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�� ��Fixed divisor

I Consider a univariate integer polynomial f ∈ Z[X ] of
degree d ,

f =
d∑

i=0

aiX
i

I Its content is the gcd of its coefficients,

c(f ) = gcd
0≤i≤d

(ai )

I Its (fixed) divisor is the gcd of its integral images,

d(f ) = gcd
z∈Z

(f (z))
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�� ��Fixed divisor

Examples:

I 2X + 2 has content 2 and divisor 2 (f (0) = 2)

I The content always divides the divisor, c(f )|d(f )

I It is not true that c(f ) = d(f ):

X 2 − X = X (X − 1)

has c(f ) = 1, d(f ) = 2
(the product of two consecutive integers is always even
and f (2) = 2)
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�� ��Motivation

I The very important Bouniakowsky’s conjecture claims
that an irreducible integer polynomial with trivial fixed
divisor should produce an infinite number of primes.

I Only the deg f = 1 case is proven. This is Dirichlet’s
theorem on arithmetic progressions:

aX + b
produces an infinite number of primes iff gcd(a, b) = 1 iff

c(f ) = d(f ) = 1
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�� ��Basic results

I Hensel’s theorem (1896) gives the simplest way of
computing the fixed divisor:�� ��d(f ) = gcd(f (0), . . . , f (d))

I Pólya’s theorem: (1915) If f is primitive then d(f )|d!

I Well known to É. Borel: (1900) Let p be a prime in the
divisor which is greater than the degree of f . Then p is in
the content �� ��p > d , p|d(f ) implies p|c(f )
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�� ��Basic questions

Amazing!�� ��If p|d(f ) and p > d then p|a0, a1, . . . , ad

Questions

I How can this be proved in a simple way?

I What happens if p ≤ d? Is there some arithmetic relation
between the coefficients of f which is a multiple of p,
caused by p|d(f )?
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�� ��Basic answers

I The standard basis

X 0,X 1,X 2, . . .

is badly suited for relating d(f ) to the coefficients.
Change to the combinatorial basis

1,X ,X (X − 1),X (X − 1)(X − 2), . . .

Call the basis elements Π(0),Π(1),Π(2), . . .

I Observe that d(Π(i)) = i !
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�� ��Basic answers

I Let f =
∑d

i=0 ciΠ(i). Then it is not difficult to prove�� ��d(f ) = gcd(ci · i !)

I In particular, if p|d(f ) then p|ci or p|i !. If p > i then
p 6 |i !, hence p|ci . If p > d then p|ci for all i

I Since the ai are linear combinations of the ci , p|ai for all i

I If p ≤ d , p|ci for some i gives some relations for the ai ,
starring the Stirling numbers of the second kind

Not the best way to proceed!
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�� ��Basic answers

I Actually, it is better to stick with the canonical basis, and
use Hensel’s theorem and linear algebra

I p|d(f ) iff f (x) = 0 (mod p) for all x = 0, . . . , d . Write
this as the linear system V (d) · a = 0 in Zp,

00 01 . . . 0d

10 11 . . . 1d

...
. . .

. . .
...

d0 d1 . . . dd



a0

a1
...
ad

 = 0,

where V (d) is a Vandermonde matrix
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�� ��Basic answers


00 01 . . . 0d

10 11 . . . 1d

...
. . .

. . .
...

d0 d1 . . . dd



a0

a1
...
ad

 = 0

I det(V (d)) is the product of the differences i − j for
0 ≤ j < i ≤ d

I Hence, if d < p, then p 6 | det(V (d)), so V (d) is invertible
in Zp

I The only solution is a0, . . . , ad = 0 in Zp
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Prime case�� ��Basic answers


00 01 . . . 0d

10 11 . . . 1d

...
. . .

. . .
...

d0 d1 . . . dd



a0

a1
...
ad

 = 0

I Now suppose p ≤ d . Then p| det(V (d))

I Use Fermat’s little theorem,

xp = x for all x ∈ Zp

and hence group x together with xp, xp+p−1, . . .,
x2 together with xp+2, xp+2+p−1, and so on
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I We get new variables s1 = a1 + ap + a2p−1 + · · · ,
s2 = a2 + ap+1 + a2p + · · · ,

si =
∑

j≡i (mod p−1)

ai , i = 1, . . . , p − 1

I The new system is
00 01 . . . 0p−1

10 11 . . . 1p−1

...
. . .

. . .
...

(p − 1)0 (p − 1)1 . . . (p − 1)p−1




a0

s1
...

sp−1

 = 0
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Prime case�� ��Basic answers
00 01 . . . 0p−1

10 11 . . . 1p−1

...
. . .

. . .
...

(p − 1)0 (p − 1)1 . . . (p − 1)p−1




a0

s1
...

sp−1

 = 0

I Now the matrix of the system is V (p − 1), invertible in Zp

I The only solution is a0, s1, . . . , sp−1 = 0 in Zp�
�

�

p|d(f ) iff p|a0,

∑
k

a1+k(p−1), . . . ,
∑
k

ap−1+k(p−1)

Example: 3|d

(
6∑

i=0

aiX
i

)
iff 3|a0, a1 + a3 + a5, a2 + a4 + a6
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�� ��Generalization

I Given n ∈ N, the polynomials f ∈ Z[X ] such that n|d(f )
form an ideal In

I In has been studied before, and described by sets of
generators

I Goal: To describe In in terms of a smallest set of implicit
relations for the coefficients of f

I This is doable: By Hensel’s theorem, we get the relations
in form of a Vandermonde system of linear equations (over
the commutative ring Zn), with noninvertible matrix V (d)
in general. Then...
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General case�� ��Generalization

...we can do an approximation of Gaussian elimination:

1 Over Z we have the Hermite normal form H of V (d),
which is upper triangular (with some other properties) and
so that there exists a unimodular U such that

UV (d) = H

2 Since U is unimodular, the Hermite normal form projects
well to Zn. So we can equivalently put V (d) in triangular
form in Zn

3 We can further simplify H by multiplying pivots by the
units in Z∗n

This way we get a minimum system of implicit equations
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�� ��Generalization

Question: Is this good enough?

I The computation of the Hermite normal form runs in
polynomial time, but the matrix is of order n, while the
cardinal of the minimal system could be much smaller

I An specific Hermite plus pivots algorithm over Zn needs to
be implemented (also, in Z the entries of H grow fast)

Question: Can we do better?

I In the prime case we used Fermat’s theorem to reduce the
system to its minimal expression

I Let’s try something similar
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�� ��Bumpy road Fermat’s little theorem

I Euler’s theorem on φ(n) is of no use to us, it justs ignores
the bad elements

I We need a result for all x ∈ Zn

I The Lucas-Bachmann-Singmaster theorem (1966):

xλ(n)+m(n) ≡ xm(n) (mod n),

and this is the smallest identity of its kind

I λ(n) is Carmichael’s function (an improvement on φ(n))

I m(n) is the highest exponent in the prime decomposition
of n
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�� ��Bumpy road Fermat’s little theorem

Pros:

I With this trick we reduce the problem to

V (λ(n) + m(n)− 1)

I The reduction is the simplest possible: just group
coefficients in sums as before

Cons:

I We need the factorization of n

I λ(n) is quite large most of the time, probably not the best
possible reduction
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�� ��Bumpy road Fermat’s little theorem

n λ(n) m(n) λ(n) + m(n)− 1

2 1 1 1

3 2 1 2

4 2 2 3

5 4 1 4

6 2 1 2

7 6 1 6

8 2 3 4

9 6 2 7

10 4 1 4

12 2 2 3

14 6 1 6

15 4 1 4

16 4 4 7
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�� ��Kempner to the rescue

Question: How can we do better?

I We are actually looking at Zn as a polynomial identity ring

I We need not the simplest, but a smallest degree
polynomial identity of Zn in one variable

I We also need it to be primitive (monic)

I That identity is given precisely by a smallest degree
polynomial inside In, the ideal of integer polynomials
whose fixed divisor contains n

I The best description of In in terms of generators was given
by Kempner (1918)
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�� ��Kempner to the rescue

I Recall that Π(i) = X (X − 1) · · · (X − i + 1)

I Kempner’s theorem: For any n ∈ N, the ideal of integer
polynomials whose fixed divisor contains n is generated by
all the polynomials of the form

n

k
Π(µ(k)),

where k is a divisor of n and µ is the Kempner function
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�� ��Kempner to the rescue

I The Kempner function µ(n) returns the smallest m such
that n|m!

I Example: µ(6) = 3 since 6|3!, 6 6 |2!

I For a prime p, µ(p) = p and µ(pk) = kp while k ≤ p, but
µ(pp+1) = µ(pp) = p2

I Why does this matter? Because n already divides the
product of µ(n) consecutive numbers, and perhaps
µ(n) < n.
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�� ��Kempner to the rescue

I Corollary 1: The smallest monic identity of Zn in one
variable has degree µ(n)

I Corollary 2: If n is in the fixed divisor of a polynomial of
degree less than µ(n) then f is not primitive, it has a
divisor of n in its content
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�� ��Kempner to the rescue

n µ(n)− 1 λ(n) + µ(n)− 1

4 3 3
6 2 2
8 3 4
9 5 7

10 4 4
15 4 4
16 5 7
25 9 21
27 8 20
81 8 57
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To compute a minimal system of implicit relations for In:

1 Find some g ∈ In monic of minimal degree µ(n), for
example Π(µ(n)), and compute it in Zn

2 This gives a relation xµ(n) =
∑µ(n)−1

i=1 αix
i or all x ∈ Zn

3 Reduce all powers x i with i ≥ µ(n) with that relation.
This can be done in closed form, since it amounts to
solving a linear homogeneous recurrence relation
(kudos to Stephan Pfannerer for the help!)

4 The evaluation of a generic polynomial f is reduced to an

expression of the form
∑µ(n)−1

i=1 Six
i + a0

5 Carry the Vandermonde matrix V (µ(n)− 1) to triangular
form H

6 Solve HS = 0, where S = [Sµ−1, . . . ,S1, a0]T
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�� ��Algorithm

Example: Implicit relations for I9

I µ(9) = 6

I Pick g = (X 3 − X )2

(it works since 3|x3 − x for all x ∈ Z).
This is X 6 − 2X 4 + 2X 2 in Z9

I Hence x6 = 2(x4 − x2) for all x ∈ Z9

I If i ≥ 6,

x i = 2(2i + 1)x2 + 2(4− 2i)x4 if i even,

x i = 2(2i − 1)x3 + 2(6− 2i)x5 if i odd
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�� ��Algorithm

Example: Implicit relations for I9

I Now any f evaluates as Ax5 + Bx4 + Cx3 + Dx2 + Ex + a0

for x ∈ Z9

I Triangularize V (µ(9)− 1) = V (5) in Z9

(we skip the 0 row):
1 0 1 0 1
0 1 0 1 0
0 0 3 0 0
0 0 0 3 0
0 0 0 0 3


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Example: Implicit relations for I9

I Solve 
1 0 1 0 1
0 1 0 1 0
0 0 3 0 0
0 0 0 3 0
0 0 0 0 3



A
B
C
D
E

 = 0

I The equations are

A + C + E = 0,B + D = 0

3C = 0, 3D = 0, 3E = 0

I For deg f = 13 this gives

a0 = 0, a3 + a5 + · · ·+ a13 = 0, a2 + a4 + · · ·+ a12 = 0

3a1 = 0, 6(a13 + a7) + 3(a9 + a3) = 0, 6(a12 + a6) + 3(a8 + a2) = 0
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�� ��Algorithm

Question: Can we give a closed form for the reduction of
V (µ(n)− 1) in Zn, if the factorization of n is known?

I This way we could give a formula instead of an algorithm

V (µ(20)− 1) 


1 1 1 1
0 2 0 2
0 0 4 2
0 0 0 4

 


1 1 1 1
0 2 0 0
0 0 4 0
0 0 0 2


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I Implicit equations are well carried to the multivariate case
by induction

I If f (x) = 0 for all x ∈ Z implies∑
i∈A

αiai = 0

with f =
∑

i aiX
i , then g(x , y) = 0 for all x , y ∈ Z implies∑

i ,j∈A
αiαjaij = 0

for g =
∑

i ,j aijX
iY j , and so on.
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