
Séminaire Lotharingien de Combinatoire 82 (2021), Article B82c

ON PATH DIAGRAMS AND STIRLING PERMUTATIONS

MARKUS KUBA AND ANNA L. VARVAK

Abstract. A permutation can be locally classified according to the four local types:
peaks, valleys, double rises and double falls. The corresponding classification of
binary increasing trees uses four different types of nodes. Flajolet demonstrated the
continued fraction representation of the generating function of local types, using
a classical bijection between permutations, binary increasing trees, and suitably
defined path diagrams induced by Motzkin paths.

The aim of this article is to extend the notion of local types from permutations
to k-Stirling permutations (also known as k-multipermutations). We establish a bi-
jection of these local types to node types of (k+ 1)-ary increasing trees. We present
a branched continued fraction representation of the generating function of these
local types through a bijection with path diagrams induced by Łukasiewicz paths,
generalizing the results from permutations to arbitrary k-Stirling permutations.

We further show that the generating function of ordinary Stirling permutation
has at least three branched continued fraction representations, using correspon-
dences between non-standard increasing trees, k-Stirling permutations and path
diagrams.

1. Introduction

Any ordinary permutation σ = σ1 . . .σn of size n can be locally be classified accord-
ing to four local types called peaks (maxima), valleys (minima), double rises and
double falls, depending on the relative order of σj to its neighbor; see Flajolet [7],
or Conrad and Flajolet [5] and the references therein. By the classical bijection be-
tween ordinary permutations and binary increasing trees [7, 1], these local types
correspond with node types of binary increasing trees [7, 5]. Through a bijection
between permutations and path diagrams induced by Motzkin paths, Flajolet [7]
obtained a continued fraction representation of the ordinary generating function
of permutations P(z;u, v,w) with respect to the local types (see also Françon and
Viennot [9]), leading to interesting continued fraction representations concerning
Euler numbers, tangent numbers, etc., can be obtained by specific evaluations of
the variables u, v and w.
The main aim of this article is to extend the notion of local types to a generalized
version of permutations called the k-Stirling permutations, establish a relation of
these local types with node types of (k + 1)-ary increasing trees, and to obtain
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a branched continued fraction representation of the generating function of these
local types through a bijection with suitably defined path diagrams induced by
Łukasiewicz paths, extending the following theorem:

Theorem 1 (Flajolet — Continued Fraction for Permutations). Let Pk,`,m be the
number of permutations having k minima (hence k+ 1 maxima), ` double rises andm dou-
ble falls. The ordinary generating function P(z;u, v,w) =

∑
Pk,`,mu

kv`wmz2k+1+`+m+1

has the expression

P(z;u, v,w) =
1

1 − 1(v+w)z− 1·2uz2

1−2(v+w)z− 2·3uz2
...

.

We note that related very general results on branched continued fraction expan-
sions have been recently given by Pétréolle, Sokal and Zhu [22].

The family of Stirling permutations Q were introduced by Gessel and Stanley [10]
in relation to the Stirling numbers of first and second kind and their connection
to properties of Eulerian numbers. A Stirling permutation σ = σ1 . . .σ2n ∈ Qn is a
permutation of the multiset {1, 1, 2, 2, . . . ,n,n} such that for each i, 1 6 i 6 n, the
elements between the two occurrences of i are greater than or equal to i. Recently,
this class of combinatorial objects have generated some interest: Bóna [2] studied
the distribution of descents in Stirling permutation, and Janson [14] showed the
connection between Stirling permutations and plane-oriented recursive trees, and
proved a joint normal limit law for the parameters considered by Bóna.

A natural generalization of Stirling permutations is to consider the family Q(k) of
permutations of a more general multiset {1k, 2k, . . . ,nk}, with k ∈ {1, 2, . . .}, with the
restriction that for each i, 1 6 i 6 n, the elements between two consecutive occur-
rences of i are greater than i, which we call k-Stirling permutations. Such general-
ized Stirling permutations have already previously been considered by Brenti [3, 4],
and also by Park [19, 20, 21] under the name of k-multipermutations. The case k = 1
corresponds to ordinary permutations Qn(1) = Sn, and the case k = 2 corresponds
to Stirling permutations Q = Q(2). Recently, Janson et al. [15] studied several pa-
rameters in k-Stirling permutations, related to the studies [2, 14], extending the
results of [2, 14] concerning the distribution of descents and related statistics. An
important result of [15] is the natural bijection between k-Stirling permutations and
(k+ 1)-ary increasing trees, which was already known to Gessel (see Park [19]).

This article is organized as follows. In Section 2, we define k-Stirling permutations
and increasing trees, and give a bijection between k-Stirling permutations and (k+
1)-ary increasing trees.
In Section 3, we extend the notion of local types to k-Stirling permutations, and
establish a bijection between these local types and node types of (k + 1)-ary in-
creasing trees.
In Section 4, we define path diagrams induced by Łukasiewicz paths, and estab-
lish a bijection between the path diagrams with appropriate possibility function
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and restrictions on the plane paths and k-Stirling permutations. We then give a
branched continued fraction representation of the ordinary generating function of
the k-Stirling permutations with respect to the local types.
Finally, in Section 5, we first go back to the classical Stirling permutations, present-
ing an alternative branched continued fraction representation using unrestricted
Łukasiewicz paths and the correspondence between Stirling permutations and
plane-oriented recursive trees [14]. We further provide statistics in Stirling per-
mutations and in ternary increasing trees which are combinatorially equivalent to
the statistics of the number of nodes of outdegree j in a plane-oriented recursive
tree of size n. Then, we present two general path diagram representations for
k-Stirling permutations using path diagrams with unrestricted Łukasiewicz paths
and families of non-standard increasing trees, allowing to construct two additional
branched continued fraction expansions for the generating function of Stirling per-
mutations.

1.1. Acknowledgments. The authors thank Ira Gessel for connecting them in the
beginning of this work. A great many thanks to Alan P. Sokal for his interest in
this work and his encouraging remarks, sparking new life into this project.

The authors thank the referee for the constructive and very helpful remarks, im-
proving the presentation of this work.

During the early stages of this work the first author was supported by the Austrian
Science Foundation FWF, grant S9608.

2. Increasing trees and generalized Stirling permutations

2.1. Generalized Stirling permutations.

Definition 1. Let {1k, 2k, . . . ,nk} denote a multiset where each element in {1, 2, . . . ,n}
occurs k times. A k-Stirling permutation of size n, denoted as τ ∈ Qn(k), is a permuta-
tion τ1τ2 . . . τkn of the multiset {1k, 2k, . . . ,nk} with the condition that, for i < j < k,
if τi = τk then τi 6 τj > τk.

For example, 224442113331 is a 3-Stirling permutation of size 3.
Let Qn(k) = |Qn(k)| denote the number of k-Stirling permutations of size n. Then

Qn(k) =

n−1∏
i=0

(ki+ 1) = kn−1 Γ(n+ 1/k)
Γ(1/k)

, (1)

by induction on n: a k-Stirling permutation of size n can be obtained from a k-
Stirling permutation of size (n− 1) by inserting the k copies of n as a substring
into any of the k(n− 1) + 1 positions between the existing elements, including the
first and the last position; see for example [19, 15].
For example, in the case k = 3, there is only one 3-Stirling permutation of size
1, given by 111 ; there are four 3-Stirling permutations of size 2, given by 111222,
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112221, 122211, 222111; etc. In particular, the number of 2-Stirling permutations is
Qn(2) = (2n− 1)!!.
The correspondence between ordinary permutations and binary trees has been use-
ful in uncovering the internal structure of permutations, and giving alternative
combinatorial models to quantities that relate to the local types of permutations,
like the Eulerian numbers that count the number of permutations with a certain
number of descents. Likewise, the correspondence between 2-Stirling permuta-
tions and plane-oriented recursive trees proved useful in studying the distribution
of descents in Stirling permutations [14]. In the next section, we establish the corre-
spondence for the general case of k-Stirling permutations and (k+1)-ary increasing
trees.

2.2. Families of increasing trees. We introduce a general family of increasing
trees based on earlier considerations of Bergeron et al. [1] and Panholzer and
Prodinger [18], of which (k+ 1)-ary increasing trees and plane-oriented recursive
trees are special cases. These tree families and their combinatorial description are
quite well known; we collect some relevant results of [1, 18, 15] for the reader’s
convenience.
Informally, an increasing tree of size n is a rooted ordered tree with n nodes,
where the nodes are labeled by distinct integers of the set {1, . . . ,n} such that each
sequence of labels along any path starting at the root is increasing. These are the
simple families of increasing trees introduced in [1]; the underlying unlabeled tree
model is the so-called simply generated tree [17].
Formally, a class T of a simple family of increasing trees can be defined in the
following way. A sequence of non-negative numbers (ϕ`)`>0 with ϕ0 > 0, called
the degree-weight sequence, is used to define the weight w(T) of any ordered tree T
by w(T) :=

∏
vϕdeg+(v), where v ranges over all vertices of T , and deg+(v) is the

out-degree of the vertex v. Let L(T) denote the set of increasing labelings of the
of the ordered tree T with distinct integers {1, 2, . . . , |T |}, where |T | denotes the size
of the tree T . Then the simple family of increasing trees T consists of all ordered
trees T together with their weights w(T) and the increasing labeling λ ∈ L(T).
The simple family of increasing trees T associated with a degree-weight generating
function ϕ(t) :=

∑
`>0ϕ`t

` can be described by the formal recursive equation

T =©1 ×
(
ϕ0 · {ε} ∪̇ ϕ1 · T ∪̇ ϕ2 · T ∗ T ∪̇ ϕ3 · T ∗ T ∗ T ∪̇ · · ·

)
=©1 ×ϕ(T), (2)

where ©1 denotes the node labeled by 1, × the Cartesian product, ∪̇ the disjoint
union, ∗ the partition product for labeled objects; ϕ(T) the vertices substituted
structure (e. g., see [28, 8]). For a given degree-weight sequence, we define the total
weight of size n increasing trees by Tn :=

∑
|T |=nw(T) · L(T), where L(T) :=

∣∣L(T)∣∣
is the number of distinct increasing labelings on the ordered tree T . It follows from
the recursive structure of increasing trees that the exponential generating function
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T(z) :=
∑
n>1 Tn

zn

n! satisfies the autonomous first order differential equation

T ′(z) = ϕ
(
T(z)

)
, T(0) = 0. (3)

We obtain the families of (k+ 1)-ary increasing trees and plane-oriented recursive
trees by choosing appropriate degree-weight sequences (ϕ`)`>0.

Example 1. The family T = T(k+ 1) of (k+ 1)-ary increasing trees, with integer k ∈
N, is the family of increasing trees where each node has k+ 1 (labeled) positions
for children, going from left to right. The vacant positions are usually denoted by
external nodes (see Figure 1 for an illustration of ternary increasing trees). Each
node can have 0 6 ` 6 k + 1 internal child nodes, with

(
k+1
`

)
different ways to

attach them (see Figure 2). Thus the appropriate degree-weight sequence to specify
the weight of the nodes is ϕ` =

(
k+1
`

)
for 0 6 ` 6 k + 1, ϕ` = 0 for k + 1 < `.

Consequently, the degree weight generating function is ϕ(t) =
∑
`>0ϕ`t

` = (1 +

t)k+1, which lets us derive the exponential generating function T(z) = T(z,k+ 1) of
(k+ 1)-ary increasing trees by solving the corresponding differential equation (3).
The number Tn = Tn(k+ 1) = |Tn(k+ 1)| of (k+ 1)-ary increasing trees of size n
can be obtained from the generating function, or by induction on n:

T(z) =
1

(1 − kz)
1
k

− 1, Tn =

n∏
`=1

(k(`− 1) + 1) = kn−1 Γ(n+ 1/k)
Γ(1/k)

, n > 1. (4)

The case k = 1 is the family of binary increasing trees, and the case k = 2 is the
family of ternary increasing trees. Note that Tn = Qn, the number of k-Stirling
permutations of size n (see equation (1)).

2 3

1 1 1

22

1

1 1

2

3

2
3 2

1

1

2

1

Figure 1. Ternary increasing trees of size one and two and plane-
oriented increasing trees of size one, two and three, respectively. The
positions where new nodes can be attached are denoted by external
nodes.
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Example 2. The family P of plane-oriented recursive trees consists of rooted or-
dered increasing trees with no restriction on the out-degrees of the nodes. A new
vertex may be joined to an existing vertex v in exactly deg+(v) + 1 positions, where
deg+(v) denotes the out-degree of node v. These deg+(v) + 1 positions can be
represented by external nodes (see Figure 1). Consequently, the total number of
positions available for the (n+ 1)-st node being attached to a tree of size n is given
by
∑n
j=1(deg+(j) + 1) = 2n− 1, independent of the actual shape of the tree. There

is exactly one tree of size 1, and for n > 1, there are Tn =
∏n−1
`=1 (2`− 1) = (2n− 3)!!

distinct plane-oriented recursive trees of size n. From the formal description of
increasing trees, since there are no restrictions on node out-degrees, we set the
degree-weights to ϕ` = 1 for ` > 0, so the degree-weight generating function is
given by ϕ(t) =

∑
`>0ϕ`t

` = 1
1−t . By solving the differential equation (3), we get

the exponential generating function T(z) of plane-oriented recursive trees:

T(z) = 1 −
√

1 − 2z, and Tn =

n−1∏
`=1

(2`− 1) = (2n− 3)!!, for n > 1.

Note that Tn+1 = (2n− 1)!!, equal to the number of 2-Stirling permutations Qn(2)
of size n and the number of ternary trees of size n.

Remark 1. Both the family T(k+ 1) of (k+ 1)-ary increasing trees and the family
P of plane-oriented recursive trees can be generated according to tree evolution
processes, as represented in Figure 1. For a comprehensive discussion, we refer the
interested reader to the work of Panholzer and Prodinger [18].

2.3. Bijection of k-Stirling permutations and (k + 1)-ary increasing trees. Jan-
son [14] has shown that Pn+1 plane-oriented recursive trees of size n + 1 are in
bijection with 2-Stirling permutations of size n, and Janson et al. [15] gave a bijec-
tion between ternary increasing trees of size n and plane-oriented recursive trees
of size n+ 1. More generally:

Theorem 2 (Gessel [19]; see also [15]). For k ∈N, the family of (k+ 1)-ary increasing
trees of size n is in a natural bijection with k-Stirling permutations of size n: Qn(k) ∼=
Tn(k+ 1).

As shown in [15], the bijection behind Theorem 2 allows to study parameters in
k-Stirling permutations via the corresponding parameters in (k+ 1)-ary increasing
trees. The bijection is stated explicitly below.

Bijection 1. Starting with a (k+ 1)-ary increasing tree T of size n, we construct a
k-Stirling permutation of size n as follows. We consider the representation of the
tree T where each labeled node has exactly k+ 1 ordered children, with unlabeled
children marked by external nodes. For each node labeled by an integer, we place k
copies of that integer between the k+ 1 children of the node. We then collect these
copies into a string through a contour walk around the tree starting at the root
and going left. (Equivalently, we construct the string by performing a depth-first



ON PATH DIAGRAMS AND STIRLING PERMUTATIONS 7

walk, where we concatenate the integer v to the string every time we visit the node
labeled by v, except for the first and the (k+ 1)-st visit.) This process results in a
unique string of k · n integers τ = τ1τ2 . . . τkn, where each of the integers 1, . . . ,n
appears exactly k times. Since the tree T is increasing, it guarantees that τi 6 τj >
τk whenever τi = τk and i < j < k. Therefore, τ is a k-Stirling permutation of size
n.
Note that through this process, the external nodes of the tree T correspond to the
gaps in the string τ; adding the (n+ 1)-st labeled node to T at one of its kn+ 1
external nodes corresponds to inserting the k-tuple (n+ 1)k into the string τ at one
of its kn+ 1 gaps.
Conversely, starting with a k-Stirling permutation σ of size n, we construct the
unique corresponding (k+ 1)-ary increasing tree through the following recursive
procedure. First, we decompose the permutation as σ = σ11σ21 . . .σk1σk+1. The
σi’s are either empty strings, or (with proper relabeling) they are k-Stirling per-
mutations of size smaller than n. We label the root node with integer 1. For
1 6 i 6 k+ 1, we label the i-th child as follows: if σi is empty, then the i’th child is
an external node; otherwise the i-th child is labeled by the smallest element in σi.
We repeat this process recursively for each non-empty σi.

3. Local types in k-Stirling permutations

Ordinary permutations can be classified according to four local types (see e.g. [7, 5])
.

Definition 2. Let τ = τ1 . . . τn be a permutation of size n, and let τ0 = τn+1 = −∞.
Then for 1 6 j 6 n, index j is called a peak if τj−1 < τj > τj+1, a valley if τj−1 > τj <
τj+1, a double rise if τj−1 < τj < τj+1, and a double fall if τj−1 > τj > τj+1.

Note that sometimes the boundary condition τn+1 = +∞ is used [5]; however,
the τn+1 = −∞ is more consistent with respect to the bijection between ordinary
permutations and binary increasing trees. Since a permutation τ = τ1 . . . τn has
a corresponding binary increasing tree [7], the correspondence between boundary
condition of the local type of the index j and the node type of the j-th labeled node
in the binary increasing tree is as follows.

Local type Peak Valley Double rise Double Fall
Condition τj−1 < τj > τj+1 τj−1 > τj < τj+1 τj−1 < τj < τj+1 τj−1 > τj > τj+1
Node type Leaf Double node Right-branching node Left-branching node.

In extending the notion of local types to k-Stirling permutations, it is desirable to
preserve the analogue of the correspondence between local types and node types.
Thus we first clarify the node types of (k+1)-ary increasing trees. By definition
of (k+ 1)-ary increasing trees, every node has exactly k+ 1 (labeled) positions for
children. Some of these positions may be occupied by labeled nodes, while others
may be vacant, represented by external nodes. We propose the following definition.
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Definition 3. In a (k+ 1)-ary increasing tree T of size n, the node type of the node
labeled i, for 1 6 i 6 n, is defined as the string Gi(T) = gi,1 . . . ,gi,k+1 ∈ {0, 1}k+1 of
length k+ 1, where gi,j = 1 if the j-th child is a labeled node, and gi,j = 0 if the j-th
child is vacant.

In other words, the sequence Gi(T) specifies which of the (k+ 1) children are not
empty.

Example 3. In the case k = 2 of ternary increasing trees, we have 8 = 23 different
types of nodes. The sequence 111 corresponds to a triple node, 101 to a (left,right)-
branching node, 110 to a (left,center)-branching node, 011 to a (center,right)-bran-
ching node, 100 to a left-branching node, 010 to a center-branching node, 001 to a
right-branching node, and 000 to a leaf, respectively. See Figure 2 for an illustration.

i

j

1   0   0

i

j

0   1   0

i

j

0   0   1

i

0   0   0

i

j k

i

j k

0   1   1

i

jk

1   0   1

i

jkh

1   1   11   1   0

Figure 2. The eight different node types in ternary increasing trees,
assuming that j,h,k > i > 1.

Example 4. In the case k = 1 of binary increasing trees, we have 4 = 22 different
types of nodes. The sequence 11 corresponds to a double node, the sequence 10 to
a left-branching node, the sequence 01 to a right-branching node, and the sequence
00 to a leaf.

This motivates an alternative definition for local types for ordinary permutations,
which would lend to extension over the k-Stirling permutations.

Definition 4. Given an ordinary permutation τ = τ1 . . . τn ∈ Sn and entry i, with
1 6 i 6 n, let ji denote the index such that τji = i. Set the boundary conditions
to τ0 = τn+1 = −∞. The local type Li(τ) = `i,1`i,2 of the entry i in τ is a string of
length 2 with elements in {0, 1}, defined as follows:

`i,1 =

{
1 if τji−1 > i,
0 otherwise;

and `i,2 =

{
1 if τji+1 > i,
0 otherwise.

The string Li(τ) specifies which of the neighbors of i, going from left to right, are
larger than i. Thus i is a peak if Li(τ) = 00, a valley if Li(τ) = 11, a double rise if
Li(τ) = 01, and a double fall if Li(τ) = 10.

Example 5. The ordinary permutation τ = 2534716 of size seven has the following
local types: L1(τ) = 11, L2(τ) = 01, L3(τ) = 11, L4(τ) = 01, L5(τ) = 00, L6(τ) = 00,
and L7(τ) = 00.
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This new definition readily extends to the general case of k-Stirling permutation
for k > 1. We again define the local type of i as a string of elements in {0, 1}
that specifies which neighbors of i in the permutation, going form left to right, are
larger than i.

Definition 5. Given a k-Stirling permutation σ = σ1σ2 . . .σkn of size n, and an
entry i, with 1 6 i 6 n, let 1 6 ji,1 < · · · < ji,k 6 kn be the indices such that
σji,h = i. The local type Li(σ) = `i,1 . . . `i,k+1 of the entry i is a string of length k+ 1,
with elements in {0, 1}, generated according to relative magnitudes of the instances
of i to their neighbors by the following rules (assuming boundary conditions σ0 =
σnk+1 = −∞):

`i,1 =

{
1 if σji,1−1 > i,
0 otherwise;

and `i,j =

{
1 if σji,j−1+1 > i,
0 otherwise,

for 1 < j 6 k+1.

Example 6. The 3-Stirling permutation σ = 112233321445554666 of size six has the
following local types L1(σ) = 0011, L2(σ) = 0010, L3(σ) = 0000, L4(σ) = 0011,
L5(σ) = 0000, L6(σ) = 0000.

Since there are exactly 2k+1 different possible local types, we obtain the following
result.

Proposition 1. A k-Stirling permutation σ = σ1σ2 . . .σkn of size n of the multiset
{1k, 2k, . . . ,nk} can be classified according to 2k+1 different local types, with respect to
the local rules in Definition 5.

Remark 2. The local types of k-Stirling permutations are closely related to the
distribution of the number of j-ascents, j-descents and j-plateaux, as introduced
by Janson et al. [15]. These parameters generalize the standard notion of ascents,
descents and plateaux for ordinary permutations. Let 2 6 j 6 k+ 1: if `i,j = 1, then
there is an occurrence of a j-ascent, implying a later (j+ 1)-descent.

It remains to prove that the local types of k-Stirling permutations correspond to the
node types of (k+ 1)-ary increasing trees.

Theorem 3. By Bijection 1, the local types Li(σ) in a k-Stirling permutation σ=σ1 . . .σkn
of size n coincide with the node types Gi(T) of the corresponding (k+ 1)-ary increasing
trees T of size n: Li(σ) = Gi(T) for 1 6 i 6 n.

Proof. We use the bijection from Theorem 2 between k-Stirling permutations and
(k+ 1)-ary increasing trees, based on a depth-first walk. We start the depth-first
walk at the root of a given (k+ 1)-ary increasing tree T of size n with node types
G1(T), . . . ,Gn(T), and construct the corresponding k-Stirling permutation σ = σ(T)
of size n according to Bijection 1. Let 1 6 ji,1 < · · · < ji,k 6 kn be the indices such
that σji,h = i. We show that the local order type Li(σ) = `i,1 . . . `i,k+1 equals the
node type Gi(T) = gi,1 . . .gi,k+1 of the node labeled i, for all 1 6 i 6 n.
Let us consider the first position out of the k+ 1 positions for children of the node
i. If the first position is vacant, the first element of the node degree type is gi,1 = 0.
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By Bijection 1 the vacancy implies that i = σji,1 > σji,1−1 = m, and consequently the
first element of the local type is `i,1 = 0, since a smaller number m < i must have
been observed earlier according to the depth-first walk and the property that the
tree is increasingly labeled. (If i is the root, then we use the boundary conditions
m = −∞.)
On the other hand, if the first position is not vacant, then gi,1 = 1. By the depth-first
walk and the definition of increasing trees we have i = σji,1 < σji,1−1, so `i,1 = 1.

i
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0    x     x  1    x     x x    0   x x    1    x x      x   0 x      x   1
** ** ** **** **

i
m

i

rr

ii mi

i i
i

i i

i

i i
i

i i
r
rr

r
rr

m<i r>i r=i i<ri=i i>m

Figure 3. A schematic representation of the correspondence between
local order types in 2-Stirling permutations and local node types in
ternary increasing trees according to Bijection 1: the tree is traversed
according to a depth-first walk, assuming that r > i and m < i.

An analogous rationale holds for the case of the (k+ 1)-st position of the node i.
Now let us consider the rest of the positions for the children of the node i. For
1 6 h 6 k, note that gi,h = 0 implies that the indices ji,h and ji,h+1 satisfy ji,h + 1 =
ji,h+1. Consequently, σji,h+1 = i, and thus `i,h = 0. Conversely, if gi,h = 1, then by
the construction in Bijection 1 there is a substring between the h-th and (h+ 1)-
st occurrences of i, and this substring is composed of elements greater than i.
Consequently, σji,h+1 > i, and thus `i,h = 1. �

4. Path diagrams and local types of k-Stirling permutations

4.1. Path diagrams and k-Stirling permutations. Ordinary permutations corre-
spond to path diagrams related to Motzkin paths in their description via local
types, as shown in the work of Françon and Viennot [9] and of Flajolet [7]. In this
section, we extend their ideas to give a bijection between k-Stirling permutations
and a more general set of plane path diagrams called Łukasiewicz paths.

Definition 6. A Łukasiewicz path is a path on the x-y plane which starts at the
origin, remains in the first quadrant (where x > 0 and y > 0), ends on the x-axis,
and which consists only of the following types of steps:

• “rise” steps ak from (x,y) to (x+ 1,y+ k), for some non-negative integer k,
• “fall” step b from (x,y) to (x+ 1,y− 1).

There are many equivalent ways to represent a particular Łukasiewicz path:
• as a sequence of points in the x-y plane, specified by their x-y coordinates;
• as a sequence of the y-coordinates of those points (since the x-coordinates

always start at 0 and increase by 1, according to the definition);
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• as a word L = L1 . . .Ln over the alphabet A = {b,a0,a1,a2, . . .} corresponding
to the sequence of steps of the path, beginning at the origin.

Figure 4. A Łukasiewicz path.

The path in Figure 4 is an example of a Łukasiewicz path. It can be represented as
the following sequence of points in the x-y plane:

(0, 0), (1, 2), (2, 1), (3, 1), (4, 0), (5, 3), (6, 2), (7, 1), (8, 2), (9, 1), (10, 0).

This path can be represented as the following sequence of the y-coordinates:

(0, 2, 1, 1, 0, 3, 2, 1, 2, 1, 0).

This path can be represented as the following word over the alphabet
A = {b,a0,a1,a2, . . .} :

a2ba0ba3bba1bb.

Keeping track of the y coordinates is important when establishing correspondences
between plane path diagrams and other combinatorial objects. We therefore define
labeled paths as the positive paths in which each step is indexed by the y coordinate
of the point from which that step starts.

Notation 1. Suppose a Łukasiewicz path is represented by a word L = L1 . . .Ln over
the alphabet A = {b,a0,a1,a2, . . .} and a corresponding sequence (0,y1, . . . ,yn) of
the y-coordinates. A labeled version of the path has the same letters as the word
L = L1 . . .Ln, with j-th letter having a subscript yj−1 for each j = 1, . . . ,n (where
y0 = 0).

For example, the labeled version of the path in Figure 4 is

a2
0b2a

0
1b1a

3
0b3b2a

1
1b2b1.

The methods which Flajolet presented in [7] of establishing a correspondence be-
tween a set of Motzkin paths and a desired set of some other combinatorial ob-
jects (e.g., permutations of n objects) involve determining a scheme where, given a
Motzkin path, one constructs a combinatorial object one path step at a time. Such
construction schemes allow for more than one choice of action at any one step, with
the number of choices being a function of the y-coordinate of the point from which
the step originates (called the possibility function). The bijection with the desired set
of combinatorial objects is then with a pair (M,p) where M is a Motzkin path and
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p is a possibility sequence that keeps track of the choice one made at each step of
construction (see [7], [9]).
Let A+ be the alphabet of all the letters that could comprise a labeled Łukasiewicz
path:

A+ = {b0,b1,b2 . . . }∪
∞⋃
`=0

{a`0,a`1,a`2, . . . }.

We adapt the definition of a system of path diagrams from [7] to Łukasiewicz paths.

Definition 7. A system of labeled Łukasiewicz path diagrams is specified by a
function pos : A+ → N (called a possibility function), which takes a letter in the
alphabet A+ and assigns it a non-negative integer. A path diagram is a pair (L,p),
where L = L1 . . .Ln is a labeled Łukasiewicz path, and p is a sequence of non-
negative integers (p1, . . . ,pn) such that 0 6 pj < pos(Lj) for all j = 1, . . . ,n.

Now we are ready to state the connection between path diagrams and k-Stirling
permutations, using their correspondence with (k+ 1)-ary increasing trees.

Theorem 4. The set of k-Stirling permutations of size n+ 1 is in bijection with the system
of labeled Łukasiewicz path diagrams whose possibility function pos(.) is given by

pos(a`j) =
(
k+ 1
`+ 1

)
(j+ 1) for 0 6 ` 6 k, pos(bj) = j+ 1,

and which has the following restrictions on the plane paths:
• the plane paths are comprised of n steps;
• the “rise” steps are restricted to a0, . . . ,ak.

Remark 3. For the case where k = 1, Theorem 4 reduces to the correspondence
between Stirling permutations of size n + 1 and Motzkin paths of length n, as
presented by Françon and Viennot [9].

Proof. By Theorem 2, the set of k-Stirling permutations of size n + 1 is in bijec-
tion with the set of (k+ 1)-ary increasing trees of size n+ 1. It therefore suffices
to establish a bijection between the system of labeled Łukasiewicz path diagrams
specified in Theorem 4 and the set of (k+ 1)-ary increasing trees of size n+ 1.
Given a path diagram (L,p), where L is labeled Łukasiewicz path L = L1 . . .Ln and
p = (p1, . . . ,pn) is a sequence of non-negative integers with 0 6 pi < pos(Li), we
will provide an algorithm for constructing a unique (k+ 1)-ary increasing tree with
n+ 1 internal nodes. At each step of the path, there will be a number of possible
ways to carry out the instructions, which will correspond to the defined possibility
function for that labeled step. Thus each of the path diagrams induced by the path
L can be assigned a unique (k+ 1)-ary tree that can be constructed using L.
First, consider the following algorithm for constructing a (k+ 1)-ary tree using the
path L = L1 . . .Ln, which could result in different trees depending on the choices
made during each step. We begin with one placeholder for an internal node of the
tree T . For steps 1 6 i 6 n: at the i-th step of the path, choose one of the available
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placeholders, and replace it with a node labeled by i. If Li = bj, there are no further
instructions. However, if Li = a`j , then out of the k+ 1 possible child positions for
the node, choose `+ 1 of them as placeholders for internal nodes.
Note that in each of the cases, the net change in the number of placeholders at
the i-th step of the construction is equal to the change in the y-coordinate at the
i-th step of the path. Since we begin the construction with one placeholder, at the
beginning of the i-th construction step the number of placeholders is one more
than the y-coordinate of the point where the i-th step of the path begins. After the
final n-th step, the y-coordinate the point where the last step ends is 0, so there
is only one placeholder left. To complete the tree, replace that placeholder with a
node labeled by n+ 1.
Knowing the number of placeholders at each step allows us to compute the number
of possible ways each construction step can be implemented, and thus determine
the appropriate possibility function. If Li = bj, there are j+ 1 possible placeholders
to choose from for the new node labeled by i, so pos(bj) = j + 1. If Li = a`j ,
the number of possibilities is pos(a`j) =

(
k+1
`+1

)
(j+ 1), taking into account both the

number of existing placeholders to choose from, and the possibilities for choosing
a new placeholder out of the node’s `+ 1 possible child positions.
To establish a unique correspondence between the path diagram (L,p), we will
induce an ordering on the internal nodes (depth-first, with the child nodes ordered
from left to right) and on the node types (lexicographical ordering). The algorithm
for constructing a unique (k + 1)-ary tree T using this path diagram is then as
follows.
As before, we begin with one placeholder for an internal node of the tree T . For
steps 1 6 i 6 n:

• If the i-th step of the path is a “fall” step Li = bj: using depth-first order,
choose the (pi + 1)-st available placeholder. Replace it with a node labeled
by i that has k+ 1 external child nodes (so the chosen node becomes a leaf
with respect to internal nodes of the tree).
• If the i-th step of the path is a “rise” step Li = a`j : Let s be the number of

integer times
(
k+1
`+1

)
goes into pi, and let t be the remainder of pi modulo(

k+1
`+1

)
, such that pi = s ·

(
k+1
`+1

)
+ t. Using depth-first order, choose the (s+ 1)-

st available placeholder. Using the lexicographical ordering on node types
with `+ 1 external child nodes out of a total of (k+ 1) child nodes, choose
the (t+ 1)-st local type. Replace the chosen placeholder with a node of this
node type, with all the external node children labeled with placeholders,
and label the chosen node by i.

After n steps, there will be a single available placeholder remaining. To complete
the tree, replace that placeholder with a node labeled by n+1 that has k+1 external
child nodes. (Example 7 goes through a specific example of this algorithm. ) �
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Example 7. In this example, we consider the case k = 2, which corresponds to
ternary increasing trees and to Stirling permutations. Figure 5 illustrates the steps
of the algorithm specified in the proof of Theorem 4 for constructing a ternary tree
with seven labeled nodes using the path diagram (L,p) where L = a2

0a
1
2b3b2a

0
1b1

and p = (0, 1, 3, 0, 3, 1).

1

2

1

2

1

3

2

1

3

4

2

1

3

4

5 2

1

3

4

5

6

2

1

3

4

5

67

Figure 5. Construction of a ternary increasing tree.

The first arrow indicates the step corresponding to the first path step L1 = a2
0; the

first (and at this stage, only) available placeholder gets replaced with a node of type
111 and labeled “1”. (One can check that s = t = 0 at this step, which correspond
with the choice of the first available placeholder and the first node type.)
The second arrow indicates the step corresponding to the second path step L2 = a1

2;
p2 = 1, and

(2+1
1+1

)
= 3, so s = 0 and t = 1. Thus the first available placeholder gets

chosen (through depth-first method with left-to-right order) to get the label “2”.
Since by lexicographic order 011 < 101 < 110, the second node type 101 gets
chosen, with the internal child nodes getting the placeholders.
The third arrow indicates the step corresponding to the third path step L3 = b3;
p3 = 3, so the fourth available placeholder gets chosen (through depth-first method
with left-to-right order) to get the label “3”, with three external child nodes.
The algorithm continues until the seventh arrow, where the final available place-
holder is gets the label “7” and gets three external child nodes.
By using the Bijection 1 between (k+ 1)-ary increasing trees and k-Stirling permu-
tations for k = 2, we immediately obtain the Stirling permutation σ of size seven
that corresponds to the tree constructed in Figure 5: σ = 44227715566133. Note that
we can also directly construct the Stirling permutation, since the local types of the
outdegree of the nodes in the ternary increasing tree correspond to the local types
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of the numbers in the permutation. One may think of this procedure as some kind
of “flattening of the tree to a line” (compare with the sequence of trees in Figure 5):

◦ → ◦1 ◦ 1◦ → ◦22 ◦ 1 ◦ 1◦ → ◦22 ◦ 1 ◦ 133→ 4422 ◦ 1 ◦ 133→ 4422 ◦ 155 ◦ 133
→ 442277155 ◦ 133→ 44227715566133.

4.2. Generating function of local types. Flajolet [7] used the correspondence be-
tween path diagrams and formal power series to obtain continued fraction rep-
resentations of the generating functions of many parameters in ordinary permu-
tations. In the context of permutations and binary increasing trees, he derived a
continued fraction representation of the generating function of local types in per-
mutations, and equivalently of node types in binary increasing trees. The path
diagram representation of k-Stirling permutations and (k+ 1)-ary increasing trees
similarly allows us to obtain a branched continued fraction representation of the
generating function of the local types and of node types.
First we have to recall relevant definitions from Flajolet’s work [7] concerning for-
mal power series. Let C〈〈X〉〉 denote the monoid algebra of formal power series
s =
∑
u∈X∗ su · u on the set of non-commutative variables (alphabet) X with coeffi-

cients in the field of complex numbers, with sum and Cauchy product defined in
the usual way

s+ t =
∑
u∈X∗

(su + tu) · u, s · t =
∑
u∈X∗

( ∑
vw=u

svtw

)
· u.

In order to define the convergence of a series, one introduces the valuation of a
series val(s), defined by

val(s) = min{|u| : su 6= 0},
where |u| denotes the length of the word u ∈ X∗. A sequence of elements (sn)n∈N,
sn ∈ C〈〈X〉〉, converges to a limit s ∈ C〈〈X〉〉 if

lim
n→∞val(s− sn) =∞.

Multiplicative inverses exist for series having a constant term different from zero;
for example (1 − u)−1 =

∑
`>0 u

`, where (1 − u)−1 is an inverse of u as long as
val(u) > 0. Note that we will subsequently use the notation (u|v)/w = uw−1v. The
characteristic series char(S) of S ⊂ X∗ is defined as

char(S) =
∑
u∈S

u.

Finally, following [7] we use for subsets E, F of X∗ the alternative notations E+ F for
the union E∪ F, E · F for the extension to sets of the catenation operation on words,
and let E∗ = ε+E+E ·E+E ·E ·E+ . . . , with ε denoting the empty word. Moreover,
we will use a lemma (Lemma 1 of Flajolet [7]), which allows to translate operations
on sets of words into corresponding operations on series, provided certain non-
ambiguity conditions are satisfied.
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Lemma 1. Let E, F be subsets of X∗. Then

(1) char(E+ F) = char(E) + char(F) provided E∩ F = ∅,
(2) char(E · F) = char(E) · char(F) provided that E · F has the unique factorization

property that, for all u,u ′ ∈ E and for all v, v ′ ∈ F, the equality uv = u ′v ′ implies
u = u ′ and v = v ′,

(3) char(E∗) = (1− char(E))−1 provided the following two conditions hold: Ej ∩Ek =
∅ for all j,k with j 6= k, and each Ek has the unique factorization property.

With the help of Lemma 1, one can translate operations on sets of words into
corresponding operations on series, provided that the non-ambiguity conditions
are satisfied.

Let C[h]
i = C

[h]
i (k) be defined as the characteristic series of all labeled paths with

steps given by a0,a1, . . . ,ak,b starting and ending at y-coordinate i, with i > 0,
never going below the y-coordinate i and above the y-coordinate i+h, with h > 0.
We assume the formal convention that C[h]

i = 0 if h < 0. Moreover, let C[h] = C
[h]
0 .

We introduce the notation

〈
C
[h]
i

〉
1
:= (a1

i |bi+1)C
[h−1]
i+1 ,

〈
C
[h]
i

〉
2
:= ((a2

i |bi+2) ·C
[h−2]
i+2 |bi+1) ·C

[h−1]
i+1 ,

and in general for integer 1 6 ` 6 k let
〈
C
[h]
i

〉
`

be defined by〈
C
[h]
i

〉
`
= (. . . ((a`i|bi+`)C

[h−`]
i+` |bi+`−1)C

[h−(`−1)]
i+`−1 . . . |bi+1)C

[h−1]
i+1 .

Proposition 2. The characteristic series C[h]
i = C

[h]
i (k) of all labeled paths with steps given

by a0,a1, . . . ,ak,b starting and ending at y-coordinate i, with i > 0, never going below
y-coordinate i and above y-coordinate i+ h, with h > 0, satisfies

C
[h]
i =

1

1 − a0
i −
∑k
`=1

〈
C
[h]
i

〉
`

.

The double sequence (C[h]
i )i,h>0 converges for h→∞. Its limit (Ci)i>0 is given as follows:

Ci =
1

1 − a0
i −
∑k
`=1

〈
Ci

〉
`

.

In particular, C = C0 equals the characteristic sequence of all labeled paths P, starting and
ending at the x-axis, never going below the x-axis, with steps given by a0,a1, . . . ,ak,b.

Remark 4. The case k = 1, treated by Flajolet [7], corresponds to binary increasing
trees and ordinary permutations.
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Proof. For the sake of simplicity we only present the proof of the special case k = 2,
corresponding to Stirling permutations and ternary increasing trees. We prove that

C
[h]
0 =

1

1 − a0
0 −
∑2
`=1

〈
C
[h]
0

〉
`

=
1

1 − a0
0 − (a1

0|b1)C
[h−1]
1 − ((a2

0|b2)C
[h−2]
2 |b1)C

[h−1]
1

equals the characteristic series of the set P[h] of all labeled Łukasiewicz paths with
steps a0,a1,a2,b, starting and ending at y-coordinate zero with the y-coordinate
bounded by 0 and some positive integer h. More generally, for i > 0

C
[h]
i =

1

1 − a0
i −
∑2
`=1

〈
C
[h]
i

〉
`

=
1

1 − a0
i − (a1

i |bi+1)C
[h−1]
i+1 − ((a2

i |bi+2)C
[h−2]
i+2 |bi+1)C

[h−1]
i+1

equals the characteristic series of all labeled Łukasiewicz paths starting and ending
at y-coordinate i with y-coordinates bounded by i and i + h for some positive
integer h.

Note that by our previous notation (u|v)/w = uw−1v and (1 − u)−1 =
∑
`>0 u

`

regarding inverse series, we have for instance

(a1
i |bi+1)C

[h−1]
i+1 = a1

i

(
C
[h−1]
i+1

)−1
bi+1

= a1
i

∑
`>0

(
ci+1 + (a1

i+1|bi+2)C
[h−2]
i+2 + ((a2

i+1|bi+3)C
[h−3]
i+3 |bi+2)C

[h−2]
i+2 bi+2

)`
bi+1.

For the first few values of h = 1, 2, 3 we obtain

P[0] = (a0
0)
∗

P[1] = (a0
0 + a

1
0(a

0
1)
∗b1)

∗

P[2] = (a0
0 + a

1
0(a

0
1 + a

1
1(a

0
2)
∗b2)

∗b1 + a
2
0(a

0
2)
∗b2(a

0
1 + a

1
1(a

0
2)
∗b2)

∗b1)
∗

P[3] =
(
a0

0 + a
1
0
(
a0

1 + a
1
1(a

0
2 + a

1
2(a

0
3)
∗b3)

∗b2 + a
2
1(a

0
3)
∗b3(a

0
2 + a

1
2(a

0
3)
∗b3)

∗b2
)∗
b1

+ a2
0(a

0
2 + a

1
2(a

0
3)
∗b3)

∗b2
(
a0

1 + a
1
1(a

0
2 + a

1
2(a

0
3)
∗b3)

∗b2

+ a2
1(a

0
3)
∗b3(a

0
2 + a

1
2(a

0
3)
∗b3)

∗b2
)∗
b1

)∗
.

In order to simplify the recursive description of P[h] we introduce the refined
sets P

[h]
i consisting of the paths starting and ending at y-coordinate i, with y-

coordinates for all steps bounded by i and i+ h for some positive integer h, where
P
[h]
0 = P[h]. Note that P

[h]
i can easily be obtained from P

[h]
0 = P[h] by shifting the

index encoding the y-coordinate level by i.
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We can write P[h] in the following way.

P[0] = (a0
0)
∗

P[1] = (a0
0 + a

1
0P

[0]
1 b1)

∗

P[2] = (a0
0 + a

1
0P

[1]
1 b1 + a

2
0P

[0]
2 b2P

[1]
1 b1)

∗

P[3] =
(
a0

0 + a
1
0P

[2]
1 b1 + a

2
0P

[1]
2 b2P

[2]
1 b1 + a

3
0P

[0]
3 b3P

[1]
2 b2P

[2]
1 b1

)∗
.

By induction one can prove the following unambiguous description of P[h].

P[h] =
(
a0

0 + a
1
0P

[h−1]
1 b1 + a

2
0P

[h−2]
2 b2P

[h−1]
1 b1 + · · ·+ ah0P

[0]
h bh . . .P[h−1]

1 b1

)∗
.

More generally, we have

P
[h]
i =

(
a0
i + a

1
iP

[h−1]
i+1 bi+1 + a

2
iP

[h−2]
i+2 bi+2P

[h−1]
i+1 bi+1+

· · ·+ ahi P
[0]
i+hbi+h . . .P[h−1]

i+1 bi+1

)∗
.

Since P
[h]
i is obtained from P

[h]
0 = P[h] by an index shift, we recursively obtain the

stated description of C[h]
0 by replacing the operations +, ·, ∗ on the sets of words

by the series operations +, |, and inverse. Moreover, the characteristic series of the
refined sets P

[h]
i is simply given by C[h]

i . One observes the inclusion

P[0] ⊂ P[1] ⊂ P[2] ⊂ · · · ⊂ P,

or more generally
P
[0]
i ⊂ P

[1]
i ⊂ P

[2]
i ⊂ · · · ⊂ Pi i > 0.

A Łukasiewicz path which starts at the x-axis and whose highest y-coordinate is h
must have length greater than or equal to

⌈
h
k

⌉
, thus

val
(
Ci −C

[h−1]
i

)
>
⌈h
k

⌉
,

and consequently
lim
h→∞C[h]

i = Ci.

The idea of the proof of the general case k > 2 is similar. �

Subsequently, we will enumerate k-Stirling permutations, keeping track of the 2k+1

different local types. Recall that each local type is a string of length k+ 1 over the
alphabet {0, 1}. For our purposes, we arrange the local types first by the number
of 1’s, and then by lexicographic order. For a given k-Stirling permutation, we will
denote by mi,j the number of instances of the local type with i 1’s which are in the
j-th position in the lexicographic order.
Let Pm0,...,mk+1 denote the number of k-Stirling permutations whose local types are
counted according to mi = (mi,1, . . . ,m

i,(k+1
i )), with 0 6 i 6 k+ 1. To keep track of
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these counts, we will use the corresponding variables zi = (zi,1, . . . , z
i,(k+1

i )), with

0 6 i 6 k+ 1. Note that z0 = (z0,1) is the variable that keeps track of the local type
with all zeros, and it would be unambiguous to refer to either z0 or z0,1.
The generating function P(z0, . . . , zk+1, t) of k-Stirling permutations with respect to
the 2k+1 local types is defined by

P(z0, . . . , zk+1, t) =
∑

m0,...,mk+1

Pm0,...,mk+1z0
m0 . . . zk+1

mk+1tn,

where n =
∑k+1
i=1
∑(k+1

i )
j=1 mi,j is the length of the k-Stirling permutations.

Now we can state the main result of this section: a branched continued fraction
representation of the generating function of local types in k-Stirling permutations.

Theorem 5. The generating function P(z0, . . . , zk+1) of k-Stirling permutations, or equiv-
alently (k+ 1)-ary increasing trees, with respect to the 2k+1 local types,

P(z0, . . . , zk+1, t) =
∑

m0,...,mk+1

Pm0,...,mk+1z0
m0 . . . zk+1

mk+1tn

is given by the branching continued fraction
z0t

1 − 1 · t
∑k+1
i=1 z1,i −

1·2·t2z0
∑(k+1

2 )
i=1 z2,i

1−2·t
∑k+1

i=1 z1,i−
2·3·t2z0

∑(k+1
2 )

i=1 z2,`
... −...

− · · ·− (k+1)!tk+1zk0 zk+1,1
...

.

Corollary 1. An expansion of the generating function
∑
n>0 k

n Γ(n+1+ 1
k )

Γ( 1
k )

tn is obtained

from the generating function P(z0, . . . , zk+1, t) by setting z` = (1, . . . , 1), 0 6 ` 6 k+ 1,
and dividing by t. In particular, we obtain for k = 2 the identity∑
n>0

(2n+ 1)!! tn =
1

1 − 1 ·
(3

1

)
t−

1·2·(3
2)t2

1−2·(3
1)t−

2·3·(3
2)t

2

1−3·(3
1)t...

−
2·1·2·3·(3

3)t
3

1−4·(3
1)t...

−
1·2·3·(3

3)t3(
1−3·(3

1)t...
)(

1−2·(3
1)t...
)

= 1 + 3t+ 15t2 + 105t3 + 945t4 + . . .

Remark 5. Below each fraction bar in the branched continued fraction representa-
tion of the formal power series there are k+ 1 terms, starting with 1. As mentioned
earlier the case k = 1 is a result of Flajolet [7].

Remark 6. Pétréolle, Sokal, and Zhu [22] demonstrate that branched continued
fractions do not provide unique representations of power series. They show how
the same infinite series presented in Corollary 1 can have at least three different
branched continued fraction representations.

Proof. According to Theorem 3, we can use the same representation for the local
types of k-Stirling permutations and node types of (k+ 1)-ary trees. In particular,
the local types with i 1’s correspond to the node types with i internal children.
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Recall the construction from the proof of Theorem 4 of a (k+ 1)-ary tree of size
n+ 1, given a path diagram (L,p) with L a labeled Łukasiewicz path of length n.
The “rise” step a`j corresponds to a node with `+ 1 internal children, and the “fall”
step bj corresponds to a leaf node with respect to internal children. At the end of
the construction one more leaf node was created.
Taking these correspondences into account, and considering the number of possi-
bilities described by the construction, we define the morphism µ : C〈〈X〉〉 → C [[ z ]]
by

µ(a`j) = (j+ 1)t
(k+1
`+1)∑
i=1

z`+1,i for 0 6 ` 6 k,

µ(bj) = (j+ 1)tz0.

Taking into account the creation of one more leaf node at the end of the con-
struction, we get the generating function of (k + 1)-ary trees with respect to the
node types from the characteristic series C of labeled paths: P(z0, . . . , zk+1, t) =
z0tµ(C). �

5. Other branched continued fractions for k-Stirling permutations

In the following we present alternative representations of the generating function
of k-Stirling permutations.

5.1. Classical Stirling permutations. In the special case k = 2 Janson [14] showed
that the class of 2-Stirling permutations of size n is in bijection with the class of
plane-oriented recursive trees of size n+ 1. A bijection between ternary increasing
trees of size n and plane-oriented recursive trees of size n+ 1 was given in [15].
We will provide a bijection between path diagrams with Łukasiewicz paths with
unrestricted number of “rise” steps, plane-oriented recursive trees and Stirling per-
mutations.

Theorem 6. The class of plane-oriented recursive trees of size n+ 1 is in bijection with the
system of labeled Łukasiewicz path diagrams whose possibility function pos(.) is given by

pos(a`j) = j+ 1 for 0 6 `, and pos(bj) = j+ 1,

and whose plane paths are comprised of n steps.

Proof. The proof is similar to that of Theorem 4. First, consider the following algo-
rithm for constructing a plane-oriented recursive tree of size n+ 1 using the path
L = L1 . . .Ln, which could result in different trees depending on the choices made
during each step. We begin the construction with one placeholder for an internal
node. Then for 1 6 i 6 n, at the i-th step: replace any existing placeholder with
the node labeled by i; if Li = a`j , create `+ 1 children for the node i, each labeled
by a placeholder; and if Li = bj, the node i remains a leaf node.
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Note that in each case, the net number of placeholders changes by the same amount
as the height of the path; since the construction began with one placeholder, at the
beginning of the k-th construction step the number of placeholders is one more
than the y-coordinate where the k-th step of the path L begins. The number of
possibilities for carrying out the k-th step is j+ 1 whether Lk is the “rise” step a`j
or the “fall” step bj, which defines the corresponding possibility function for the
path diagrams. At the end of the n-th step, there is one more placeholder, which
we replace by a leaf node labeled by n+ 1.
To establish a unique correspondence between the path diagram (L,p) and a plane-
oriented recursive tree of size n + 1, we will induce an ordering on the internal
nodes: depth-first, with the child nodes ordered from left to right. The algorithm
for constructing a unique plane-oriented recursive tree T of size n+ 1 using this
path diagram is then as follows.
As before, we begin with one placeholder for an internal node of the tree T . For
steps 1 6 i 6 n:

• If the i-th step of the path is a “fall” step Li = bj: using depth-first order,
choose the (pi + 1)-st available placeholder. Replace it with a node labeled
by i, and leave the node as a leaf.
• If the i-th step of the path is a “rise” step Li = a`j : using depth-first order,

choose the (pi + 1)-st available placeholder. Replace it with a node labeled
by i which has `+ 1 children, each labeled by a placeholder.

After n steps, there will be a single available placeholder remaining. To complete
the tree, replace that placeholder with a leaf node labeled by n+ 1. �

Let Fn denote the the system of labeled Łukasiewicz path diagrams specified in
Theorem 6, and let f(t) =

∑
n>0 |Fn|t

n be the ordinary generating function of these
path diagrams. Let Gn denote the system of labeled Łukasiewicz path diagrams
whose plane paths are restricted to the steps a0, a1, a2, and b, and whose possibility
function is defined by pos(a0

j ) = pos(a1
j ) = 3(j+ 1) and pos(a2

j ) = pos(bj) = j+ 1.
Let g(t) =

∑
n>0 |Gn|t

n be the ordinary generating function of Gn.
The set Sn of Stirling permutations of size n is in bijection with the set of path
diagrams Gn−1 by Theorem 4. Also, since Sn is in bijection with the set of plane-
oriented recursive paths of size n+ 1 (see Janson [14]), which in turn is in bijection
with the set of path diagrams Fn by Theorem 6, we get the identity 1 + S(t) =
f(t) = 1 + tg(t).

Theorem 7. Let Sn = (2n− 1)!! denote the number of Stirling permutations of size n and
S(t) =

∑
n>1 Snt

n its the generating function. Then 1+ S(t) = f(t) = 1+ tg(t), and can
therefore be represented by two different continuous fraction types:

1 + S(t)

=
1

1 − t− 2·1·t2
1−2·t− 3·2·t2

1−3·t−···
− 3·2·1·t3(

1−2·t− 3·2·t2
1−3·t−···−···

)(
1−3·t− 4·3·t2

1−4·t−···−···
) − 4·3·2·1·t3

(··· )(··· )(··· ) − · · ·
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= 1 +
t

1 − 1 ·
(3

1

)
t−

1·2·(3
2)t2

1−2·(3
1)t−

2·3·(3
2)t

2

1−3·(3
1)t...

−
2·1·2·3·(3

3)t
3

1−4·(3
1)t...

−
1·2·3·(3

3)t3(
1−3·(3

1)t...
)(

1−2·(3
1)t...
) . (5)

Proof. The set Sn of Stirling permutations of size n is in bijection with the set of
path diagrams Gn−1 by Theorem 4. Also, since Sn is in bijection with the set of
plane-oriented recursive paths of size n + 1 (see Janson [14]), which in turn is
in bijection with the set of path diagrams Fn by Theorem 6, we get the identity
1 + S(t) = f(t) = 1 + tg(t).
The first of the branched continued fractions is known as a Łukasiewicz fraction;
its form is obtained through the characteristic polynomial of Łukasiewicz paths
in a manner similar to that in Section 4.2, taking into account that there is no
restriction on the type of “rise” steps (for more on Łukasiewicz paths, see the work
of Roblet [25] and Viennot [27], and also [26]). �

5.2. Equivalent statistics on plane-oriented recursive trees, ternary trees, and
Stirling permutations. Let Xn,j denote the number of nodes of outdegree j in a
random plane-oriented recursive tree of size n. We relate the distribution of out-
degrees to suitably defined statistics in ternary increasing trees and Stirling per-
mutations. Any ternary increasing tree can be decomposed by deleting all center
edges into trees having only left or right edges. Let X[LR]

n,j denote the number of size
j left-right trees in a random ternary increasing tree of size n.

Concerning Stirling permutations σ = σ1 . . .σ2n, we introduce block structures as
follows. A block in a Stirling permutation σ is a substring σp · · ·σq with σp = σq
that is maximal, i.e. not contained in any larger such substring [15]. There is at
most one block for every i = 1, . . . ,n, extending from the first occurrence of i to
the last; we say that i forms a block when this substring is not contained in a string
` · · · ` for some ` < i. The decomposition σ = [B1][B2] . . . [Bj] is a block structure of
σ. Removing from each of the blocks the leftmost and the rightmost number, we
are left with possibly empty substrings, which after an order-preserving relabeling
form (sub-)Stirling permutations. We recursively determine the block structure in
these (sub)-Stirling permutations. The Stirling permutation σ has a block structure
of size j if either σ or any of the recursively obtained (sub)-Stirling permutations
decompose into j blocks. Let X[B]

n,j denote the number of block structures of size j in
a random Stirling permutation of size n.

Example 8. The Stirling permutation σ = 221553367788614499 of size nine has
block decomposition σ = [22][155336778861][44][99] of size 4. After removal of the
leftmost and the rightmost entries in the blocks, the only non-empty (sub-)Stirling
permutation is given by 5533677886. After an order-preserving relabeling we get
σ ′ = 2211344553. We have σ ′ = [22][11][344553], a block decomposition of size
3; consequently we obtain the (sub-)Stirling permutation σ ′′ = 1122, which has
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block decomposition σ ′′ = [11][22] of size 2. Hence, X[B]
9,4(σ) = 1, X[B]

9,3(σ) = 1 and

X
[B]
9,2(σ) = 1.

Theorem 8. For j > 2, the distribution of the number of nodes Xn+1,j of outdegree j in
a random plane-oriented recursive tree of size n+ 1 coincides with the distribution of the
number X[LR]

n,j−1 of size j− 1 left-right trees in a random ternary increasing tree of size n,

and with the distribution of the number X[B]
n,j of sub-Stirling permutations with number of

blocks equal to j in a random Stirling permutation of size n.
Moreover, the nodes of outdegree two in plane-oriented recursive tree of size n+ 1 corre-
spond to the number of nodes in ternary increasing trees of size n which have exactly one
child connected by a center edge, such that this child is itself a leaf node.

The proof of the the result consists of a simple application of the bijection stated
in [15], and is therefore omitted.
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Figure 6. A plane-oriented increasing tree of size 10, the correspond-
ing size 9 ternary increasing trees together with its left-right tree de-
composition.

Example 9. The Stirling permutation σ of size nine corresponding to the trees in
Figure 6, obtained either using the bijection with plane-oriented recursive tree [14]
or with ternary increasing trees [15], is given by σ = 221553367788614499. As ob-
served before we have X[B]

9,4(σ) = 1, X[B]
9,3(σ) = 1 and X[B]

9,2(σ) = 1, corresponding to
the number of nodes with outdegrees given by four, three and two in the corre-
sponding plane-oriented recursive trees, and with the sizes of the left-right trees in
ternary increasing trees.

5.3. General case of k-Stirling permutations and other tree families. In [15], Jan-
son et al. presented a different tree family in bijection with (k+1)-Stirling permuta-
tions, and presented a more general case of k-Stirling permutations. We summarize
the main correspondences and re-express some of the results by using systems of
labeled Łukasiewicz path diagrams. Refer to [15] and references therein for more
detailed definitions of the different tree families.

The increasing tree family Bn(k) of k-bundled increasing trees of order n are in-
creasing plane trees where each node has an additional k − 1 separation walls,
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which can be regarded as a type of special edges (half-edges) without child nodes.
The case k = 1 corresponds to the ordinary plane-oriented recursive trees.

This family’s degree-weight generating function ϕ(t) = 1
(1−t)k . Consequently, by

solving (3) one gets the generating function T(z) and the total weight Tn:

T(z) = 1 − (1 − (k+ 1)z)
1

k+1 − 1, Tn =

n−1∏
l=1

(l(k+ 1) − 1).

The result of [15] says that

SEQ(Bn(k)) ∼= Qn(k+ 1).

By definition, the exponential generating function of SEQ(Bn(k))s is given by

F(z) =
1

1 − T(z)
=

1

(1 − (k+ 1)z)
1

k+1

and coincides with the generating function of (k+ 2)-ary increasing trees (except
for the initial value F(0) = 1), see (4) and thus with (k+ 1)-Stirling permutations.

Theorem 9 ([15]). The family of SEQ(Bn(k)) of sequences of k-bundled increasing trees is
in bijection with (k+ 2)-ary increasing trees and thus with (k+ 1)-Stirling permutations.

In the following we will realize SEQ(Bn(k)) as a family U = U(k) of non-standard
increasing trees, where the root node has a different degree-weight generating func-
tion compared to the rest of nodes: the family Uk is specified by

U =©1 × ϑ(T), T =©1 ×ϕ(T),

with ϕ(t) = 1
(1−t)k and ϑ(t) = 1

1−t . Hence, we obtain

U ′(z) = F(z) =
1

(1 − (k+ 1)z)
1

k+1
.

Let Un = |Un(k)|. Thus, Un+1 = Qn and the bijection between SEQ(Bn(k)) and
Qn(k+ 1) translates into a bijection Un+1(k) ∼= Qn(k+ 1), generalizing the bijection
between ordinary plane-oriented recursive trees and Stirling permutations [14, 15]
(case k = 1).

Theorem 10. The family of SEQ(B(k)) of sequences of k-bundled increasing trees can be
realized as non-standard increasing trees U(k) with two degree-weight generating func-
tions: ϕ(t) = 1

(1−t)k for non-root nodes and ϑ(t) = 1
1−t for the root.

A straightforward extension of our previous description of plane-oriented recursive
trees, case k = 1, gives the following result.
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Theorem 11. The class of Un+1(k) of increasing trees is in bijection with the system
of labeled Łukasiewicz path diagrams whose plane paths are comprised of n steps, with
possibility function pos(.) given as follows:

pos(a`0) = 1,

pos(a`j) =
(
`+ k

k− 1

)
· (j+ 1) for j > 0,

pos(b0) = j+ 1.

Another tree family V = V(k) in bijection with (k+ 1)-Stirling permutations can
be obtained as follows: we combine a root node, weighted according to a (k+ 2)-
bundled increasing tree, with subtrees weighted according to k-bundled increasing
trees.

V =©1 × ϑ(T), T =©1 ×ϕ(T),
with ϕ(t) = 1

(1−t)k and ϑ(t) = 1
(1−t)k+2 . Thus,

V ′(z) = ϑ(T(z)) =
1

(1 − (k+ 1)z)1+ 1
k+1

, V(z) =
1

(1 − (k+ 1)z)
1

k+1
− 1.

Let Vn(k) denote the family of trees of V(k) with n nodes. By extraction of co-
efficients we observe that Vn(k) = |Vn(k)| = Qn(k+ 1). We note that a bijection
between Vn(k) and Qn(k+ 1) can be obtained similarly to Janson’s original bijec-
tion [14], proceeding via a depth-first walk, also taking into account the separation
walls of the bundled trees. See also the work of Janson et al. [15] for a closely re-
lated bijection between k-bundled increasing trees and so-called k-bundled Stirling
permutations. We summarize our findings.

Theorem 12. The family of V(k) of non-standard increasing trees can be constructed with
two degree-weight generating functions: ϕ(t) = 1

(1−t)k+2 for non-root nodes and ϑ(t) =
1

(1−t)k for the root. V(k) is in bijection with (k+ 1)-Stirling permutations and also with
(k+ 2)-ary increasing trees.

Proof. We label each separation wall of a node labeled v by the label of the node v.
Additionally, we label any ordinary edge by the label of the child. Any non-root
node has at least k− 1 outgoing edges, thinking of the separation walls as a special
type of edges. Moreover, it has one incoming edge from its ancestor. The root has
by definition k+ 1 separation walls. Now we perform the depth-first walk and code
the tree by the sequence of the labels visited on the edges, under the additional rule
that a label on a separation wall only contributes once. Since every proper edge
is traversed twice, and every label except 1 occurs on exactly one proper edge,
every integer appears exactly k + 1 times and the code is a permutation of the
multiset {1k+1, 2k+2, . . . ,nk+2}. By construction, the elements occurring between the
two occurrences of i are larger than i, since we can only visit nodes with higher
labels. �
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Theorem 13. The class of Vn+1(k) of increasing trees is in bijection with the system
of labeled Łukasiewicz path diagrams whose plane paths are comprised of n steps, with
possibility function pos(.) given as follows:

pos(a`0) =
(
`+ k+ 2
k+ 1

)
,

pos(a`j) =
(
`+ k

k− 1

)
· (j+ 1) for j > 0,

pos(bj) = j+ 1.

Proof. As the construction is similar to our constructions given before, we will be
more brief. Given a path diagram (L,p), we begin with one placeholder for an
internal node of the tree T . Concerning the root and the first step of the path, it
has to be a “rise” step Li = a`0: we enter the label one at the root and distribute
` placeholders into the k+ 2 different positions (induced by the k+ 2 separation
walls stemming from the root) according to the value of p1 and a lexicographical
ordering.

For the remaining steps 2 6 i 6 n we proceed as follows:

• If the i-th step of the path is a “fall” step Li = bj: using depth-first order,
choose the (pi + 1)-st available placeholder. Replace it with a node labeled
by i, itself having no child nodes.
• If the i-th step of the path is a “rise” step Li = a`j : Let s be the number of

integer times
(
`+k
k−1

)
goes into pi, and let t be the remainder of pi modulo(

`+k
k−1

)
, such that pi = s ·

(
`+k
k−1

)
+ t. Using depth-first order, choose the (s+ 1)-

st available placeholder and enter a node labeled i with k separation walls.
Distribute ` placeholders into the k different positions (induced by the k
separation walls) according to the value of t and a lexicographical ordering.

After n steps, there will be a single available placeholder remaining. To complete
the tree, replace that placeholder with a node labeled by n+1 (with no child nodes).

�

A direct consequence of Theorems 4, 11 and 13 is the following observation.

Corollary 2. There exist at least three different branched continued fractions expansions of

the generating function of k-Stirling permutations
∑
k>0Qn(k)t

n =
∑
n>0 k

n Γ(n+1+ 1
k )

Γ( 1
k )

tn

due to three different tree families and their path diagram representations.

Remark 7. We finish by giving a symbolic overview of the involved bijections be-
tween k-Stirling permutations and increasing tree families.

Qn(k) ∼=


Tn(k+ 1),
Un+1(k− 1) ∼= SEQ(B)n(k− 1),
Vn(k− 1).
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Our contributions in this work are the bijections to the family U and V. Note that
for k = 1 the second and third families are not defined. Moreover, for k = 2
the families Un+1(1) ∼= SEQ(B)n(1) ∼= Pn+1 are simply ordinary plane-oriented
recursive trees.
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