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Totally positive matrices

Definition

A real matrix A is totally positive (resp. totally nonnegative) if every
minor is positive (resp. nonnegative).
Let (GLn)>0 denote the set of n × n totally positive matrices, and
(GLn)≥0 denote the set of non-singular n× n totally nonnegative matrices.

Example: 
1 1 1 1
1 2 3 4
1 4 9 16
1 8 27 64

 ∈ (GL4)>0
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Two classical results

Theorem (Gantmacher-Krein (1937))

The eigenvalues of a totally positive matrix are all real, positive, and
distinct.

Theorem (Loewner-Whitney Theorem (1955,1952))

(GLn)≥0 is the semigroup generated by the elementary Jacobi matrices
with positive parameters.

With t > 0,

x2(t) =


1 0 0 0
0 1 t 0
0 0 1 0
0 0 0 1

 h2(t) =


1 0 0 0
0 t 0 0
0 0 1 0
0 0 0 1

 y3(t) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 t 1
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From networks to matrices

Let N be a planar acyclic directed graph with sources 1, 2, . . . , n and sinks
1′, 2′, . . . , n′.

N =

a

b

c
1

2

3

1′

2′

3′

M(N) =

1 + ac a 0
c 1 0
bc b 1



All edges are directed to the right. Unlabeled edges have weight 1.

Theorem (Lindström-Gessel-Viennot)

The minor detM(N)I ,J is equal to the weighted sum of families of
non-intersecting paths from sources I to sinks J ′.

Corollary

For any N with positive edge weights, M(N) is TNN.
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Idea of proof

Produce a sign-reversing involution on intersecting path families.

a

b

c
1

2

3

1′

2′

3′

Contributes to m12m21.
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Application: Pascal’s triangle


1 4 6 4 1
0 1 3 3 1
0 0 1 2 1
0 0 0 1 1
0 0 0 0 1



For example,

det

6 4 1
3 3 1
1 2 1

 = 1 ≥ 0

Thomas Lam (U.Michigan, IAS) Total positivity April 15, 2019 6 / 20



Application: Pascal’s triangle


1 4 6 4 1
0 1 3 3 1
0 0 1 2 1
0 0 0 1 1
0 0 0 0 1



For example,

det

6 4 1
3 3 1
1 2 1

 = 1 ≥ 0

Thomas Lam (U.Michigan, IAS) Total positivity April 15, 2019 6 / 20



Factorization

Observation

Concatenating networks corresponds to multiplying matrices:
M(N ∗ N ′) = M(N)M(N ′). (Proof: Cauchy-Binet formula.)

x2(t)“ = ” t h3(t)“ = ”
t

y1(t)“ = ”

t

Corollary

Every g ∈ (GLn)≥0 can be represented by a planar directed network.
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Stembridge’s theorem

Let χ : Sn → C be a function on the symmetric group.

Definition

The immanant is the function on n × n matrices defined by

Immχ(A) =
∑
w∈Sn

χ(w)a1,w(1) · · · an,w(n).

When χ = χλ is an irreducible character of Sn, we call Immλ = Immχλ

the irreducible immanant. For the sign and trivial characters, we have

Imm(1n)(A) = det(A) Imm(n)(A) = perm(A).

Also, Imm(21)(A) = 2a11a22a33 − a12a23a31 − a13a21a32.

Theorem (Stembridge)

For totally nonnegative A, we have Immλ(A) ≥ 0.
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Haiman’s theorem

Let Hµ/ν = (hµi−νj ) be a (skew) Jacobi-Trudi matrix, i.e., a submatrix of
h1 h2 h3 · · ·
h0 h1 h2 · · ·
0 h0 h1 · · ·
...

...
...

. . .


satisfying det(Hµ/ν) = sµ/ν , the skew Schur function.

Theorem (Haiman)

Immλ(Hµ/ν) is Schur-positive.

Earlier, Greene showed that Immλ(Hµ/ν) is monomial positive.
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Cluster algebras (just a hint)

U>0 =


1 a b

0 1 c
0 0 1

 a > 0, b > 0

c > 0, ∆ = ac − b > 0



We don’t need to check all four inequalities! It is enough to have either

a > 0, b > 0, ∆ > 0

or
c > 0, b > 0, ∆ > 0

In modern language, {a, b,∆} and {c , b,∆} are clusters. The variables
b,∆ are “frozen”, and the relation

a =
b + ∆

c
⇔ c =

b + ∆

a

is an exchange relation.
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The Grassmannian

The Grassmannian Gr(k, n) is the set of k-dimensional subspaces of Rn.
We represent V ∈ Gr(k, n) by a k × n matrix whose rows are a basis for V .[

1 0 2 3
0 1 −1 4

]
−→ span{(1, 0, 2, 3), (0, 1,−1, 4)} ⊂ R4

Two matrices represent the same point in Gr(k , n) if they are related by
left-multiplication by g ∈ GLk .
For I = {i1, i2, . . . , ik}, let ∆I (V ) denote the Plücker coordinate: the
k × k minor indexed by columns i1, i2, . . . , ik . The Plücker coordinates are
only defined up to a common scalar.
If ∆1,2,...,k(V ) 6= 0, then V belongs to the open Schubert cell:1 0 0 a b c

0 1 0 d e f
0 0 1 g h i

 ⊂ Gr(3, 6)

The dimension of Gr(k, n) is thus k(n − k).
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Totally nonnegative Grassmannian I

Definition (Postnikov)

A point V ∈ Gr(k , n) lies in the totally nonnegative Grassmannian
Gr≥0(k, n) if ∆I (V ) ≥ 0 for all I .

The totally positive Grassmannian Gr>0(k , n) is the locus where

∆I (V ) > 0. Example:

[
1 2 0 −3
0 3 1 1

]
∈ Gr>0(2, 4).

The Grassmannian Gr(k, n) contains
(n
k

)
torus-fixed points

eI = e{i1,i2,...,ik} = span(ei1 , ei2 , . . . , eik ).

Definition (Lusztig)

Define
Gr≥0(k, n) := (GLn)>0 · e{1,2,...,k}.

The two definitions coincide, but this is not obvious.
We’ll use Postnikov’s definition.
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Totally nonnegative Grassmannian II

The torus Rn
>0 acts on Gr≥0(k, n) by scaling columns. A generic point in

Gr≥0(2, n) can be scaled to[
1 1 1 1 1
a1 a2 a3 a4 a5

]
The positivity condition for Gr>0(2, n) is that a1 < a2 < a3 < · · · < a5.

1 2 3

2
3

4 5

When some Plücker coordinates go to 0, the configuration degenerates.
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Positroid stratification I

Given V ∈ Gr(k , n)

V =

v1 v2 . . . vn

 
. . . v0 v1 . . . vn vn+1 . . .


with vi+n = (−1)(k−1)vi .

Define fV : Z→ Z by

fV (i) = min{j ≥ i | vi ∈ span(vi+1, vi+2, . . . , vj)}

Example:[
1 2 0 −1 0
2 4 0 3 1

]
→ f (1) = 2, f (2) = 5, f (3) = 3, f (4) = 6, f (5) = 9, . . .
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Positroid stratification II

Proposition (Postnikov, Knutson–L.–Speyer)

The function f = fV : Z→ Z is a (k , n)-bounded affine permutation:

1 f (i + n) = f (i) for all i ∈ Z,

2 i ≤ f (i) ≤ i + n,

3 f (1) + f (2) + · · ·+ f (n) = 1 + 2 + · · ·+ n + kn,

4 f : Z→ Z is a bijection.

Let Bound(k , n) be the set of (k , n)-bounded affine permutations or
juggling patterns.

Definition

Define the open positroid variety and (closed) positroid variety

Π̊f := {V ∈ Gr(k , n) | fV = f } Πf := Π̊f

and the totally nonnegative open positroid cell and closed positroid cell
Πf ,>0 := Π̊f ∩Gr≥0(k , n) Πf ,≥0 := Πf ∩Gr≥0(k , n).
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Closure partial order

Theorem (Postnikov, Rietsch, Knutson–L.–Speyer)

We have
Πf =

⊔
g≤f

Π̊g and Πf ,≥0 =
⊔
g≤f

Πg ,>0

where ≤ is the partial order on Bound(k , n) that is dual to affine Bruhat
order.

Example: (writing window notation [f (1), f (2), . . . , f (5)])

[4, 5, 3, 6, 7] ≥ [2, 5, 3, 6, 9] ≥ [5, 2, 3, 6, 9][
1 1 0 −1 0
2 4 0 3 1

] [
1 2 0 −1 0
2 4 0 3 1

] [
1 0 0 −1 0
2 0 0 3 1

]
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Positroid stratification III

Theorem (Postnikov)

For f ∈ Bound(k , n), we have that Πf ,>0 is homeomorphic to an open ball
Rd
>0. In particular, it is nonempty.

Postnikov gave a construction of points in Πf ,>0 via plabic graphs. We
will explain a version of this using the dimer model.

Theorem (Galashin–Karp–L.)

The cells {Πf ,>0 | f ∈ Bound(k , n)} give Gr≥0(k , n) the structure of a
regular CW-complex.

A regular CW-complex is a CW-complex X where the attaching maps are
homeomorphisms

ι : B −→ X

onto its image in X . We will discuss this result and its motivation in
Lecture 3.
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Postiroids

Definition (Matroid)

Let X ∈ Gr(k , n). The matroid MX is the collection MX ⊂
([n]
k

)
MX = {I | ∆I (X ) 6= 0}.

When X ∈ Gr≥0(k , n), we call MX a positroid.

[
1 2 0 −1 0
2 4 0 3 1

]
→M = {14, 15, 24, 25, 45}

Postnikov’s positroid cells are determined by specifying a positroid. Set

ΠM,>0 := {X ∈ Gr≥0(k , n) | ∆I (X ) > 0 for all I ∈M}.

Theorem

There is a bijection Bound(k, n)→ (k, n)-positroids, f 7→ M such that
Πf ,>0 = ΠM,0.
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Grassmann necklaces and Oh’s Theorem

Let X ∈ Gr(k , n). The Grassmann necklace is the n-tuple (I1, I2, . . . , In)
where Ia is the lexicographically minimal non-vanishing Plücker coordinate
under the a-cyclically rotated order.[

1 2 0 −1 0
2 4 0 3 1

]
→ {14, 24, 45, 45, 15}

A Schubert matroid is MI := {J ∈
([n]
k

)
| J ≥ I}.

Theorem (Oh)

Every positroid M is the intersection of cyclically rotated Schubert
matroids of its Grassmann necklace:

M =
n⋂

a=1

M(a)
I

For example, M24 = {24, 25, 34, 35, 45}
M(2)

24 = {12, 13, 14, 15, 24, 25, 34, 35, 45}.
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Gr≥0(1, n) and Gr≥0(2, n)

Gr≥0(1, n) is a (n − 1)-dimensional simplex in Pn−1.
Each positroid cell Πf ,>0 is of the form

{[a0 : 0 : a2 : a3 : 0 : 0 : 0 : a7]}

where some coordinates are 0, and the rest (a0, a2, a3, a7) take arbitrary
values in R>0.

The topology and combinatorics of Gr≥0(2, n) is more complicated. Each
positroid cell Πf ,>0 is given by a collection of conditions of the form

1 the column vector vi = 0
2 the column vectors vj , vj+1, . . . , vk are parallel

After rescaling the columns, we obtain the picture:

1

3
4
5 8

9
10

2, 6, 7

[
1 0 a αa βa 0 0 c 0 0
0 0 b αb βb 0 0 d λ 1

]
a, b, c , d , λ, α, β, ad − bc > 0
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