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TOEPLITZ AND HANKEL MATRICES

We say that a matrix is Toeplitz or Hankel if it is constant along its diagonals or
antidiagonals, respectively

f0 f1 f2 f3 f4 · · ·
f1 f0 f1 f2 f3 · · ·
f2 f1 f0 f1 f2 · · ·
f3 f2 f1 f0 f1 · · ·
f4 f3 f2 f1 f0 · · ·
...

...
...

...
...


,



f1 f2 f3 f4 f5 · · ·
f2 f3 f4 f5 f6 · · ·
f3 f4 f5 f6 f7 · · ·
f4 f5 f6 f7 f8 · · ·
f5 f6 f7 f8 f9 · · ·
...

...
...

...
...


.

We will denote these matrices by

TN(f) = (fj−k)
N
j,k=1, HN(f) = (fj+k−1)

N
j,k=1,

where f(z) =
∑
k∈Z

fkzk .

We are interested in the minors of these matrices, obtained by discarding some of
their rows and columns. Note that any minor can be codified in a couple of partitions
λ and µ.

For instance, above we have λ = (1) and µ = (1, 1).
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T+H MATRICES IN COMBINATORICS AND REPRESENTATION THEORY

Toeplitz and Hankel matrices appear in many different contexts, such as random
matrices, orthogonal polynomials, statistical mechanics...

They also occur in combinatorics and representation theory. For instance:

• Jacobi-Trudi identities:

sµ(x) = det
(
hj−k+µk (x)

)l(µ)
j,k=1

= det
(
ej−k+µ′

k
(x)

)µ′
1

j,k=1
.

• Characters of the infinite symmetric group:
Edrei-Thoma’s theorem on the classification of the extreme characters of S(∞) is
equivalent to the classification of all infinite triangular TNN Toeplitz matrices.

• Gessel identity:
det TN(f) =

∑
l(ν)≤N

sν(x)sν(y),

which allowed to solve the longest increasing subsequence problem.
• Group integrals over the classical Lie groups:∫

f(M)dM = det (TN(f)) ,

where G(N) = Sp(2N),O(2N),O(2N+ 1).
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FACTORIZATIONS OF CHARACTERS INDEXED BY RECTANGULAR SHAPES

Choose the following function f in the matrices above

f(z) =
K∏
j=1

(1+ xjz)(1+ xjz−1) =

 K∏
j=1

xj

 K∑
j=−K

eK+j(x1, . . . , xK, x−1
1 , . . . , x−1

K )zj.

The determinants of the Toeplitz and Toeplitz±Hankel matrices generated by this
function can be expressed as characters of each of the groups G(N) indexed by
rectangular shapes. This implies the following result.

Theorem (Ciucu-Krattenthaler’09, GG-Tierz’19)
Consider a finite set of variables x = (x1, x2, . . . , xK). The following relations hold
between the symmetric functions associated to the characters of the groups G(N):

s(2N−1)K (x, x
−1) = sp(N−1)K (x)o

even
(NK)(x)

=
(−1)NK

2

[
oodd
(N−1)K (x)o

odd
(NK)(−x) + oodd

(NK)(x)o
odd
(N−1)K (−x)

]
,

s(2N)K (x, x
−1) = (−1)NKoodd

(NK)(x)o
odd
(NK)(−x)

=
1
2

[
sp(NK)(x)o

even
(NK)(x) + sp(N−1)K (x)o

even
(N+1)K (x)

]
.
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INVERSES OF TOEPLITZ MATRICES

Theorem (GG-Tierz’17)
Any minor of a semi-banded Toeplitz matrix can be expressed as the specialization of
a single skew Schur polynomial

det Tλ,µN

 d∏
k=1

(1+ ykz−1)
∞∏
j=1

(1+ xjz)

 =

 d∏
k=1

yNk

 s((dN)+µ/λ)′ (y
−1
1 , . . . , y−1

d , x).

We combine this with the usual formula for the inverse of a matrix in terms of its
cofactors. That is, in terms of minors of the original matrix where only one row and
column have been removed. For the case of Toeplitz matrices, this reads[

T−1
N (f)

]
j,k

= (−1)j+kdet T (1k−1),(1j−1)
N−1 (f) / det TN(f).

Therefore, computing the inverse and determinant of a Toeplitz matrix amounts to
computing a particular specialization of the above skew Schur polynomials. For
instance,

s(N,...,N︸ ︷︷ ︸
d

,j)/(k)(1, q, q2, . . . ) =

q(d−1)j−dk+d(d−1)N/2

(1− q)d(N+1)
Gq(N+ 2)Gq(d+ 1)
Gq(d+ N+ 2)

(q; q)d+k
(q; q)j

N∑
r=max(j,k)

qr
[ r
r− k

]
q

[d+ r− j− 1
r− j

]
q
.
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T−1
N (f)

]
j,k

= (−1)j+kdet T (1k−1),(1j−1)
N−1 (f) / det TN(f).

Therefore, computing the inverse and determinant of a Toeplitz matrix amounts to
computing a particular specialization of the above skew Schur polynomials. For
instance,

s(N,...,N︸ ︷︷ ︸
d

,j)/(k)(1M) = G(N+ 2)G(M+ N+ 2)
G(M+ 1)

G(M− d+ 1)
G(M− d+ N+ 2)

G(d+ 1)
G(d+ N+ 2)

×

Γ(M− d+ j+ 1)
Γ(j+ 1)

Γ(d+ k+ 1)
Γ(k+ 1)

N∑
r=max(j,k)

Γ(r+ 1)
Γ(M+ r+ 1)

(M− d+ r− k− 1
r− k

)(d+ r− j− 1
r− j

)
,

s(N,...,N︸ ︷︷ ︸
d

,j)/(k)(1, q, q2, . . . ) =

q(d−1)j−dk+d(d−1)N/2

(1− q)d(N+1)
Gq(N+ 2)Gq(d+ 1)
Gq(d+ N+ 2)

(q; q)d+k
(q; q)j

N∑
r=max(j,k)

qr
[ r
r− k

]
q

[d+ r− j− 1
r− j

]
q
.



INVERSES OF TOEPLITZ MATRICES

Theorem (GG-Tierz’17)
Any minor of a semi-banded Toeplitz matrix can be expressed as the specialization of
a single skew Schur polynomial

det Tλ,µN

 d∏
k=1

(1+ ykz−1)
∞∏
j=1

(1+ xjz)

 =

 d∏
k=1

yNk

 s((dN)+µ/λ)′ (y
−1
1 , . . . , y−1

d , x).

We combine this with the usual formula for the inverse of a matrix in terms of its
cofactors. That is, in terms of minors of the original matrix where only one row and
column have been removed. For the case of Toeplitz matrices, this reads[

T−1
N (f)

]
j,k

= (−1)j+kdet T (1k−1),(1j−1)
N−1 (f) / det TN(f).

Therefore, computing the inverse and determinant of a Toeplitz matrix amounts to
computing a particular specialization of the above skew Schur polynomials. For
instance,

s(N,...,N︸ ︷︷ ︸
d

,j)/(k)(1, q, q2, . . . ) =

q(d−1)j−dk+d(d−1)N/2

(1− q)d(N+1)
Gq(N+ 2)Gq(d+ 1)
Gq(d+ N+ 2)

(q; q)d+k
(q; q)j

N∑
r=max(j,k)

qr
[ r
r− k

]
q

[d+ r− j− 1
r− j

]
q
.



TOEPLITZ AND HANKEL MATRICES

Many more results follow from this approach:

• Explicit solutions of random matrix models.
• Generalizations of Gessel’s identity to minors of Toeplitz±Hankel matrices.
• Expansions of determinants of Toeplitz±Hankel matrices as sums of minors of
Toeplitz matrices. Equivalently: expansions of characters indexed by rectangular
shapes as sums of skew Schur polynomials.

• Asymptotics of minors of Toeplitz±Hankel matrices. Equivalently: study of the
large-N regime of gauge theories with symmetries other than unitary.



Thank you!


