wj > wi for all i ∈ {1, . . . , j − 1}). Indeed, if there were some πa > πz`(t)
with a ≥ d` + 1, then by choosing a maximally, we would find that P (a) is the southwest
endpoint of a hook that lies above P (z`(t)), contradicting the definition of z`(t). We know
from our definition of e` that

(6) b∗` ≥ de`−1 + 1.

We wish to show that b` ≥ b∗` , which will of course imply that b` ≥ de`−1 + 1. By way
of contradiction, let us first assume b` ≤ de`−1. We have dp + 1 ≤ b` ≤ dp+1 for some
p ∈ {`, ` + 1, . . . , e` − 2}. As mentioned above, H` is the candidate hook with southwest
endpoint P (d`) and northeast endpoint P (b`). Because πb` = πz`(q`+1) is a left-to-right
maximum of πd`+1 · · · πn, every point P (x) with d` + 1 ≤ x ≤ dp lies below H`. Furthermore,
each of the hooks H`+1, . . . , Hp must lie (entirely) below H` because P (b`) cannot lie above
any of these hooks (our construction guarantees that no point in the plot of π lies above

any of these hooks). It follows from our construction that there are precisely

p∑
j=`

qj points

that lie below the candidate hook H` and are not in {P (b1), . . . , P (bk)}. Each of the points
P (b`+1), . . . , P (bp) lies below H` because the hooks H`+1, . . . , Hp lie below H`. This means

that the total number of points lying below H` is at least p− `+

p∑
j=`

qj. For each such point
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P (z), we have d` + 1 ≤ z ≤ dp+1, so

(7) p− `+

p∑
j=`

qj < dp+1 − d`.

Note that the inequality here is strict because b` is an element of {d`+1, . . . , dp+1} and P (b`)
does not lie below H`.

If δ is an index such that d` + 1 ≤ b∗δ ≤ dp+1, then δ ≤ p. The point P (b∗δ) must lie below
H∗` because d` < b∗δ ≤ dp+1 ≤ de`−1 < b∗` (using (6)). Hence, `+ 1 ≤ δ ≤ p. This shows that
there are at most p− ` possible choices for δ, so

p+1∑
j=`+1

αj ≤ p− `.

It now follows from (7) that

p+1∑
j=`+1

αj +

p∑
j=`

qj < dp+1 − d`,

which we can see is a contradiction by setting m = ` in condition (b). We conclude that
b` ≥ de`−1 + 1.

A consequence of the previous paragraph is that H` lies above the hooks H`+1, . . . , He`−1,

so the number of points not in the set {P (b1), . . . , P (bk)} that lie below H` is at least

e`−1∑
j=`

qj.

By condition (a), this is at least

e`−1∑
j=`

q∗j . Moreover, each of the points P (b`+1), . . . , P (be`−1)

lies below H`. This shows that there are at least

e` − 1− `+

e`−1∑
j=`

q∗j

points below H`.

If η is an index such that P (b∗η) lies below H∗` , then d` < dη < b∗η < b∗` ≤ de` . This
guarantees that ` < η ≤ e` − 1, so there are at most e` − 1− ` such indices η. The number

of points below H∗` that are not of the form P (b∗η) is

e`−1∑
j=`

q∗j , so the total number of points

below H∗` is at most

e` − 1− `+

e`−1∑
j=`

q∗j .

According to the previous paragraph, the number of points below H` is at least the number
of points below H∗` . Therefore, H` lies above H∗` or is equal to H∗` . In other words, b∗` ≤ b`
and πb∗` ≤ πb` . It follows by induction that b∗i ≤ bi and πb∗i ≤ πbi for all i ∈ {1, . . . , k}.
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We have shown that the candidate hooks H1, . . . , Hk are in fact genuine hooks. Our
construction guarantees that H = (H1, . . . , Hk) is a valid hook configuration of π, so the
proof is complete. �

3. Background on Preimages of Permutation Classes

In this section, we review some known results concerning preimages of permutation classes.
We also establish some notation for subsequent sections.

First, suppose π ∈ Sn for some n ≥ 4, and write π = LnR so that s(π) = s(L)s(R)n.
Either L or R has size at least 2, and the permutations s(L) and s(R) each must end in their
last entries. It follows that s(π) contains the pattern 123, so

|s−1(Avn(123))| = 0 whenever n ≥ 4.

It is easy to see that

|s−1(Avn(213))| = Cn.

Indeed, suppose π ∈ s−1(Avn(213)). Since s(π) avoids 213 and has last entry n, s(π) must be
the identity permutation of size n. In other words, s−1(Av(213)) = s−1(Av(21)) = Av(231)
by Theorem 2. Theorem 4 tells us that

|s−1(Avn(231))| = 2

(n+ 1)(2n+ 1)

(
3n

n

)
.

Theorem 3.2 in [12] states that we also have

|s−1(Avn(132))| = 2

(n+ 1)(2n+ 1)

(
3n

n

)
.

Part of Theorem 3.4 in [12] states that

|s−1(Avn(312))| = 2

n(n+ 1)2

n∑
k=1

(
n+ 1

k − 1

)(
n+ 1

k

)(
n+ 1

k + 1

)
.

This last expression is also the number of so-called Baxter permutations of size n, and it
produces the sequence A001181 in [37]. Both Theorems 3.2 and 3.4 in [12] are proved via
explicit bijections. The only size-3 pattern τ for which |s−1(Avn(τ))| is not known is 321.
The sequence (|s−1(Avn(321))|)n≥1 appears to be new.5 In Section 11, we use valid hook
configurations to derive estimates for the exponential growth rate of this sequence.

The above remarks show that the sets s−1(Av(τ (1), . . . , τ (r))) are relatively uninteresting
when one of the patterns τ (i) is an element of {123, 213}. Indeed, if τ (i) = 213, then none of
the permutations in Av(τ (1), . . . , τ (r)) except possibly identity permutations have preimages
under s. Hence, we will focus our attention on permutation classes whose bases are subsets
of {132, 231, 312, 321}.

As mentioned in the introduction, it is always possible to describe s−1(Av(τ (1), . . . , τ (r)))
as the set of permutations avoiding some finite collection of mesh patterns [17]. We will see

5I have added it as sequence A319027 in [37].
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shortly that if the patterns τ (1), . . . , τ (r) are all of size 3, then we can actually describe our
stack-sorting preimage sets in terms of barred patterns and vincular patterns.

A barred pattern is a permutation pattern in which some entries are overlined. Saying a
permutation contains a barred pattern means that it contains a copy of the pattern formed
by the unbarred entries that is not part of a pattern that has the same relative order as the
full barred pattern. For example, saying a permutation contains the barred pattern 35241
means that it contains a 3241 pattern that is not part of a 35241 pattern. In fact, West [40]
introduced barred patterns in order to describe 2-stack-sortable permutations, showing that
a permutation is 2-stack-sortable if and only if it avoids the classical pattern 2341 and the
barred pattern 35241.

A vincular pattern is a permutation pattern in which some consecutive entries can be
underlined. We say a permutation contains a vincular pattern if it contains an occurrence
of the permutation pattern in which underlined entries are consecutive. For example, saying
that a permutation σ = σ1 · · · σn contains the vincular pattern 3241 means that there are
indices i1 < i2 < i3 < i4 such that σi4 < σi2 < σi1 < σi3 and i2 = i1 + 1. Vincular patterns
appeared first in [1] and have received a large amount of attention ever since [39].

If τ is a classical, barred, or vincular pattern, then we say a permutation avoids τ if it
does not contain τ . Let Av(τ (1), . . . , τ (r)) be the set of permutations avoiding τ (1), . . . , τ (r),
and let Avn(τ (1), . . . , τ (r)) = Av(τ (1), . . . , τ (r)) ∩ Sn.

In order to characterize stack-sorting preimages of many permutation classes, we make use
of the following theorem due to Claesson and Úlfarsson (the part concerning s−1(Av(231))
is due to West). These results are stated in [17] in terms of mesh patterns, but it is straight-
forward to rephrase them in terms of barred and vincular patterns.

Theorem 13 ([17,40]). We have

• s−1(Av(132)) = Av(1342, 3142);
• s−1(Av(231)) = Av(2341, 35241);
• s−1(Av(312)) = Av(3412, 3421);
• s−1(Av(321)) = Av(34251, 35241, 45231).

We can intersect the sets appearing in Theorem 13 to obtain the following characterizations
of preimage sets.

Corollary 14. We have

(i) s−1(Av(132, 231)) = Av(1342, 2341, 3142, 35241);
(ii) s−1(Av(132, 312)) = Av(1342, 3142, 3412, 3421);

(iii) s−1(Av(231, 312)) = Av(2341, 3412, 3421, 35241);
(iv) s−1(Av(231, 321)) = Av(2341, 3241, 45231);
(v) s−1(Av(132, 321)) = Av(1342, 34251, 35241, 45231, 3142);

(vi) s−1(Av(312, 321)) = Av(3412, 3421);
(vii) s−1(Av(132, 231, 312)) = Av(1342, 2341, 3412, 3142, 3421, 3241);

(viii) s−1(Av(231, 312, 321)) = Av(2341, 3241, 3412, 3421);
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(ix) s−1(Av(132, 231, 321)) = Av(1342, 2341, 3241, 45231, 3142);
(x) s−1(Av(132, 312, 321)) = Av(1342, 3142, 3412, 3421);

(xi) s−1(Av(132, 231, 312, 321)) = Av(1342, 2341, 3142, 3241, 3412, 3421).

Proof. Note that (i), (iii), (iv), (v), (ix) are immediate from Theorem 13. To prove (vi), we
must show that6

Av(3412, 3421, 34251, 35241, 45231) = Av(3412, 3421).

Certainly the left-hand side contains the right-hand side, so we must prove the reverse
containment. Suppose π ∈ Av(3412, 3421, 34251, 35241, 45231). We need to show that π
avoids 3421. Suppose instead that π contains 3421. This means that there are indices
i1 < i2 < i3 < i4 with πi4 < πi3 < πi1 < πi2 . We may assume these indices were chosen in such
a way as to minimize i4− i3. Because π avoids 3421, we must have i4− i3 ≥ 2. If πi3+1 > πi2 ,
then πi1πi2πi3πi3+1πi4 is an occurrence of the pattern 34251, which is a contradiction. If
πi1 < πi3+1 < πi2 , then πi1πi2πi3πi3+1πi4 is an occurrence of the pattern 35241 in π, which
is also impossible. If πi4 < πi3+1 < πi1 , then πi1πi2πi3+1πi4 is another occurrence of the
pattern 3421, contradicting the minimality of i4 − i3. The last remaining possibility is that
πi3+1 < πi4 . In this case, πi1πi2πi3πi3+1 is an occurrence of the pattern 3421, which is a
contradiction. This proves (vi).

Note that (viii) follows from (iv) and (vi). The proofs of (ii), (vii), (x), (xi) are similar to
the proof of (vi) that we just described; we omit the details because we will not need these
results in the rest of the paper. �

We end this section by fixing some notation concerning specific power series. Recall the
notation from Theorem 7 and Theorem 10. When counting preimages of permutations
according to numbers of descents and peaks, we will make use of the generating functions

F (x, y) =
∑
n≥1

∑
m≥1

N(n,m)xnym−1 and G(x, y) =
∑
n≥1

∑
m≥1

V (n,m)xnym−1.

It is known (see sequences A001263 and A091894 in [37]) that

(8) F (x, y) =
1− x(y + 1)−

√
1− 2x(y + 1) + x2(y − 1)2

2xy

and

(9) G(x, y) =
1− 2x−

√
(1− 2x)2 − 4x2y

2xy
.

We let [zn1
1 · · · znr

r ]A(z1, . . . , zr) denote the coefficient of zn1
1 · · · znr

r in the generating function
A(z1, . . . , zr).

6The author thanks Chetak Hossain for pointing him to this fact.
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4. Enumeration of s−1(Av(132, 231, 312, 321))

We saw in Corollary 14 that s−1(Av(132, 231, 312, 321)) is an actual permutation class.
One could enumerate this class directly, but we will use valid hook configurations in order
to illustrate this uniform method for finding fertilities.

Theorem 15. For n ≥ 2, we have

|s−1(Avn(132, 231, 312, 321))| = 2Cn − 2Cn−1.

The number of elements of s−1(Avn(132, 231, 312, 321)) with exactly m descents is

N(n,m+ 1) +
n−2∑
i=1

m∑
j=1

N(i, j)N(n− i− 1,m− j + 1).

The number of elements of s−1(Avn(132, 231, 312, 321)) with exactly m peaks is

V (n,m+ 1) +
n−2∑
i=1

m∑
j=1

V (i, j)V (n− i− 1,m− j + 1).

Proof. The only elements of Avn(132, 231, 312, 321) are 123 · · ·n and 2134 · · ·n. The only
valid composition of 123 · · ·n is (n). Each valid hook configuration of 2134 · · ·n has exactly
one hook. This hook has southwest endpoint (1, 2) and has northeast endpoint (n + 1 −
i, n + 1 − i) for some i ∈ {1, . . . , n − 2}. This valid hook configuration induces the valid
composition (i, n − i − 1). It follows from Theorem 7 and the standard Catalan number
recurrence relation that

|s−1(Avn(132, 231, 312, 321))| = Cn +
n−2∑
i=1

CiCn−i−1 = Cn +
n−1∑
i=0

CiCn−i−1 − 2Cn−1

= 2Cn − 2Cn−1.

The second and third statements of the theorem follow immediately from Theorem 10. �

5. Enumeration of s−1(Av(132, 231, 321)) and s−1(Av(132, 312, 321))

Let

σn,` = `12 · · · (`− 1)(`+ 1) · · ·n and γn,` = 23 · · · `1(`+ 1) · · ·n.
It is straightforward to check that

Avn(132, 231, 321) = {σn,1, . . . , σn,n} and Avn(132, 312, 321) = {γn,1, . . . , γn,n}.
West [40] found formulas for the fertilities of σn,` and γn,` and found that they are equal. It
follows that

|s−1(Avn(132, 231, 321))| = |s−1(Avn(132, 312, 321))|.
This equality is easy to verify with the theory of valid hook configurations. Indeed, for
2 ≤ ` ≤ n, we have

V(σn,`) = {(n− `− i+ 1, `+ i− 2) : 1 ≤ i ≤ n− `}
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and

V(γn,`) = {(`+ i− 2, n− `− i+ 1) : 1 ≤ i ≤ n− `}.

That is, the valid compositions of σn,` are obtained by interchanging the two parts in the
valid compositions of γn,`. Along with Theorem 10, this also implies the following.

Theorem 16. The number of elements of s−1(Avn(132, 231, 321)) with exactly m descents
is equal to the number of elements of s−1(Avn(132, 312, 321)) with exactly m descents. The
number of elements of s−1(Avn(132, 231, 321)) with exactly m peaks is equal to the number
of elements of s−1(Avn(132, 312, 321)) with exactly m peaks.

Note that West did not prove these refined equalities.

Theorem 17. We have

|s−1(Avn(132, 231, 321))| = |s−1(Avn(132, 312, 321))| =
(

2n− 2

n− 1

)
.

The number of elements of s−1(Avn(132, 231, 321)) (equivalently, of s−1(Avn(132, 312, 321)))
with exactly m descents is (

n− 1

m

)2

.

The number of elements of s−1(Avn(132, 231, 321)) (equivalently, of s−1(Avn(132, 312, 321)))
with exactly m peaks is

2n−2m−2
(

n

2m+ 2

)(
2m+ 2

m+ 1

)
.

Proof. By Theorem 16, we need only consider the preimage sets s−1(Avn(132, 231, 321)).
We will prove the second and third statements; the first statement will then follow from the

second and the well-known identity
∑n−1

m=0

(
n−1
m

)2
=
(
2n−2
n−1

)
. The only valid composition of

σn,1 = 123 · · ·n is (n). For 2 ≤ ` ≤ n, the valid compositions of σn,` are (n−`−i+1, `+i−2)
for 1 ≤ i ≤ n − `. In particular, we can ignore σn,n because it has no valid compositions
(that is, σn,n is not sorted).

Using the first part of Theorem 10, we find that the number of elements of
s−1(Avn(132, 231, 321)) with exactly m descents is

N(n,m+ 1) +
n−1∑
`=2

∑
(q0,q1)∈V(σn,`)

∑
j0+j1=m+1

N(q0, j0)N(q1, j1)

= N(n,m+ 1) +
n−1∑
`=2

n−∑̀
i=1

m∑
j=1

N(n− `− i+ 1, j)N(`+ i− 2,m− j + 1).
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Letting r = `+ i, this becomes

N(n,m+ 1) +
n−1∑
`=2

n∑
r=`+1

m∑
j=1

N(n− r + 1, j)N(r − 2,m− j + 1)

= N(n,m+ 1) +
n−1∑
`=2

n−2∑
r=`−1

m∑
j=1

N(n− r − 1, j)N(r,m− j + 1)

= N(n,m+ 1) +
n−2∑
r=1

r
m∑
j=1

N(n− r − 1, j)N(r,m− j + 1)

= [xnym]

(
F (x, y) + x2y F (x, y) · ∂

∂x
F (x, y)

)
,

where F (x, y) =
∑
n≥1

∑
m≥1

N(n,m)xnym−1. Applying (8) and some algebraic manipulations,

we find that this is equal to

[xnym]

(
x√

1 + x2(y − 1)2 − 2x(y + 1)

)
.

This is known to equal
(
n−1
m

)2
(see sequence A008459 in [37]).

The proof of the third statement in the theorem proceeds exactly as in the proof of the sec-
ond statement. In this case, we find that the number of elements of s−1(Avn(132, 231, 321))
with exactly m peaks is

[xnym]

(
G(x, y) + x2y G(x, y) · ∂

∂x
G(x, y)

)
.

Applying (9) and some algebraic manipulations, we find that this is equal to

[xnym]

(
x√

1− 4x− 4x2(y − 1)

)
.

It is known that this expression is equal to 2n−2m−2
(

n
2m+2

)(
2m+2
m+1

)
(see sequence A051288

in [37]). �

Recently, Bruner proved that

|Avn(2431, 4231, 1432, 4132)| =
(

2n− 2

n− 1

)
.

She also listed several other permutation classes that appear to be enumerated by cen-
tral binomial coefficients but did not prove that this is the case. One of these classes is
Av(1243, 2143, 2413, 2431). Of course, a permutation is in this class if and only if its reverse
is in the class

Av(1342, 3142, 3412, 3421) = s−1(Av(132, 312, 321)).

Therefore, the next corollary, which follows immediately from Theorem 17 and Corollary 14,
settles one of the enumerative problems that Bruner listed.
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Corollary 18. We have

|Avn(1342, 3142, 3412, 3421)| =
(

2n− 2

n− 1

)
.

The number of elements of Avn(1342, 3142, 3412, 3421) with exactly m descents is(
n− 1

m

)2

.

The number of elements of Avn(1342, 3142, 3412, 3421) with exactly m peaks is

2n−2m−2
(

n

2m+ 2

)(
2m+ 2

m+ 1

)
.

6. Enumeration of s−1(Av(231, 312, 321))

It is standard to identify a permutation with a configuration of points in the plane via its
plot. Doing so, we can build permutations by placing the plots of smaller permutations in
various configurations. For example, if λ = λ1 · · ·λ` ∈ S` and µ = µ1 · · ·µm ∈ Sm, then the
sum of λ and µ, denoted λ⊕ µ, is obtained by placing the plot of µ above and to the right
of the plot of λ. More formally, the ith entry of λ⊕ µ is

(λ⊕ µ)i =

{
λi, if 1 ≤ i ≤ `;

µi−` + `, if `+ 1 ≤ i ≤ `+m.

Let Deca = a(a− 1) · · · 1 ∈ Sa denote the decreasing permutation of size a. The permuta-
tions in Av(231, 312) are often called layered [36]; each is of the form Deca1 ⊕ · · ·⊕Decat for
some composition (a1, . . . , at). For example, 32154687 = 321⊕21⊕1⊕21 is the layered per-
mutation corresponding to the composition (3, 2, 1, 2). Under this correspondence between
layered permutations and compositions, the permutations in Av(231, 312, 321) correspond to
compositions whose parts are all at most 2. It follows that these permutations are counted
by the Fibonacci numbers (this is well known).

As we saw in Corollary 14, the set s−1(Av(231, 312, 321)) is the same as the permutation
class Av(2341, 3241, 3412, 3421). A permutation σ is in this class if and only if the first
and third entries in every 231 pattern in σ are consecutive integers. In this section, we
use valid hook configurations to derive a formula for |s−1(Avn(231, 312, 321))|. We then
enumerate this class directly; showing that these permutations are counted by the terms in
sequence A049124 in [37]. Together, these results give a new formula and a new combinatorial
interpretation for the terms in this sequence.

Recall that Compa(b) is the set of all compositions of b into a parts. Define a partial order

� on Compa(b) by declaring that (x1, . . . , xa) � (y1, . . . , ya) if
∑`

i=1 xi ≤
∑`

i=1 yi for all
` ∈ {1, . . . , a}. A partition is a composition whose parts are nonincreasing. Following [38],
we let L(u, v) denote the set of all partitions (including the empty partition) with at most
u parts and with largest part at most v. Endow L(u, v) with a partial order ≤ by declaring
that (λ1, . . . , λ`) ≤ (µ1, . . . , µm) if ` ≤ m and λi ≤ µi for all i ∈ {1, . . . , `}. Geometrically,
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L(u, v) is the set of all partitions whose Young diagrams fit inside a u × v rectangle, and
λ ≤ µ if and only if the Young diagram of λ fits inside of the Young diagram of µ.

Given x = (x1, . . . , xa) ∈ Compa(b), let ψ(x) ∈ L(b − a, a − 1) be the partition that has
exactly xi− 1 parts of size a− i for all i ∈ {1, . . . , a− 1}. For example, if a = 4, b = 12, and
x = (3, 1, 5, 3), then ψ(x) = (3, 3, 1, 1, 1, 1). The map ψ : Compa(b) → L(b − a, a − 1) is an
isomorphism of posets. For x ∈ Compa(b), let

Dx = |{y ∈ Compa(b) : y � x}|.

Equivalently, Dψ−1(λ) is the number of partitions (including the empty partition) whose
Young diagrams fit inside of the Young diagram of the partition λ. Recall the notation
C(x0,...,xk) =

∏k
t=0Cxt , where Cj is the jth Catalan number.

Theorem 19. Preserving the notation of the preceding paragraph with a = k + 1 and b =
n− k, we have

|s−1(Avn(231, 312, 321))| =
n−1∑
k=0

∑
q ∈Compk+1(n−k)

CqDq =
n−1∑
k=0

∑
λ∈L(n−2k−1,k)

Cψ−1(λ)Dψ−1(λ).

Proof. Recall that each permutation in Av(231, 312, 321) is of the form Deca1 ⊕ · · · ⊕Decat ,
where ai ∈ {1, 2} for all i. Suppose π ∈ Avn(231, 312, 321) has descents d1 < · · · < dk. For
every p ∈ {0, . . . , k−1}, let up = dp+1−p. Defining y0 = u0, yi = ui−ui−1 for 1 ≤ i ≤ k−1,
and yk = n − k − uk−1, we obtain a composition y = (y0, . . . , yk) ∈ Compk+1(n − k).
Given this composition y, we can easily reconstruct the permutation π. Thus, there is
a bijective correspondence between compositions in Compk+1(n − k) and permutations in
Avn(231, 312, 321) with k descents.

We are going to use Theorem 12 to describe all of the valid compositions of π. Preserve
the notation from that theorem and the discussion immediately preceding it. We must
compute the canonical hook configuration H∗ = (H∗1 , . . . , H

∗
k) of π. This is fairly simple

to do: the hook H∗i has southwest endpoint (di, πdi) and northeast endpoint (di + 2, πdi+2).
Thus, b∗i = di + 2. We also have (q∗0, . . . , q

∗
k) = (n− 2k, 1, . . . , 1), e0 = k + 1, and ei = i + 1

for all i ∈ {1, . . . , k}. Finally, α1 = 0, and αi = 1 for all i ∈ {2, . . . , k + 1}.

Every composition (q0, . . . , qk) ∈ Compk+1(n − k) satisfies condition (a) in Theorem 12.
In condition (b), the inequality m ≤ p ≤ em − 2 is only satisfied when m = 0. In this case,
we have em − 2 = e0 − 2 = k − 1, dm = d0 = 0, and

∑p+1
j=m+1 αj = p, so

dp+1 − dm −
p+1∑

j=m+1

αj = dp+1 − p = up.

Hence, Theorem 12 tells us that a composition q = (q0, . . . , qk) ∈ Compk+1(n− k) is a valid
composition of π if and only if

p∑
j=0

qj ≥ up

for all p ∈ {0, . . . , k − 1}. Because up =
∑p

i=0 yi, this occurs if and only if y � q.



STACK-SORTING PREIMAGES OF PERMUTATION CLASSES 23

Combining these observations with Theorem 7, we find that (recall the definition of
Avn,k(τ

(1), . . . , τ (r)) from Definition 1)

|s−1(Avn(231, 312, 321))| =
n−1∑
k=0

∑
π∈Avn,k(231,312,321)

∑
q∈V(π)

Cq

=
n−1∑
k=0

∑
y∈Compk+1(n−k)

∑
q∈Compk+1(n−k)

y�q

Cq =
n−1∑
k=0

∑
q ∈Compk+1(n−k)

CqDq.

The identity
n−1∑
k=0

∑
q ∈Compk+1(n−k)

CqDq =
n−1∑
k=0

∑
λ∈L(n−2k−1,k)

Cψ−1(λ)Dψ−1(λ)

follows from the discussion immediately preceding this theorem (with a = k + 1 and b =
n− k). �

The following theorem gives a summation formula that is much more explicit than the
one in Theorem 19. One of the main motivations behind Theorem 19 will come from Con-
jecture 21, which states that the equality between the summations in Theorems 19 and 20
holds term-by-term.

Theorem 20. For n ≥ 1, we have

|s−1(Avn(231, 312, 321))| =
n−1∑
k=0

1

n+ 1

(
n− k − 1

k

)(
2n− 2k

n

)
.

Proof. Let h(n) = |s−1(Avn(231, 312, 321))| = |Avn(2341, 3241, 3412, 3421)| (with h(0) = 1),
and put

H(x) =
∑
n≥0

h(n)xn.

We will prove that

(10) H(x) = 1 +
xH(x)2

1− x2H(x)2
.

This will imply that the power series A(x) defined by A(x) = x+
A(x)2

1− A(x)2
satisfies A(x) =

xH(x). It is known that

n−1∑
k=0

1

n+ 1

(
n− k − 1

k

)(
2n− 2k

n

)
is the (n + 1)th term of the sequence A049124 in [37] and that the generating function of
that sequence is A(x), so this will complete the proof.

We can rewrite (10) as

(11) H(x) = 1 + xH(x)2 + x2H(x)2(H(x)− 1);
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it is this form of the equation that we will prove. For convenience, say a permutation is
nice if it is an element of Av(2341, 3241, 3412, 3421) (including the empty permutation). As
mentioned earlier, a permutation σ = σ1 · · ·σn is nice if and only if the first and third entries
in every 231 pattern in σ are consecutive integers. Note that the empty permutation is nice
and accounts for the term 1 on the right-hand side of (11). We now show how to construct
nonempty nice permutations. It is convenient to split these permutations into two types.

The first type of nonempty nice permutation σ is that in which the first entry σ1 is not
part of a 231 pattern. As mentioned above, we identify permutations with their plots so that
we can build large permutations by arranging plots of smaller permutations. Each nonempty
nice permutation of the first type is formed by choosing two nice permutations η and ζ and
arranging them as follows:

.

Accordingly, the nonempty nice permutations of the first type contribute the term xH(x)2

to the right-hand side of (11).

The second type of nonempty nice permutation σ is that in which σ1 is part of a 231
pattern. To build such a permutation, begin by choosing nice permutations λ = λ1 · · ·λ`,
τ = τ1 · · · τt, and µ = µ1 · · ·µm such that µ is nonempty. Write µ′ = µ2 · · ·µm (so µ′ is
empty if m = 1). Write λ = λ′λ′′, where λ′ is the first descending run of λ. In other words,
λ′ = λ1 · · ·λj, where j is the smallest index that is not a descent of λ. If λ is empty, then λ′

and λ′′ are also empty. The plot of σ is formed by arranging the plots of λ, τ, and µ as in
Figure 7.

.

Figure 7. The plot of a nonempty nice permutation σ of the second type.

The points in the section labeled µ are arranged vertically so that they form a permutation
that is order isomorphic to µ. For example, the point labeled µ1 should be placed higher
than exactly µ1 − 1 of the points in the box labeled µ′. Similarly, the points in the section
labeled λ should form a permutation that is order isomorphic to λ.
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We claim that every nonempty nice permutation of the second type is built uniquely via
this procedure. If we can justify this claim, then it will follow that the nonempty nice
permutations of the second type contribute the term x2H(x)2(H(x) − 1) to the right-hand
side of (11).

Suppose σ is a nice permutation of the second type. We will show that the plot of σ has
the shape shown in Figure 7. First, locate points that form a 231 pattern that contains σ1.
The last such point must have height σ1− 1, as indicated in Figure 7. Among all choices for
the highest point in this pattern, choose the one that is farthest to the right. Label this point
µ1. Because σ is nice, the points with heights 1, 2, . . . , σ1 − 2 must appear to the left of all
points in the plot of σ except (1, σ1). These points form the box τ in Figure 7. We recover
the points in the box labeled λ′ by taking the points that lie horizontally between τ and the
point labeled µ1. The entries in λ′ must be decreasing because σ is nice. The assumption
that σ is nice also tells us that the point labeled µ1 and the dot appearing below and to its
right must represent consecutive entries in σ (this also uses the fact that the point labeled
µ1 was chosen farthest to the right). Now consider P , the leftmost point that appears to the
right of the lowest point in λ′. Define λ′′ to consist of the points equal to and to the right of
P . The remaining points of the plot will form µ′.

We want to ensure that none of the points in λ′′ lie below any of the points in µ. If this
were the case, then we could consider the lowest point in λ′, the point P (the leftmost point
in λ′′), and this point of λ′′ lying below a point in µ. These three points would form a 231
pattern in which the first and third entries have heights that are not consecutive integers,
contradicting the fact that σ is nice. Thus, the plot of σ must be as portrayed in Figure 7.

Let us emphasize that this decomposition is unique. The only difficult part is verifying
that there is a unique way to determine which points are in µ and which are in λ′′. This is
guaranteed by the assumption that λ′ is the first descending run of λ. Indeed, this means
that the highest point in µ is precisely the point whose height is 1 less than the lowest point
in λ′. �

Combining Theorems 19 and 20, we obtain the identity

n−1∑
k=0

∑
q ∈Compk+1(n−k)

CqDq =
n−1∑
k=0

1

n+ 1

(
n− k − 1

k

)(
2n− 2k

n

)
.

The numerical data for n ≤ 12 suggests the following conjecture.

Conjecture 21. In the notation of Theorem 19, we have

∑
q ∈Compk+1(n−k)

CqDq =
1

n+ 1

(
n− k − 1

k

)(
2n− 2k

n

)

for all nonnegative integers n and k.
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When combined with Theorem 19, a proof of Conjecture 21 would yield an alternative
proof of Theorem 20. We know from the proof of Theorem 19 that

|s−1(Avn,k(231, 312, 321))| =
∑

q ∈Compk+1(n−k)

CqDq,

so Conjecture 21 is equivalent to the identity

|s−1(Avn,k(231, 312, 321))| = 1

n+ 1

(
n− k − 1

k

)(
2n− 2k

n

)
.

7. Enumeration of s−1(Av(132, 231, 312))

In this section, we make use of the generalized Narayana numbers

Nk(n, r) =
k + 1

n

(
n

r + k

)(
n

r − 1

)
.

Note that the standard Narayana numbers are simply N(n, r) = N0(n, r).

Finding the fertilities of permutations in Av(132, 231, 312) is interesting because it proves
the tightness of certain estimates that were used in [22] in order to obtain upper bounds for
W3(n) and W4(n). More specifically, the following theorem is an immediate consequence of
Corollary 3.1 and Lemma 4.1 in [22].

Theorem 22 ([22]). Suppose π ∈ Sn has k descents. We have

|s−1(π)| ≤ 2k + 2

n+ 1

(
2n− 2k − 1

n

)
.

Furthermore, the number of elements of s−1(π) with exactly m descents is at most

Nk(n− k,m− k + 1) =
k + 1

n− k

(
n− k
m+ 1

)(
n− k
m− k

)
.

We prove below that these estimates are sharp when π ∈ Avn(132, 231, 312). In fact, it
is straightforward to check that the only permutation in Avn(132, 231, 312) with exactly k
descents is

θn,k = (k + 1)k(k − 1) · · · 321(k + 2)(k + 3) · · ·n
(this permutation is the sum of a decreasing permutation of size k + 1 and an increasing
permutation of size n−k−1). For example, θ7,2 = 3214567 is the only permutation of size 7
that has 2 descents and avoids the patterns 132, 231, 312.

Theorem 23. With notation as above,

|s−1(θn,k)| =
2k + 2

n+ 1

(
2n− 2k − 1

n

)
.

Furthermore, the number of permutations in s−1(θn,k) with exactly m descents is

Nk(n− k,m− k + 1).
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Proof. As in Section 6, let Compa(b) denote the set of compositions of b into a parts. Corol-
lary 3.1 in [22] states that ∑

(q0,...,qk)∈Compk+1(n−k)

C(q0,...,qk) =
2k + 2

n+ 1

(
2n− 2k − 1

n

)
.

Lemma 4.1 in that same paper tells us that∑
(q0,...,qk)∈Compk+1(n−k)

∑
(j0,...,jk)∈Compk+1(m+1)

k∏
t=0

N(qt, jt) = Nk(n− k,m− k + 1).

Invoking Theorems 7 and 10, we see that it suffices to show that V(θn,k) = Compk+1(n− k).
We know that V(θn,k) ⊆ Compk+1(n − k), so it remains to prove the reverse containment.
Choose (q0, . . . , qk) ∈ Compk+1(n − k). The fact that this composition exists implies that
n − k ≥ k + 1. For every i ∈ {1, . . . , k}, draw a hook on the plot of θn,k with southwest

endpoint (i, k + 2 − i) and northeast endpoint (ui, ui), where ui = n + 1 −
∑i−1

j=0 qj. This

forms a valid hook configuration of θn,k that induces the valid composition (q0, . . . , qk) (see
Figure 8 for an example). �

2

3

5

6

1

7

4

8

Figure 8. A valid hook configuration of θ2,8 that induces the valid composi-
tion (2, 3, 1).

The following theorem gives a new combinatorial interpretation for the Fine numbers Fn,
which are defined by ∑

n≥0

Fnx
n =

1

x

1−
√

1− 4x

3−
√

1− 4x
.

The sequence of Fine numbers, which is sequence A000957 in [37], has many combinatorial
connections with Catalan numbers. See the survey [24] for more on this ubiquitous sequence.
The following theorem also involves two refinements of the Fine numbers. These are the
numbers

gn,m =

bn−1
2 c∑

k=0

Nk(n− k,m− k + 1)

and

hn,m =
2n−2m−1

n+ 2
n+ 2m+ 1

(
n−m− 1

m

)
.
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These numbers, which have combinatorial interpretations in terms of Dyck paths, appear as
sequences A100754 and A114593 in [37]. It is known that7

(12)
n−1∑
m=0

gn,m =

bn−1
2 c∑

m=0

hn,m = Fn+1.

Theorem 24. In the notation of the preceding paragraph, we have

|s−1(Avn(132, 231, 312))| = Fn+1.

Moreover, the number of permutations in s−1(Avn(132, 231, 312)) with exactly m descents is
gn,m. The number of permutations in s−1(Avn(132, 231, 312)) with exactly m peaks is hn,m.

Proof. Recall that Avn(132, 231, 312) = {θn,0, θn,1, . . . , θn,n−1}. It follows from Theorem 23
that s−1(θn,k) is empty if k >

⌊
n−1
2

⌋
. It now follows immediately from Theorem 7 that the

number of permutations in s−1(Avn(132, 231, 312)) with exactly m descents is gn,m. Along
with (12), this implies that |s−1(Avn(132, 231, 312))| = Fn+1.

Recall the generating function G(x, y) from (9) (on page 17). According to the preceding
paragraph and Theorem 10, the number of permutations in s−1(θn,k) with exactly m peaks
is ∑

(q0,...,qk)∈Compk+1(n−k)

∑
(j0,...,jk)∈Compk+1(m+1)

k∏
t=0

V (qt, jt).

This is nothing else than the coefficient of xnym in xkykG(x, y)k+1. Consequently, the number
of permutations in s−1(Avn(132, 231, 312)) with exactly m peaks is

[xnym]

(
n−1∑
k=0

xkykG(x, y)k+1

)
= [xnym]

(
∞∑
k=0

xkykG(x, y)k+1

)
= [xnym]

(
G(x, y)

1− xy G(x, y)

)
.

Straightforward algebraic manipulations show that

G(x, y)

1− xy G(x, y)
=

1− 2x−
√

1− 4x+ 4x2 − 4x2y

xy(1 + 2x+
√

1− 4x+ 4x2 − 4x2y)
.

This expression satisfies the functional equation given for the generating function of the
numbers h(n,m) in [37] (sequence A114593). Therefore, it is equal to the generating function

∑
n≥1

bn−1
2 c∑

m=0

h(n,m)xnym. �

8. Enumeration of s−1(Av(312, 321))

We showed in the proof of Corollary 14 that s−1(Av(312, 321)) = Av(3412, 3421). Chetak
Hossain, who pointed out this equality of sets to the current author, also mentioned the

7These identities are stated without proof in [37], but they can be proven by standard (yet somewhat tedious)
arguments involving generating functions.
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paper [33]. In this paper, Kremer proved that |Avn(3412, 3421)| is the (n − 1)th large
Schröder number. In other words, we have the following theorem.8

Theorem 25 ([33]). We have∑
n≥1

|s−1(Avn(312, 321))|xn =
∑
n≥1

|Avn(3412, 3421)|xn =
1− x−

√
1− 6x+ x2

2
.

9. Enumeration of s−1(Av(132, 321))

It appears as though the sequence enumerating the permutations in s−1(Av(132, 321)) has
not been studied before, but we will see that its generating function is fairly simple. Let

C(x) =
∑

n≥0Cnx
n =

1−
√

1− 4x

2x
be the generating function of the sequence of Catalan

numbers. Recall the generating functions F (x, y) and G(x, y) from (8) and (9) (page 17).
Let a(n,m) denote the number of elements of s−1(Avn(132, 321)) with exactly m descents,
and let b(n,m) denote the number of elements of s−1(Avn(132, 321)) with exactly m peaks.

Theorem 26. In the notation of the preceding paragraph, we have∑
n≥1

|s−1(Avn(132, 321))|xn = C(x)− 1 + x3(C ′(x))2.

Furthermore,

(13)
∑
n≥1

∑
m≥0

a(n,m)xnym = F (x, y) + x3y

(
∂

∂x
F (x, y)

)2

,

and

(14)
∑
n≥1

∑
m≥0

b(n,m)xnym = G(x, y) + x3y

(
∂

∂x
G(x, y)

)2

.

Proof. We will prove (13); the proof of (14) is similar. In addition, the first statement of the
theorem follows from (13) and the fact that F (x, 1) = C(x)− 1.

For h, i ≥ 1 and t ≥ 0, let

δh,i,t = (h+ 1)(h+ 2) · · · (h+ i)12 · · ·h(h+ i+ 1)(h+ i+ 2) · · · (h+ i+ t) ∈ Sh+i+t.

For example, δ1,3,2 = 234156. It is straightforward to check that

Avn(132, 321) = {123 · · ·n} ∪ {δh,i,t : h, i ≥ 1, t ≥ 0, h+ i+ t = n}.

Moreover, the set of valid compositions of δh,i,t is

V(δh,i,t) = {(i+ t− `, h+ `− 1) : 1 ≤ ` ≤ t}.

8Kremer did not mention the stack-sorting map in her theorem.
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In what follows, we only consider positive values of t since V(δh,i,0) = ∅. Invoking Theorem 10,
we find that

a(n,m) = N(n,m+ 1) +
∑
h,i,t≥1
h+i+t=n

t∑
`=1

m∑
j=1

N(i+ t− `, j)N(h+ `− 1,m+ 1− j)

= N(n,m+ 1) +
n−2∑
h=1

n−h−1∑
i=1

n−h−i∑
`=1

m∑
j=1

N(n− h− `, j)N(h+ `− 1,m+ 1− j)

= N(n,m+ 1) +
n−2∑
h=1

n−h−1∑
`=1

n−h−`∑
i=1

m∑
j=1

N(n− h− `, j)N(h+ `− 1,m+ 1− j)

= N(n,m+ 1) +
n−2∑
h=1

n−h−1∑
`=1

m∑
j=1

(n− h− `)N(n− h− `, j)N(h+ `− 1,m+ 1− j).

The substitution r = n− h− ` gives

a(n,m) = N(n,m+ 1) +
n−2∑
h=1

n−h−1∑
r=1

m∑
j=1

r N(r, j)N(n− r − 1,m+ 1− j)

= N(n,m+ 1) +
n−2∑
r=1

m∑
j=1

r(n− r − 1)N(r, j)N(n− r − 1,m+ 1− j).

It is now routine to verify that this last expression is the coefficient of xnym in

F (x, y) + x3y

(
∂

∂x
F (x, y)

)2

. �

10. Enumerative Equivalence of s−1(Av(132, 312)) and s−1(Av(231, 312))

We saw in Corollary 14 that

s−1(Av(132, 312)) = Av(1342, 3142, 3412, 3421)

and

s−1(Av(231, 312)) = Av(2341, 3412, 3421, 35241).

From these descriptions of these sets, there is no obvious reason to expect that

|s−1(Avn(132, 312))| = |s−1(Avn(231, 312))|.
However, this is indeed the case; valid hook configurations make the proof quite painless.

Theorem 27. For all positive integers n, we have

|s−1(Avn(132, 312))| = |s−1(Avn(231, 312))|.
In fact, the number of permutations in s−1(Avn(132, 312)) with exactly m descents is the same
as the number of permutations in s−1(Avn(231, 312)) with exactly m descents. Moreover, the
number of permutations in s−1(Avn(132, 312)) with exactly m peaks is the same as the number
of permutations in s−1(Avn(231, 312)) with exactly m peaks.
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Proof. Invoking Theorem 7 and Theorem 10, we see that it suffices to exhibit a bijection
ϕ : Avn(132, 312) → Avn(231, 312) with the property that V(π) = V(ϕ(π)) for all π ∈
Avn(132, 312).

Suppose we are given a permutation π ∈ Avn(132, 312). Every entry of π is either a left-
to-right maximum (i.e., larger than everything preceding it) or a left-to-right minimum (i.e.,
smaller than everything preceding it). Thus, the plot of π has the following basic shape:

The line segments in this diagram represent decreasing consecutive subsequences, which
could be empty. This means that π is uniquely determined by the lengths of its descending
runs. Each permutation in Avn(231, 312) is also uniquely determined by the lengths of its
descending runs. This is because the entries in each descending run of the permutation
must be consecutive integers. Indeed, the permutations in Av(231, 312) are the layered
permutations; as described at the beginning of Section 6, a permutation is in Av(231, 312)
if and only if it can be written as a sum of decreasing permutations.

For example, the unique permutation in Av10(132, 312) whose descending runs have lengths
2, 3, 1, 2, 1, 1 is 5 4 6 3 2 7 8 1 9 10 (whose plot is shown on the left in Figure 9). The
unique permutation in Av10(231, 312) whose descending runs have lengths 2, 3, 1, 2, 1, 1 is
2 1 5 4 3 6 8 7 9 10 (whose plot is shown on the right in Figure 9). We now define
ϕ : Avn(132, 312) → Avn(231, 312) by declaring ϕ(π) to be the unique permutation in
Avn(231, 312) whose ith descending run has the same length as the ith descending run of π
for all i.

Figure 9 illustrates the map ϕ. In this figure, we have drawn a valid hook configuration on
each of the plots. Notice that we can obtain the plot of ϕ(π) by vertically sliding some of the
points in the plot of π; we keep the hooks attached to their endpoints throughout this sliding
motion. Let us check that this preserves the validity of the configuration of hooks. First, the
northeast endpoints of hooks in a valid hook configuration of a 312-avoiding permutation
must be left-to-right maxima. Since π and ϕ(π) both avoid 312 and have their left-to-right
maxima in the same (horizontal) positions, every hook of π remains a hook in ϕ(π) (and
vice versa). This also shows that a point never moves “through” a hook during this sliding
process. Therefore, Conditions 2 and 3 in Definition 1 are preserved by the sliding process.
It is immediate from the definition of ϕ that π and ϕ(π) have the same set of descents.
This shows that Condition 1 in Definition 1 is also preserved. Consequently, the valid hook
configurations of π ∈ Avn(132, 312) correspond bijectively to the valid hook configurations
of ϕ(π). Corresponding valid hook configurations induce the same valid compositions, so we
have V(π) = V(ϕ(π)) for all π ∈ Avn(132, 312). �
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Figure 9. The map ϕ from the proof of Theorem 27 sends the permutation
5 4 6 3 2 7 8 1 9 10 to the permutation 2 1 5 4 3 6 8 7 9 10. The valid hook
configuration drawn on the plot of 5 4 6 3 2 7 8 1 9 10 corresponds to the one
drawn on the plot of 2 1 5 4 3 6 8 7 9 10. Both valid hook configurations
induce the valid composition (1, 1, 2, 1, 1).

We have seen that the sequences (|s−1(Avn(132, 312))|)n≥1 and (|s−1(Avn(231, 312))|)n≥1
are identical. Numerical evidence suggests that this sequence is, up to reindexing, the same
as the sequence A071356 in [37]. The latter sequence is defined as the expansion of a
relatively simple generating function, but it also has some combinatorial interpretations. In
addition, it appears as though (|s−1(Avn(132, 231))|)n≥1 is the same sequence. We state
these observations formally in the following conjecture.

Conjecture 28. We have∑
n≥1

|s−1(Avn(132, 312))|xn =
∑
n≥1

|s−1(Avn(132, 231))|xn =
1− 2x−

√
1− 4x− 4x2

4x
.

11. Estimates for s−1(Av(321))

As discussed in the introduction, there are known formulas for |s−1(Avn(τ))| whenever τ
is a permutation pattern of size 3 other than 321. By contrast, the sequence

(|s−1(Avn(321))|)n≥1
appears to be new (it is now sequence A319027 in [37]). This sequence is of interest because
s−1(Av(321)) is equal to the permutation class Av(34251, 35241, 45231) (see Theorem 13).
We will use valid hook configurations to establish nontrivial estimates for the growth rate of
this sequence. Note that the trivial estimates for this growth rate are given by

(15) 4 ≤ lim
n→∞

|s−1(Avn(321))|1/n ≤ 16.

The acute reader might beg for a proof of the existence of the limit defining this growth
rate. The multiplicative version of Fekete’s lemma [29] states that if (am)∞m=1 is a supermul-
tiplicative9 sequence, then lim

m→∞
m
√
am exists. It is straightforward to show (in the notation of

Section 6) that s(σ⊕µ) = s(σ)⊕s(µ) for any σ ∈ Sm and µ ∈ Sn. It follows that there is an
injective map s−1(Avm(321))× s−1(Avn(321))→ s−1(Avm+n(321)) given by (σ, µ) 7→ σ⊕ µ.

9We say a sequence of real numbers (am)∞m=1 is supermultiplicative if aman ≤ am+n for all positive integers
m,n.
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Hence, (|s−1(Avn(321))|)n≥1 is supermultiplicative. The lower bound in (15) follows from
the fact that |s−1(123 · · ·n)| = Cn has growth rate 4. We know the upper bound because
|Avn(321)| = Cn has growth rate 4 and because each permutation of size n has fertility at
most Cn (this is proven in the solution to Exercise 23 in Chapter 8 of [4]).

The proof of the lower bound in the following theorem requires the following purely tech-
nical lemma.

Lemma 29. Let Cx =
Γ(2x+ 1)

Γ(x+ 2)Γ(x+ 1)
, where Γ denotes the gamma function. We have

Cx+εCy−ε < CxCy whenever 0 < x < y and 0 < ε ≤ y − x
2

.

Proof. We need to show that Cx+ε/Cx is increasing in x. Let C(x) = Cx. We wish to show

that
d

dx

C(x+ ε)

C(x)
> 0, which amounts to showing that

C′(x)

C(x)
<

C′(x+ ε)

C(x+ ε)
. We are left to

show that C′(x)/C(x) is increasing. We can write

C′(x)

C(x)
= 2ψ0(2x+ 1)− 2ψ0(x+ 1)− 1

x+ 1
,

where ψ` is the `th polygamma function (meaning ψ0 is the digamma function). Differenti-
ating, we see that we need to show that

4ψ1(2x+ 1)− 2ψ1(x+ 1) +
1

(x+ 1)2
> 0.

Using well known formulas for the polygamma functions, we can write

1

4
(ψ1(x+ 1) + ψ1(x+ 3/2)) = ψ1(2x+ 2) = ψ1(2x+ 1)− 1

(2x+ 1)2
.

Rearranging, we find that we are left to show that

ψ1(x+ 1)− ψ1(x+ 3/2) <
1

(x+ 1)2
+

1

(x+ 1/2)2
.

The polygamma function ψ1 can be rewritten using a Hurwitz zeta function, so we can
rewrite this last inequality as

∞∑
k=0

(
1

(k + x+ 1)2
− 1

(k + x+ 3/2)2

)
<

1

(x+ 1)2
+

1

(x+ 1/2)2
.

It suffices to show that
∞∑
k=1

(
1

(k + x+ 1)2
− 1

(k + x+ 3/2)2

)
<

1

(x+ 1/2)2
,

which is straightforward to verify. �

Theorem 30. We have

8.4199 ≤ lim
n→∞

|s−1(Avn(321))|1/n ≤ 11.6569.
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Proof. Throughout the proof, we assume n→∞. Since we are only interested in exponential
growth rates, we often ignore subexponential factors. We also omit floor and ceiling signs
when they are not crucial. For example,

(
n/2
k

)
can either be interpreted as

(bn/2c
k

)
or could

be defined exactly using the Gamma function (the specific choice will not matter for the
asymptotics).

By reversing permutations, we see that |Avn,k(321)| = |Avn,n−1−k(123)|. The authors
of [2] have computed |Avn,k(123)|; one can easily use their results to see that the values of
|Avn,k(321)| are given by sequence10 A091156 in [37]. A precise formula is given by

(16) |Avn,k(321)| = 1

n+ 1

(
n+ 1

k

) n+1−2k∑
j=0

(
k + j − 1

k − 1

)(
n+ 1− k
n− 2k − j

)
.

To prove the desired upper bound, we combine (16) with a result of [22], which we recalled
as Theorem 22 in the current article, to find that

|s−1(Avn(321))| =
n−1∑
k=0

|s−1(Avn,k(321))| ≤
n−1∑
k=0

2k + 2

n+ 1

(
2n− 2k − 1

n

)
|Avn,k(321)|

=
n−1∑
k=0

2k + 2

n+ 1

(
2n− 2k − 1

n

)
1

n+ 1

(
n+ 1

k

) n+1−2k∑
j=0

(
k + j − 1

k − 1

)(
n+ 1− k
n− 2k − j

)
.

Up to a subexponential factor, this upper bound is

(17)
n−1∑
k=0

(
2n− 2k

n

)(
n

k

) n−2k∑
j=0

(
k + j

k

)(
n− k

n− 2k − j

)
.

The ratio of consecutive terms in the sum over j in (17) is(
k+j+1
k

)(
n−k

n−2k−j−1

)(
k+j
k

)(
n−k

n−2k−j

) =
n− 2k − j
j + 1

,

so this sum is maximized when n − 2k − j = j + 1 + O(1). That is, j = n/2 − k + O(1).
Furthermore, the value of the maximum term in this sum is the same as the value of the
full sum up to a subexponential factor (since the total number of terms is at most n + 1).
Therefore, our upper bound is (up to a subexponential factor)

n−1∑
k=0

(
2n− 2k

n

)(
n

k

)(
n/2

k

)(
n− k
n/2− k

)
.

Let K(n) denote the value of k for which the term in this last summation is maximized, and
put c(n) = K(n)/n. Note that c(n) ∈ [0, 1/2]. A straightforward application of Stirling’s
formula shows that, up to a subexponential factor, the nth root of this last upper bound is

10We are not the first to observe this interpretation of the sequence A091156; it is mentioned in a comment
by Andrew Baxter in [37].



STACK-SORTING PREIMAGES OF PERMUTATION CLASSES 35

at most

(2− 2c(n))2−2c(n)

(1− 2c(n))1−2c(n)
1

c(n)c(n)(1− c(n))1−c(n)

× (1/2)1/2

c(n)c(n)(1/2− c(n))1/2−c(n)
(1− c(n))1−c(n)

(1/2− c(n))1/2−c(n)(1/2)1/2
= f(c(n)),

where

f(x) =
(2− 2x)2−2x

(1− 2x)1−2xx2x(1/2− x)1−2x

(we make the convention that 00 = 1). One can easily verify that f(x) ≤ 11.6569 whenever
x ∈ [0, 1/2]. This proves the desired upper bound.

The reverse complement of a permutation π1 · · · πn ∈ Sn is the permutation whose ith entry
is n + 1 − πn+1−i. The proof of the desired lower bound requires two crucial observations.
The first is that the set Avn,k(321) is closed under taking reverse complements. If π ∈ Sn
has ` left-to-right maxima, then the reverse complement of π has n− ` left-to-right maxima.
It follows that at least half of the permutations in Avn,k(321) have at least n/2 left-to-right
maxima.

The second observation is that if π ∈ Avn,k(321) has last entry πn = n, then π has a
valid hook configuration (i.e., π is sorted). Indeed, let d1 < · · · < dk denote the descents
of π. For each i ∈ {1, . . . , k}, let πbi be the leftmost left-to-right maximum of π that lies
to the right of πdi . The condition πn = n guarantees that πbk exists. The assumption that
π avoids 321 forces the entries πd1 , . . . , πdk to be left-to-right maxima of π, and this implies
that di < bi ≤ di+1 for all i ∈ {1, . . . , k − 1}. In particular, the entries πbi are distinct.
The canonical hook configuration (H∗1 , . . . , H

∗
k) of π (described in Section 2) is formed by

declaring that H∗i has southwest endpoint (di, πdi) and northeast endpoint (bi, πbi) for all i.

There are exactly |Avn−1,k(321)| permutations in Avn,k(321) with last entry n (we obtain
a bijection by adding the entry n to the end of a permutation in Avn−1,k(321)). According to
the discussion above, there are at least 1

2
|Avn−1,k(321)| permutations in Avn,k(321) with at

least n/2 left-to-right maxima. Choose one such permutation π, and let ` be the number of
left-to-right maxima in π. The canonical hook configuration of π (described in the previous
paragraph) induces a valid composition (q∗0, . . . , q

∗
k) ∈ V(π). In the coloring of the plot of

π induced by the canonical hook configuration, there are exactly ` − k points colored blue
(sky-colored). Indeed, these points are precisely the left-to-right maxima of the plot of π
that are not northeast endpoints of hooks (see Figure 11). This tells us that q∗0 = ` − k.
According to Theorem 7,

(18) |s−1(π)| ≥ C(q∗0 ,...,q
∗
k)

= C`−kCq∗1 · · ·Cq∗k .

As in Lemma 29, we define Cx =
Γ(2x+ 1)

Γ(x+ 2)Γ(x+ 1)
. The lemma tells us that a product of

(generalized) Catalan numbers decreases when we make the indices closer while preserving
the sum of the indices. Let us assume that n is sufficiently large, that 5 < k < 0.4n, and
that π is chosen as in the previous paragraph. By the properties of valid compositions, we
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Figure 10. The coloring induced by the canonical hook configuration of a
321-avoiding permutation.

know that

(19) `− k + q∗1 + · · ·+ q∗k = n− k.

It follows from Lemma 29 and (19) that

(20) C`−kCq∗1 · · ·Cq∗k ≥ C`−kC
k
(n−`)/k.

The assumption 5 < k < 0.4n and the fact that ` ≥ n/2 guarantee that

n− `
k
≤ n

2k
<
n

2
− k ≤ `− k.

Because (`− k) + k · ((n− `)/k) = (n/2− k) + k · (n/(2k)), it follows from Lemma 29 that

(21) C`−kC
k
(n−`)/k ≥ Cn/2−kC

k
n/(2k).

When we combine (18), (20), and (21) with the discussion above, we find that there are
at least 1

2
|Avn−1,k(321)| permutations in Avn,k(321) that each have at least Cn/2−kC

k
n/(2k)

preimages under s (for 5 < k < 0.4n and n large enough). We now use (16) to see that

|s−1(Avn(321))| ≥ 1

2
|Avn−1,k(321)|Cn/2−kCk

n/(2k)

≥ 1

2n

(
n

k

) n−2k∑
j=0

(
k + j − 1

k − 1

)(
n− k

n− 2k − j − 1

)
Cn/2−kC

k
n/(2k)

≥ 1

2n

(
n

k

)(
k + (bn/2c − k)− 1

k − 1

)(
n− k

n− 2k − (bn/2c − k)− 1

)
Cn/2−kC

k
n/(2k)

=
1

2n

(
n

k

)(
bn/2c − 1

k − 1

)(
n− k

dn/2e − k − 1

)
Cn/2−kC

k
n/(2k).

This holds whenever 5 < k < 0.4n. In particular, we can put k = b0.06582nc (this value is
chosen to maximize the lower bound). With this choice of k, we can use Stirling’s formula
to see that our lower bound is at least 8.4199n for sufficiently large n. �
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12. Concluding Remarks and Further Directions

Let us collect some open problems and conjectures arising from and related to the topics
studied in this article.

Recall that a sequence a1, . . . , am is called unimodal if there exists j ∈ {1, . . . ,m} such
that a1 ≤ · · · ≤ aj−1 ≤ aj ≥ aj+1 ≥ · · · ≥ am and is called log-concave if a2j ≥ aj−1aj+1 for
all j ∈ {2, . . . ,m − 1}. This sequence is called real-rooted if all of the complex roots of the
polynomial

∑m
k=1 akx

k are real. It is well known that a real-rooted sequence of nonnegative
numbers is log-concave and that a log-concave sequence of nonnegative numbers is unimodal
(see [14]).

The notions of unimodality, log-concavity, and real-rootedness are prominent in the study
of the stack-sorting map. For example, let fk(π) denote the number of elements of s−1(π)
with k descents. Bóna proved [7] that the sequence f0(π), . . . , fn−1(π) is symmetric and
unimodal for each π ∈ Sn. We conjecture the following much stronger result, which we have
verified for all permutations of size at most 8.

Conjecture 31. For each permutation π ∈ Sn, the sequence f0(π), . . . , fn−1(π) is real-rooted.

Of course, even if it is too difficult to prove that f0(π), . . . , fn−1(π) is always real-rooted,
it would be very interesting to prove the weaker statement that this sequence is always log-
concave. One could also attempt to find large classes of permutations for which Conjecture 31
holds.

A consequence of Bóna’s result is that

(22) Wt(n, 0), . . . ,Wt(n, n− 1)

is symmetric and unimodal for all t, n ≥ 1, where Wt(n, k) is the number of t-stack-sortable
permutations in Sn with k descents. Knowing that the sequence in (22) is real-rooted when
t = 1 and when t = n, Bóna [7] conjectured that the sequence is real-rooted in general.
Brändén [13] later proved this conjecture in the cases t = 2 and t = n− 2. This leads us to
the following much more general problem.

Question 32. Given a set U of permutations, let fk(U ∩Sn) denote the number of permuta-
tions in s−1(U∩Sn) with exactly k descents. Can we find interesting examples of sets U (such
as permutation classes) with the property that f0(U ∩ Sn), . . . , fn−1(U ∩ Sn) is a real-rooted
sequence for every n ≥ 1? Is this sequence always real-rooted?

Recall from Section 3 that the set s−1(Avn(123)) is empty when n ≥ 4. In general,
s−1(Avn(123 · · ·m)) is empty if n ≥ 2m−1. This is certainly true for m ≤ 3. To see that this
is true for m ≥ 4, suppose n ≥ 2m−1 and π ∈ Sn. Write π = LnR so that s(π) = s(L)s(R)n.
One of L and R has size at least 2m−2, so it follows by induction on m that either s(L) or
s(R) contains an increasing subsequence of size m− 1. Therefore, s(π) contains the pattern
123 · · ·m.
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Despite the uninteresting behavior of the sequence (|s−1(Avn(123 · · ·m))|)n≥1 for large
values of n, it could still be interesting to study the initial terms in this sequence. For
example, the nonzero terms of the sequence are 1, 2, 6, 10, 13, 10, 3 when m = 4.

Conjecture 33. For each integer m ≥ 2, the sequence (|s−1(Avn(123 · · ·m))|)2m−1−1
n=1 is

unimodal.

We next consider some natural questions that we have not attempted to answer.

Question 34. Can we obtain interesting results by enumerating sets of the form
s−1(Av(τ (1), . . . , τ (r))) when the patterns τ (1), . . . , τ (r) are not all of size 3?

Question 35. Let Sn,k denote the set of permutations in Sn with exactly k descents. Can
we find formulas for |s−1(Sn,1)|, |s−1(Sn,2)|, or |s−1(Sn,3)|?

The article [21] provides a general method for computing the number of decreasing plane
trees of various types that have a specified permutation as their postorder reading (see the
article for the relevant definitions). In the special case in which the trees are decreasing
binary plane trees, this is equivalent to computing fertilities of permutations. This is also
very similar to the approach taken in [20, 35, 41], where one considers trees endowed with a
canonical ordering of the vertices and asks how many linear extensions of the trees (viewed
as posets) avoid certain patterns. In our case, the trees are binary plane trees and the
canonical ordering of the vertices is given by the postorder reading. This suggests that one
could obtain enumerative results analogous to those from this paper by replacing decreasing
binary plane trees with other types of trees. Thus, we have a very general new collection
of enumerative problems. Namely, we want to count the decreasing plane trees of a certain
type whose postorders lie in some permutation class. Two very specific examples of this type
of problem are the following. Preserve the notation from the article [21].

Question 36. For a fixed sequence of permutation patterns τ (1), . . . , τ (r), how many decreas-
ing N-trees have postorders that lie in the set Avn(τ (1), . . . , τ (r))? How many unary-binary
trees have postorders that lie in the set Avn(τ (1), . . . , τ (r))?

We now collect the open problems and conjectures that arose throughout Sections 4–10.
First, recall the following conjecture from Section 6.

Conjecture 21. In the notation of Theorem 19, we have∑
q ∈Compk+1(n−k)

CqDq =
1

n+ 1

(
n− k − 1

k

)(
2n− 2k

n

)
for all nonnegative integers n and k.

We stated the following intriguing conjecture in Section 10.

Conjecture 28. We have∑
n≥1

|s−1(Avn(132, 312))|xn =
∑
n≥1

|s−1(Avn(132, 231))|xn =
1− 2x−

√
1− 4x− 4x2

4x
.
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Of course, our results in Section 11 are far from perfect.

Question 37. Can we enumerate the permutations in s−1(Av(321)) exactly? Can we at
least improve the estimates from Theorem 30?

We have focused primarily on preimage sets of the form s−1(Av(τ (1), . . . , τ (r))) when ∅ 6=
{τ (1), . . . , τ (r)} ⊆ {132, 231, 312, 321}. The astute reader may have realized that the only
preimage set of this form that we have not mentioned is s−1(Av(231, 321)). This set appears
to be enumerated by the OEIS sequence A165543 [37]. More precisely, we have the following
conjecture.

Conjecture 38. We have∑
n≥0

|s−1(Avn(231, 321))|xn =
1

1− xC(xC(x))
,

where C(x) =
1−
√

1− 4x

2x
is the generating function of the sequence of Catalan numbers.

It is not clear to the author how to explicitly describe the set of valid hook configurations
of an arbitrary permutation in Av(231, 321), so proving Conjecture 38 might require a new
technique.

13. Acknowledgments

The author thanks Michael Engen for valuable conversations and thanks Steve Butler for
providing data that were used to formulate several theorems and conjectures. He thanks
Chetak Hossain for noticing the simple description of the set in part (vi) of Corollary 14. He
is grateful to the anonymous referee for numerous suggestions that helped improve the pre-
sentation of this article. The author was supported by a Fannie and John Hertz Foundation
Fellowship and an NSF Graduate Research Fellowship.

References
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