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Tamari lattices

Tamari posets [Tamari, 1962]:
* objects: binary trees with n leaves,

* covering relation: right rotation:

* partial order relation: <.
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Tamari lattices

Tamari posets [Tamari, 1962]:
* objects: binary trees with n leaves,

* covering relation: right rotation:

* partial order relation: <.

Known facts: they are lattices, formula for their number of intervals,
admit generalizations (m-Tamari), etc.
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Tamari interval lattices

Tamari interval posets:
* objects: pairs of binary trees [S,T] such that S <; T,

* partial order relation: <y;:

[S, T] gtj [S/,T/] ~— S <t S/ and T gt T/.
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Tamari interval lattices

Tamari interval posets:
* objects: pairs of binary trees [S,T] such that S <; T,

* partial order relation: <y;:
[S, T] gtj [S/,T/] ~— S <t S/ and T gt T/.

Known facts: they are also lattices, their objects are encoded by
interval-posets, etc.
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Work context

Goal: study Tamari interval posets.
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Work context

Goal: study Tamari interval posets.

Way: introduce a new encoding of Tamari intervals.
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Work context

Goal: study Tamari interval posets.
Way: introduce a new encoding of Tamari intervals.

Results:
* simple representation of Tamari intervals,
* easy reading of some properties of Tamari intervals,

* geometric realization of the lattice.

6/23



Contents

Cubic coordinates

7/23



Famari lattices and goal Cubic coordinates Cubic ordinate poset

0O@00000

Interval-posets

An interval-poset P of size n is a partial order < on the set
{z1,...,2,} such that, for any i < k,

(i) if zx < a; then for all z; such that ¢ < j < k, one has z; < a5,
(ii) if x; < xy then for all z; such that i < j < k, one has z; < .

We denote ZP,, the set of interval-posets of size n.
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Interval-posets

An interval-poset P of size n is a partial order < on the set
{z1,...,2,} such that, for any i < k,

(i) if zx < a; then for all z; such that ¢ < j < k, one has z; < a5,
(ii) if x; < xy then for all z; such that i < j < k, one has z; < .

We denote ZP,, the set of interval-posets of size n.

ATA A

1 £ x3 EN x5 T @7 ®y  Tg T
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Interval-posets

An interval-poset P of size n is a partial order < on the set
{z1,...,2,} such that, for any i < k,

(i) if zx < a; then for all z; such that ¢ < j < k, one has z; < a5,
(ii) if x; < xy then for all z; such that i < j < k, one has z; < .

We denote ZP,, the set of interval-posets of size n.

ATA A

£t £ x3 EN x5 T @7 ®y  Tg T

There is a bijection p : ZP,, — TZ, [Chatel, Pons, 2015].

8/23



Famari lattices and goals Cubic coordinates Cubic coordinate posets
0000 [e]e] le]elele) 0000000000

Tamari diagrams
A Tamari diagram is a word u = ujus . .. u, of integers such that
(i) 0 < u; <n—iforallie[n;
(ii) wit; <wu;—jforallie [n] and 0 < j < u,.
The size of a Tamari diagram is its number of letters [Palo, 1986].
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Tamari diagrams
A Tamari diagram is a word u = ujus . .. u, of integers such that
(i) 0 < u; <n—iforallie[n;

(ii) wit; <wu;—jforallie [n] and 0 < j < u,.

The size of a Tamari diagram is its number of letters [Palo, 1986].

B FH

9021043100
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Tamari diagrams
A Tamari diagram is a word u = ujus . .. u, of integers such that
(i) 0 < u; <n—iforallie[n;
(ii) wit; <wu;—jforallie [n] and 0 < j < u,.
The size of a Tamari diagram is its number of letters [Palo, 1986].

% ey

9021043100 0010040002

A word v = v1v3 ... v, is a dual Tamari diagram if and only if its
reversal is a Tamari diagram.
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Compatibility
Let u (resp. v) be a (resp. dual) Tamari diagram of size n.

The diagrams v and v are compatible if j — 4 < u; implies v; < j — 1,
forall 1 <i<j<n.

In this case, (u,v) is a Tamari interval diagram.

Let 7TZD,, be the set of Tamari interval diagrams of size n.
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Compatibility
Let u (resp. v) be a (resp. dual) Tamari diagram of size n.

The diagrams v and v are compatible if j — 4 < u; implies v; < j — 1,
forall 1 <i<j<n.

In this case, (u,v) is a Tamari interval diagram.

Let 7TZD,, be the set of Tamari interval diagrams of size n.
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Bijection
Let x be the map sending a Tamari interval diagram (u,v) of size n to
the binary relation < on {x1,...,z,} where for all ¢ € [n] and
0 <1l < uy, wipy <z, and for all i € [n] and 0 < k < vy, T f < 5.
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Bijection
Let x be the map sending a Tamari interval diagram (u,v) of size n to
the binary relation < on {x1,...,z,} where for all ¢ € [n] and
0 <1l < uy, wipy <z, and for all i € [n] and 0 < k < vy, T f < 5.

rd o . 1 o x5 w4 x5 xg X7 Xs  Tg  Tip
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Bijection
Let x be the map sending a Tamari interval diagram (u,v) of size n to
the binary relation < on {x1,...,z,} where for all ¢ € [n] and
0 <1l < uy, wipy <z, and for all i € [n] and 0 < k < vy, T f < 5.

£ 2 r3 w4 @5 XL Xy Tz Xy L1

Theorem [c., 2019]

The map x is a bijection from 7ZD,, to ZP,,.
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Cubic coordinates

Let ¢ be a (n — 1)-tuple with entries in Z. We say that ¢ is a cubic
coordinate if the pair (u,v), where u is the word defined by u, =0
and for all i € [n — 1] by

u; = max(c;, 0),
and v is the word defined by v; = 0 and for all 2 < i < n by
V; = |IniIl(C,'_1, 0)‘,

is a Tamari interval diagram. The size of a cubic coordinate is its
number of entries plus one. The set of cubic coordinates of size n is
denoted by CC,,.
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Cubic coordinates

Let ¢ be a (n — 1)-tuple with entries in Z. We say that ¢ is a cubic
coordinate if the pair (u,v), where u is the word defined by u, =0
and for all i € [n — 1] by

u; = max(c;, 0),
and v is the word defined by v; = 0 and for all 2 < i < n by
v = |min(ci_1, 0)‘,

is a Tamari interval diagram. The size of a cubic coordinate is its
number of entries plus one. The set of cubic coordinates of size n is
denoted by CC,,.

Example
v=0010040002 U; — Vig1
u=9021043100 s (9,-1,2,1,-4,4,3,1,-2).
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Some properties

* There is a bijection ¢ : CC,, = TID,,.
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Some properties

* There is a bijection ¢ : CC,, — TID,,.

* A cubic coordinate c of size n is synchronized if for all ¢ € [n — 1],
¢; # 0. The set of synchronized cubic coordinates of size n is
denoted by CC;¥"°. (synchronized Tamari interval,
[Préville-Ratelle, Viennot, 2017])
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Some properties

* There is a bijection ¢ : CC,, — TZD,,.

* A cubic coordinate c of size n is synchronized if for all ¢ € [n — 1],
¢; # 0. The set of synchronized cubic coordinates of size n is
denoted by CC;¥"°. (synchronized Tamari interval,
[Préville-Ratelle, Viennot, 2017])

* A Tamari interval diagram (u,v) of size n is new if the following
conditions are satisfied:
(i) 0<u; <n—i—1forallie[n—1];
(ii) 0<wv; <j—2forall je{2,...,n};
(iii) up <l—k—1orvy <l—k—1forall k,I € [n] such that
kE+1<l
(new Tamari intervals, [Chapoton, 2017))
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Some properties

* There is a bijection ¢ : CC,, — TZD,,.

* A cubic coordinate c of size n is synchronized if for all ¢ € [n — 1],
¢; # 0. The set of synchronized cubic coordinates of size n is
denoted by CC;¥"°. (synchronized Tamari interval,
[Préville-Ratelle, Viennot, 2017])

* A Tamari interval diagram (u,v) of size n is new if the following
conditions are satisfied:
(i) 0<u; <n—i—1forallie[n—1];
(ii) 0<wv; <j—2forall je{2,...,n};
(iii) up <l—k—1orvy <l—k—1forall k,I € [n] such that
kE+1<l
(new Tamari intervals, [Chapoton, 2017))

* If (u,v) is synchronized then (u,v) is not new.

lattices and goal Cubic coordinates Cubic ordinate poset
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Cubic coordinate posets
Let ¢, € CC,,.
Partial order: ¢ < ¢ if and only if ¢; < ¢ for all i € [n — 1].

Covering relation: ¢ < ¢ if and only if there is exactly one i € [n — 1]
such that ¢; < ¢}, and if there is a ¢’ € CC,, such that ¢ <cc ¢’ <ce
then either c =c¢” or ¢/ = ¢”.
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Cubic coordinate posets
Let ¢, € CC,,.
Partial order: ¢ < ¢ if and only if ¢; < ¢ for all i € [n — 1].

Covering relation: ¢ < ¢ if and only if there is exactly one i € [n — 1]
such that ¢; < ¢}, and if there is a ¢’ € CC,, such that ¢ <cc ¢’ <ce
then either c =c¢” or ¢/ = ¢”.

Let ¢ =¢ tox top™l.
Theorem [c., 2019]

The map 1 is an isomorphism of posets from TZ,, to CC,,.
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Cubic coordinate posets
Let ¢, € CC,,.
Partial order: ¢ < ¢ if and only if ¢; < ¢ for all i € [n — 1].

Covering relation: ¢ < ¢ if and only if there is exactly one i € [n — 1]
such that ¢; < ¢}, and if there is a ¢’ € CC,, such that ¢ <cc ¢’ <ce
then either c =c¢” or ¢/ = ¢”.

Let ¢ =¢ tox top™l.
Theorem [c., 2019]

The map 1 is an isomorphism of posets from TZ,, to CC,,.

TID,, —— IP,

|

ce, —— 11,
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Cubic realization of CCs

(-1,1) (0,1) (2,1)
> g
V' V' V'
(—1,0) (0,0) (1,0) (2,0)
> > >
V' V' V'
(0,-1) (1,-1) (2,-1)
A g g
V' V'
-1,-2) (0,-2) (1,-2)
> >

The elements of CC3 are vertices and the cover relations are arrows
orientated to the covering cubic coordinates.
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Cells

Let ¢ € CC,,. Suppose that there is ¢’ € CC,, such that ¢; > ¢; and
c; = c¢; for all j # 4, with 4, j € [n — 1]. We define then the map of
minimal increase 1; as follows

Ti (C) = (Clv . 'aciflv/c\iaciJrla .. 'acnfl)v

such that ¢ <1; (¢) and ¢; < ¢; < ¢f.

7
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Cells

Let ¢ € CC,,. Suppose that there is ¢’ € CC,, such that ¢; > ¢; and
c; = c¢; for all j # 4, with 4, j € [n — 1]. We define then the map of
minimal increase 1; as follows

Ti (C) = (Clv . 'aciflv/c\iaciJrla .. 'acnfl)v

such that ¢ <1; (¢) and ¢; < ¢; < ¢f.

7

Let ¢™ € CCy, then ¢ is minimal-cellular if for all ¢ € [n — 1], 15 (¢™)
is well-defined.
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Cells

Let ¢ € CC,,. Suppose that there is ¢’ € CC,, such that ¢; > ¢; and
c; = c¢; for all j # 4, with 4, j € [n — 1]. We define then the map of
minimal increase 1; as follows

Ti (C) = (Cla ey Ci*lv/c\’ia Citlyeeny Cnfl)v
such that ¢ <1, (¢) and ¢; < ¢ < ¢}

Let ¢™ € CCy, then ¢ is minimal-cellular if for all ¢ € [n — 1], 15 (¢™)
is well-defined.

Example

¢ =(0,-1,1,-1,-5,0,1,—1,—3) is minimal-cellular.
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Cells

Lemma

Let ¢™ be a minimal-cellular cubic coordinate of size n and
i€n—1].If

¢ =tit1 (fir2 (.. (-1 (™)) ..1)),
is well-defined, then 1; (¢’) is well-defined.
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Cells

Lemma

Let ¢™ be a minimal-cellular cubic coordinate of size n and
i€n—1].If

¢ =tit1 (fir2 (.. (-1 (™)) ..1)),
is well-defined, then 1; (¢’) is well-defined.

Let ¢™ € CC,,, then ¢ is the maximal-cellular correspondent of ¢™ if

M =11 (12 (- (tat (€™))...)).
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Cells

Lemma

Let ¢™ be a minimal-cellular cubic coordinate of size n and
i€n—1].If

¢ =tit1 (fir2 (.. (-1 (™)) ..1)),
is well-defined, then 1; (¢’) is well-defined.

Let ¢™ € CC,,, then ¢ is the maximal-cellular correspondent of ¢™ if

M =11 (12 (- (tat (€™))...)).

We denote by (c™, c™) the corresponding cell.
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Cells

Example
¢ =(0,-1,1,-1,-5,0,1,—1,—3) is minimal-cellular, and its
maximal-cellular correspondent is ¢ = (1,0,2,0, —4,3,2,0, —2).

, ,
- -
i i
- — - —
i i
o o
L — A L — ¥ e
- - - /
i d i i
S — < — S — , —
i d i i
i d i i
i e i i
Rl , o R o S’
A i Al Y d Al
A & G A - A
0 0 0 0
o o e e
o o od od
m m
C
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Cells

Example

¢ =(0,-1,1,-1,-5,0,1,—1,—3) is minimal-cellular, and its
maximal-cellular correspondent is ¢ = (1,0,2,0, —4,3,2,0, —2).
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Cells

Example

¢ =(0,-1,1,-1,-5,0,1,—1,—3) is minimal-cellular, and its
maximal-cellular correspondent is ¢ = (1,0,2,0, —4,3,2,0, —2).

cm Ts (o (c™))
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Cells

Example

¢ =(0,-1,1,-1,-5,0,1,—1,—3) is minimal-cellular, and its
maximal-cellular correspondent is ¢ = (1,0,2,0, —4,3,2,0, —2).

cm T7 (T8 (To (™))
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Cells

Example

¢ =(0,-1,1,-1,-5,0,1,—1,—3) is minimal-cellular, and its
maximal-cellular correspondent is ¢ = (1,0,2,0, —4,3,2,0, —2).

— — —

i -
i — < o —
i e - K
i 4 - K
i 4 - K
Rl , o R o -
Rl - o R - ,
- & G A - -
0 0 0 .
o o e i4
o o od .
<

cm T6 (17 (Ts (T (c™))))
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Cells

Example

¢ =(0,-1,1,-1,-5,0,1,—1,—3) is minimal-cellular, and its
maximal-cellular correspondent is ¢ = (1,0,2,0, —4,3,2,0, —2).

— — —

-
e 4
- - -
% — K — - — ,
/ - % -
- % - -
% - - %
- - - -
A % A % % 4
A , - g , . %
A i Al i d s
- & G - - -
s K3 - 7
7 7 o d
% % - e
-

cm 15 (Te (17 (T8 (To (c™)))))
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Cells

Example

¢ =(0,-1,1,-1,-5,0,1,—1,—3) is minimal-cellular, and its
maximal-cellular correspondent is ¢ = (1,0,2,0, —4,3,2,0, —2).

K
L,
S —
. %
e o
' -
- — — % —
e - L,
e i 3
- - o
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Bijection
Let v be the map defined for all ¢ € [n — 1] by

m M):{c;” if " <0,

YE G .
(e’ cMoif e >0,

and I' be the map from the set of cells of size n to the set of
(n — 1)-tuples defined by

D™, ™)) = (o(el ), (e, e3"), - (e, enla)).
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Bijection
Let v be the map defined for all ¢ € [n — 1] by

m M):{c;” if ™ <0,

YE G .
(e’ cMoif e >0,

and I' be the map from the set of cells of size n to the set of
(n — 1)-tuples defined by

F(<Cm’ CM>) = (7(611%7 C{\/I)a W(C;n? Céw)» s ”V(C;nflv Cﬁ{l))'
Example
The cell ((0,-1,1, —1 5,0,17 -3),(1,0,2,0,—4,3,2,0,—2)) is
sent to (1,—1, 2 —5,3,2,— 3).
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Bijection
Let v be the map defined for all ¢ € [n — 1] by

m M):{c;” if ™ <0,

YE G .
(e’ cMoif e >0,

and I' be the map from the set of cells of size n to the set of
(n — 1)-tuples defined by

F(<Cma CM>) = (7(CT7 C{M)’,V(C;n7 Céw)» e ,7(6?,170%1)).

Example

The cell ((0,-1,1, —1

5,0,17 -3),(1,0,2,0,—4,3,2,0,—2)) is
sent to (1,—1, 2 —5,3,2,—

: 3).

)

Theorem [c., 2019]
The map I is a bijection from the set of cells of size n to CC;?".

20/23



Cubic coordinate posets
0000000800

* Blue dots: synchronized cubic coordinates.
* Red dot: cubic coordinate (0, 0).
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EL-Shellability

Generalization of Bjorner and Wachs results on Tamari:

Let ¢,c € CC,, such that ¢ < ¢ with ¢; < ¢ for ¢ € [n — 1]. Let
A: E(CC,) — 72 the edge-labeling:

)\(07 Cl) = (57 i7 Ci)7

-1 if ¢ < 0,
where € =
1 otherwise.
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EL-Shellability

Generalization of Bjorner and Wachs results on Tamari:

Let ¢,c € CC,, such that ¢ < ¢ with ¢; < ¢ for ¢ € [n — 1]. Let
A: E(CC,) — 72 the edge-labeling:

)\(67 cl) = (57 i7 Ci)7

-1 if ¢ < 0,
where € =
1 otherwise.

Theorem [c., 2019]

The map A gives an EL-labeling of CC,,. Moreover, there is at most
one falling chain in each interval of CC,,.
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