Lecture 2: Total positivity and statistical mechanics

Thomas Lam
U. Michigan, IAS
tfylam@umich.edu

Curia, April 16, 2019

Thanks to Pasha Galashin for some slides!

Introduction

In the last lecture, I recalled the fundamental connection

$$
\left\{\begin{array}{l}
\text { planar networks with } \\
n \text { sources and } n \text { sinks }
\end{array}\right\} \longrightarrow\left\{\begin{array}{l}
\text { totally nonnegative } \\
n \times n \text { matrices }
\end{array}\right\}
$$

arising from counting non-intersecting path families.

Introduction

In the last lecture, I recalled the fundamental connection

$$
\left\{\begin{array}{l}
\text { planar networks with } \\
n \text { sources and } n \text { sinks }
\end{array}\right\} \longrightarrow\left\{\begin{array}{l}
\text { totally nonnegative } \\
n \times n \text { matrices }
\end{array}\right\}
$$

arising from counting non-intersecting path families.
The aim of this lecture is to do an analogous construction for $\mathrm{Gr}_{\geq 0}(k, n)$.

Dimer model	$\mathrm{Gr}_{\geq 0}(k, n)$
Electrical networks	$\mathrm{LG}_{\geq 0}(n+1,2 n)$
Ising model	$\mathrm{OG}_{\geq 0}(n, 2 n)$

In terms of classical enumerative combinatorics, the first two cases are related to enumerating perfect matchings and trees in graphs. Both are known to be related to determinants: for example, recall the matrix-tree theorem.

Totally nonnegative Grassmannian

Definition (Postnikov (2006))

A point $V \in \operatorname{Gr}(k, n)$ lies in the totally nonnegative Grassmannian $\operatorname{Gr}_{\geq 0}(k, n)$ if $\Delta_{I}(V) \geq 0$ for all I.

The totally positive Grassmannian $\mathrm{Gr}_{>0}(k, n)$ is the locus where $\Delta_{l}(V)>0$. Example:

$$
\left[\begin{array}{cccc}
1 & 2 & 0 & -3 \\
0 & 3 & 1 & 1
\end{array}\right] \quad \begin{array}{lll}
\Delta_{12}=3 & \Delta_{13}=1 & \Delta_{14}=1 \\
\Delta_{23}=2 & \Delta_{24}=11 & \Delta_{34}=3
\end{array}
$$

Totally nonnegative Grassmannian

Definition (Postnikov (2006))

A point $V \in \operatorname{Gr}(k, n)$ lies in the totally nonnegative Grassmannian $\operatorname{Gr}_{\geq 0}(k, n)$ if $\Delta_{I}(V) \geq 0$ for all I.

The totally positive Grassmannian $\mathrm{Gr}_{>0}(k, n)$ is the locus where $\Delta_{l}(V)>0$. Example:
\(\left[\begin{array}{cccc}1 \& 2 \& 0 \& -3

0 \& 3 \& 1 \& 1\end{array}\right] \quad\)| $\Delta_{12}=3$ | $\Delta_{13}=1$ | $\Delta_{14}=1$ |
| :--- | :--- | :--- |
| $\Delta_{23}=2$ | $\Delta_{24}=11$ | $\Delta_{34}=3$ |

We have the Plücker relation: for $\left\{i_{1}, \ldots, i_{k-1}\right\}$ and $\left\{j_{1}, j_{2}, \ldots, j_{k+1}\right\}$
$\Delta_{i_{1} \cdots i_{k-1} j_{1}} \Delta_{j_{2} \cdots j_{k+1}}-\Delta_{i_{1} \ldots i_{k-1} j_{2}} \Delta_{j_{1} j_{3} \cdots j_{k+1}}+\cdots+(-1)^{k} \Delta_{i_{1} \ldots i_{k-1} j_{k+1}} \Delta_{j_{1} \cdots j_{k}}=0$
e.g. $i=1,\left\{j_{1}, j_{2}, j_{3}\right\}=\{2,3,4\}$
$\Delta_{12} \Delta_{34}-\Delta_{13} \Delta_{24}+\Delta_{14} \Delta_{23}=3 \cdot 3-1 \cdot 11+2 \cdot 1=0$.

Dimer model

- Bipartite graph embedded in a disk, with n boundary vertices.
- Boundary vertices are assumed to have degree one, and by convention we do not draw their colors.

Dimer model

- Bipartite graph embedded in a disk, with n boundary vertices.
- Boundary vertices are assumed to have degree one, and by convention we do not draw their colors.
An almost perfect matching Π is a collection of edges that uses every interior vertex once, and may use any subset of the boundary vertices.

Dimer model

- Bipartite graph embedded in a disk, with n boundary vertices.
- Boundary vertices are assumed to have degree one, and by convention we do not draw their colors.
An almost perfect matching Π is a collection of edges that uses every interior vertex once, and may use any subset of the boundary vertices.

The boundary set $\partial(\Pi)$ is the set of black boundary vertices used union the set of white boundary vertices not used. $(\partial(\Pi)=\{3,4\}$ in example)

We informally call these dimers, that is, polymers consisting of two atoms.

- Dimer model: what does a random dimer look like? (Kasteleyn 1967) (Fisher and Temperley 1961)

Boundary measurements

We now assume that N has positive edge weights w_{e}. The weight of an almost perfect matching Π is wt $(\Pi)=\prod_{e \in \Pi} w_{e}$.

Definition (Dimer generating function)

For a subset $I \subset[n]$, define the boundary measurement

$$
\Delta_{l}(N):=\sum_{\Pi: \partial(\Pi)=l} w t(\Pi)
$$

If almost perfect matchings exist, it is easy to see that there is a unique value of k such that $\Delta_{l}(N) \neq 0$ only if $|I|=k$.

Boundary measurements

We now assume that N has positive edge weights w_{e}. The weight of an almost perfect matching Π is wt $(\Pi)=\prod_{e \in \Pi} w_{e}$.

Definition (Dimer generating function)

For a subset $I \subset[n]$, define the boundary measurement

$$
\Delta_{l}(N):=\sum_{\Pi: \partial(\Pi)=l} w t(\Pi)
$$

If almost perfect matchings exist, it is easy to see that there is a unique value of k such that $\Delta_{l}(N) \neq 0$ only if $|I|=k$.

$$
\begin{array}{cc}
\Delta_{12}(N)=a & \Delta_{23}(N)=d \\
\Delta_{13}(N)=a c+b d & \Delta_{24}(N)=1 \\
\Delta_{14}(N)=b & \Delta_{34}(N)=c
\end{array}
$$

Boundary measurements

We now assume that N has positive edge weights w_{e}. The weight of an almost perfect matching Π is wt $(\Pi)=\prod_{e \in \Pi} w_{e}$.

Definition (Dimer generating function)

For a subset $I \subset[n]$, define the boundary measurement

$$
\Delta_{l}(N):=\sum_{\Pi: \partial(\Pi)=l} w t(\Pi)
$$

If almost perfect matchings exist, it is easy to see that there is a unique value of k such that $\Delta_{l}(N) \neq 0$ only if $|I|=k$.

$$
\begin{array}{cc}
\Delta_{12}(N)=a & \Delta_{23}(N)=d \\
\Delta_{13}(N)=a c+b d & \Delta_{24}(N)=1 \\
\Delta_{14}(N)=b & \Delta_{34}(N)=c
\end{array}
$$

Boundary measurement map

Theorem (Postnikov, Talaska, Postnikov-Speyer-Williams, Kuo, L.)

The map $N \rightarrow\left(\Delta_{l}(N)\right)_{l \in\binom{(n)}{k}}$ defines a point $M(N) \in \operatorname{Gr}(k, n)$.
To prove the theorem, it suffices to check that $\Delta_{I}(N)$ satisfies the Plücker relations.

Theorem (Postnikov)

(1) The map $N \rightarrow M(N)$ surjects onto $\mathrm{Gr}_{\geq 0}(k, n)$.
(2) If $M(N)=M\left(N^{\prime}\right)$, then N and N^{\prime} are related by local moves.
(3) For each positroid cell $\Pi_{f,>0}$, there exists a network $N\left(t_{1}, t_{2}, \ldots, t_{d}\right)$ with edge weights given by the parameters t_{1}, \ldots, t_{d} such that the $\operatorname{map}\left(t_{1}, t_{2}, \ldots, t_{d}\right) \in \mathbb{R}_{>0}^{d} \rightarrow M\left(N\left(t_{1}, t_{2}, \ldots, t_{d}\right)\right)$ is a homeomorphism $\mathbb{R}_{>0}^{d} \cong \Pi_{f,>0}$.

Double dimers

- Since $\Delta_{I}(N) \Delta_{J}(N)$ counts double dimers, the Plücker relation is equivalent to a statement about boundary connections of double dimers.

Double dimers

- Since $\Delta_{I}(N) \Delta_{J}(N)$ counts double dimers, the Plücker relation is equivalent to a statement about boundary connections of double dimers.

Double dimers

- Since $\Delta_{I}(N) \Delta_{J}(N)$ counts double dimers, the Plücker relation is equivalent to a statement about boundary connections of double dimers.

Temperley-Lieb immanant (L., cf. Rhoades-Skandera): For a (k, n)-partial noncrossing matching τ,

$$
F_{\tau}(N)=\sum w t(\Sigma)
$$

summed over double dimers Σ with connectivity τ.

Double dimers

- Since $\Delta_{I}(N) \Delta_{J}(N)$ counts double dimers, the Plücker relation is equivalent to a statement about boundary connections of double dimers.

Temperley-Lieb immanant (L., cf. Rhoades-Skandera):
For a (k, n)-partial noncrossing matching τ,

$$
F_{\tau}(N)=\sum w t(\Sigma)
$$

summed over double dimers Σ with connectivity τ.
We have an identity $\Delta_{I} \Delta_{J}=\sum_{F_{\tau}}$, summed over τ compatible with (I, J).

Dimers and positroids

Let G be a planar bipartite graph. Then for any positive edge weights w_{e}, we have

$$
M\left(\left(G, w_{e}\right)\right) \in \Pi_{f,>0}
$$

where $f=f_{G}$ only depends on the underlying graph G.

Dimers and positroids

Let G be a planar bipartite graph. Then for any positive edge weights w_{e}, we have

$$
M\left(\left(G, w_{e}\right)\right) \in \Pi_{f,>0}
$$

where $f=f_{G}$ only depends on the underlying graph G.

- We have $\operatorname{dim}\left(\Pi_{f,>0}\right) \leq \# \operatorname{Faces}(G)-1$, and when equality holds we call G reduced.

Dimers and positroids

Let G be a planar bipartite graph. Then for any positive edge weights w_{e}, we have

$$
M\left(\left(G, w_{e}\right)\right) \in \Pi_{f,>0}
$$

where $f=f_{G}$ only depends on the underlying graph G.

- We have $\operatorname{dim}\left(\Pi_{f,>0}\right) \leq \# \operatorname{Faces}(G)-1$, and when equality holds we call G reduced.
- In the reduced case, we can read f off of G by the rules of the road.

Electrical networks

An electrical resistor network is an undirected weighted graph Γ.

Edge weight $=$ conductance $=1 /$ resistance Some vertices are designated as boundary vertices. The rest are interior vertices.

Response matrix

The electrical properties are described by the response matrix

$$
\begin{gathered}
\Lambda(\Gamma): \mathbb{R}^{\# \text { boundary vertices }} \longrightarrow \mathbb{R}^{\# \text { boundary vertices }} \\
\text { voltage vector } \longmapsto \text { current vector }
\end{gathered}
$$

which gives the current that flows through the boundary vertices when specified voltages are applied.

Response matrix

The electrical properties are described by the response matrix

$$
\begin{gathered}
\Lambda(\Gamma): \mathbb{R}^{\# \text { boundary vertices }} \longrightarrow \mathbb{R}^{\text {\#boundary vertices }} \\
\text { voltage vector } \longmapsto \text { current vector }
\end{gathered}
$$

which gives the current that flows through the boundary vertices when specified voltages are applied.
$\Lambda_{i j}=$ current flowing through vertex j when the voltage is set to 1 at vertex i and 0 at all other vertices.

Possibly surprisingly, $\Lambda(\Gamma)$ is a symmetric matrix. If all vertices are considered boundary vertices, then $\Lambda(\Gamma)$ is simply the Laplacian matrix of Γ.

Axioms of electricity

The matrix $\Lambda(\Gamma)$ can be computed using only two axioms.

Kirchhoff's Law (1845)

The sum of currents flowing into an interior vertex is equal to 0 .

Axioms of electricity

The matrix $\Lambda(\Gamma)$ can be computed using only two axioms.

Kirchhoff's Law (1845)

The sum of currents flowing into an interior vertex is equal to 0 .

Ohm's Law (1827)

For each resistor we have

$$
\left(V_{1}-V_{2}\right)=I \times R
$$

where
$I=$ current flowing throught the resistor
$V_{1}, V_{2}=$ voltages at two ends of resistor
$R=$ resistance of the resistor
To compute $\Lambda(\Gamma)$, we give variables to each edge (current through that edge) and each vertex (voltage at that vertex). Then solve a large system of linear equations.

Groves

We now assume that Γ is embedded into a disk. A grove F in Γ is a subforest such that every interior vertex is connected to some boundary vertex.

Groves

We now assume that Γ is embedded into a disk. A grove F in Γ is a subforest such that every interior vertex is connected to some boundary vertex.

The boundary partition $\sigma(F)$ of a grove F is the noncrossing partition whose parts are boundary vertices belonging to the same component of F.

Groves

We now assume that Γ is embedded into a disk. A grove F in Γ is a subforest such that every interior vertex is connected to some boundary vertex.

The boundary partition $\sigma(F)$ of a grove F is the noncrossing partition whose parts are boundary vertices belonging to the same component of F.

$$
\sigma(F)=\{2,3,4 \mid 1,5\}
$$

Planarity \Longrightarrow noncrossing.
Groves were studied by Carroll-Speyer, Kenyon-Wilson, ...

Noncrossing partitions

The noncrossing partition $\sigma=\{1,2,5,9|3,4| 6,7,8|10,11| 12\}$.

Noncrossing partitions

The noncrossing partition $\sigma=\{1,2,5,9|3,4| 6,7,8|10,11| 12\}$. Let $\mathcal{N C}_{n}$ denote the set of noncrossing partitions on $\{1, \ldots, n\}$. Then $\left|\mathcal{N C}_{n}\right|=C_{n}=\frac{1}{n+1}\binom{2 n}{n}$. For $n=3$, we have 5 noncrossing partitions.

$$
(123),(1 \mid 23),(12 \mid 3),(13 \mid 2),(1|2| 3) .
$$

Grove measurements

Definition (Grove generating function)

For $\sigma \in \mathcal{N C}{ }_{n}$, and an electrical network Γ, define

$$
L_{\sigma}(\Gamma)=\sum_{\sigma(F)=\sigma} w t(F)
$$

where the weight of a grove F is the product of the weights of the edges belonging to F.

Grove measurements

Definition (Grove generating function)

For $\sigma \in \mathcal{N C}{ }_{n}$, and an electrical network Γ, define

$$
L_{\sigma}(\Gamma)=\sum_{\sigma(F)=\sigma} w t(F)
$$

where the weight of a grove F is the product of the weights of the edges belonging to F.

We collect all the L_{σ} 's together to obtain a map $\Gamma \longmapsto \mathcal{L}(\Gamma)=\left(L_{\sigma}(\Gamma)\right)_{\sigma \in \mathcal{N C}}^{n}, ~ \in \mathbb{P}^{\mathcal{N C} C_{n}}$.

Grove measurements

Definition (Grove generating function)

For $\sigma \in \mathcal{N C}_{n}$, and an electrical network Γ, define

$$
L_{\sigma}(\Gamma)=\sum_{\sigma(F)=\sigma} w t(F)
$$

where the weight of a grove F is the product of the weights of the edges belonging to F.

We collect all the L_{σ} 's together to obtain a map
$\Gamma \longmapsto \mathcal{L}(\Gamma)=\left(L_{\sigma}(\Gamma)\right)_{\sigma \in \mathcal{N} \mathcal{C}_{n}} \in \mathbb{P}^{\mathcal{N} \mathcal{C}_{n}}$.
Proposition (essentially Kirchhoff 1800s)
$\Lambda(\Gamma)=\Lambda\left(\Gamma^{\prime}\right)$ if and only if $\mathcal{L}(\Gamma)=\mathcal{L}\left(\Gamma^{\prime}\right)$

Grove measurements

Definition (Grove generating function)

For $\sigma \in \mathcal{N C}_{n}$, and an electrical network Γ, define

$$
L_{\sigma}(\Gamma)=\sum_{\sigma(F)=\sigma} w t(F)
$$

where the weight of a grove F is the product of the weights of the edges belonging to F.

We collect all the L_{σ} 's together to obtain a map
$\Gamma \longmapsto \mathcal{L}(\Gamma)=\left(L_{\sigma}(\Gamma)\right)_{\sigma \in \mathcal{N} C_{n}} \in \mathbb{P}^{\mathcal{N} C_{n}}$.

Proposition (essentially Kirchhoff 1800s)

$\Lambda(\Gamma)=\Lambda\left(\Gamma^{\prime}\right)$ if and only if $\mathcal{L}(\Gamma)=\mathcal{L}\left(\Gamma^{\prime}\right)$
Define the compactified space of circular planar electrical networks:

$$
\mathcal{E}_{n}:=\overline{\{\mathcal{L}(\Gamma) \mid \Gamma \text { planar electrical network }\}} \subset \mathbb{P}^{\mathcal{N} C_{n}}
$$

Example: the grove embedding

$$
\begin{aligned}
L_{1|2| 3} & =a+b+c, \\
L_{123} & =a b c \\
L_{12 \mid 3} & =a b, \\
L_{1 \mid 23} & =b c, \\
L_{13 \mid 2} & =a c,
\end{aligned}
$$

$$
\mathcal{L}(\Gamma)=(a+b+c: a b: b c: a c: a b c) \in \mathbb{P}^{4}
$$

The totally nonnegative Lagrangian Grassmannian

Consider the (degenerate) skew-symmetric bilinear form on $\mathbb{R}^{2 n}$

$$
\langle x, y\rangle=\sum_{k=1}^{2 n}(-1)^{k}\left(x_{k} y_{k+1}-x_{k+1} y_{k}\right)
$$

where $x_{2 n+1}=(-1)^{n} x_{1}$. A subspace $U \subset \mathbb{R}^{2 n}$ is isotropic if $\langle\cdot, \cdot\rangle$ restricts to 0 on U. We set

$$
\mathrm{LG}(n+1,2 n):=\left\{U \subset \mathbb{R}^{2 n} \mid U \text { is maximal isotropic }\right\} \subset \operatorname{Gr}(n+1,2 n)
$$

We have $\operatorname{dim}(\operatorname{Gr}(n+1,2 n))=n^{2}-1$ but $\operatorname{dim} \operatorname{LG}(n+1,2 n)=n(n-1) / 2$.

The totally nonnegative Lagrangian Grassmannian

Consider the (degenerate) skew-symmetric bilinear form on $\mathbb{R}^{2 n}$

$$
\langle x, y\rangle=\sum_{k=1}^{2 n}(-1)^{k}\left(x_{k} y_{k+1}-x_{k+1} y_{k}\right)
$$

where $x_{2 n+1}=(-1)^{n} x_{1}$. A subspace $U \subset \mathbb{R}^{2 n}$ is isotropic if $\langle\cdot, \cdot\rangle$ restricts to 0 on U. We set

$$
\operatorname{LG}(n+1,2 n):=\left\{U \subset \mathbb{R}^{2 n} \mid U \text { is maximal isotropic }\right\} \subset \operatorname{Gr}(n+1,2 n)
$$

We have $\operatorname{dim}(\operatorname{Gr}(n+1,2 n))=n^{2}-1$ but $\operatorname{dim} \operatorname{LG}(n+1,2 n)=n(n-1) / 2$.

Definition

The totally nonnegative Lagrangian Grassmannian:

$$
\mathrm{LG}_{\geq 0}(n+1,2 n):=\mathrm{LG}(n+1,2 n) \cap \mathrm{Gr}_{\geq 0}(n+1,2 n)
$$

Our notion differs from that of Lusztig and Karpman. (Thanks to David Speyer for a helpful discussion!)

Embedding electrical networks into the Grassmannian

Theorem (L.)

There is a homeomorphism

$$
\iota: \mathcal{E}_{n} \longrightarrow \mathrm{LG}_{\geq 0}(n+1,2 n)
$$

given by the formula

$$
\Delta_{l}(\iota(\Gamma))=\sum_{\sigma \in \mathcal{N C} C_{n}} a_{I \sigma} L_{\sigma}(\Gamma)
$$

where $a_{I \sigma}$ is a 0-1 matrix, with the 1-s given by concordant pairs (I, σ).
Earlier work: Curtis-Ingerman-Morrow (1998) and de Verdière-Gitler-Vertigan (1996).

Ising model

$G=$ planar network in a disk (boundary vertices may have deg >1) $J_{e}=$ weight of edge e

Ising model

$G=$ planar network in a disk (boundary vertices may have deg >1) $J_{e}=$ weight of edge e

Spin configuration: a map $\sigma: V \rightarrow\{ \pm 1\}$

$$
\mathrm{wt}(\sigma):=\prod_{\{u, v\} \in E} \exp \left(J_{\{u, v\}} \sigma_{u} \sigma_{v}\right)
$$

Ising model

$G=$ planar network in a disk (boundary vertices may have deg >1) $J_{e}=$ weight of edge e

Spin configuration: a map $\sigma: V \rightarrow\{ \pm 1\}$

$$
w t(\sigma):=\prod_{\{u, v\} \in E} \exp \left(J_{\{u, v\}} \sigma_{u} \sigma_{v}\right)
$$

$$
\mathrm{wt}(\sigma)=\frac{\exp \left(J_{e_{1}}+J_{e_{2}}+J_{e_{6}}+J_{e_{8}}\right)}{\exp \left(J_{e_{3}}+J_{e_{4}}+J_{e_{5}}+J_{e_{7}}+J_{e_{9}}\right)} \quad \operatorname{Prob}(\sigma):=\frac{\mathrm{wt}(\sigma)}{Z}
$$

Ising model

$G=$ planar network in a disk (boundary vertices may have deg >1) $J_{e}=$ weight of edge e

Spin configuration: a map $\sigma: V \rightarrow\{ \pm 1\}$

$$
w t(\sigma):=\prod_{\{u, v\} \in E} \exp \left(J_{\{u, v\}} \sigma_{u} \sigma_{v}\right)
$$

$$
\mathrm{wt}(\sigma)=\frac{\exp \left(J_{e_{1}}+J_{e_{2}}+J_{e_{6}}+J_{e_{8}}\right)}{\exp \left(J_{e_{3}}+J_{e_{4}}+J_{e_{5}}+J_{e_{7}}+J_{e_{9}}\right)} \quad \operatorname{Prob}(\sigma):=\frac{\mathrm{wt}(\sigma)}{Z}
$$

The Ising model is a model for ferromagnetism. (Lenz 1920, Ising 1925)

Boundary correlations I

Correlation: $\left\langle\sigma_{u} \sigma_{v}\right\rangle:=\operatorname{Prob}\left(\sigma_{u}=\sigma_{v}\right)-\operatorname{Prob}\left(\sigma_{u} \neq \sigma_{v}\right)$.

Definition

Boundary correlation matrix: $M(G, J)=\left(m_{i j}\right)_{i, j=1}^{n}$, where $m_{i j}:=\left\langle\sigma_{b_{i}} \sigma_{b_{j}}\right\rangle$.

Boundary correlations I

Correlation: $\left\langle\sigma_{u} \sigma_{v}\right\rangle:=\operatorname{Prob}\left(\sigma_{u}=\sigma_{v}\right)-\operatorname{Prob}\left(\sigma_{u} \neq \sigma_{v}\right)$.

Definition

Boundary correlation matrix: $M(G, J)=\left(m_{i j}\right)_{i, j=1}^{n}$, where $m_{i j}:=\left\langle\sigma_{b_{i}} \sigma_{b_{j}}\right\rangle$.

$M(G, J)$ is a symmetric matrix with 1's on the diagonal and nonnegative entries

Lives inside $\mathbb{R}^{\binom{n}{2}}$

Boundary correlations I

Correlation: $\left\langle\sigma_{u} \sigma_{v}\right\rangle:=\operatorname{Prob}\left(\sigma_{u}=\sigma_{v}\right)-\operatorname{Prob}\left(\sigma_{u} \neq \sigma_{v}\right)$.

Definition

Boundary correlation matrix: $M(G, J)=\left(m_{i j}\right)_{i, j=1}^{n}$, where $m_{i j}:=\left\langle\sigma_{b_{i}} \sigma_{b_{j}}\right\rangle$.

$M(G, J)$ is a symmetric matrix with 1 's on the diagonal and nonnegative entries

Lives inside $\mathbb{R}^{\binom{n}{2}}$
$\mathcal{X}_{n}:=\{M(G) \mid G$ is a planar network with n boundary vertices $\}$
$\overline{\mathcal{X}}_{n}:=$ closure of \mathcal{X}_{n} inside the space of $n \times n$ matrices

Boundary correlations II

$$
M(G)=\left(\begin{array}{cc}
1 & m_{12} \\
m_{12} & 1
\end{array}\right)
$$

$$
m_{12}=\left\langle\sigma_{1} \sigma_{2}\right\rangle=\frac{2 \exp \left(J_{e}\right)-2 \exp \left(-J_{e}\right)}{2 \exp \left(J_{e}\right)+2 \exp \left(-J_{e}\right)}
$$

Boundary correlations II

$$
\begin{gathered}
M(G)=\left(\begin{array}{cc}
1 & m_{12} \\
m_{12} & 1
\end{array}\right), \quad m_{12}=\left\langle\sigma_{1} \sigma_{2}\right\rangle=\frac{2 \exp \left(J_{e}\right)-2 \exp \left(-J_{e}\right)}{2 \exp \left(J_{e}\right)+2 \exp \left(-J_{e}\right)} \\
\begin{array}{|c|c|c|}
J_{e}=0 & J_{e} \in(0, \infty) & J_{e}=\infty \\
\hline m_{12}=0 & m_{12} \in(0,1) & m_{12}=1 \\
\hline
\end{array}
\end{gathered}
$$

- We have $\mathcal{X}_{2} \cong[0,1)$ and $\overline{\mathcal{X}}_{2} \cong[0,1]$.

Boundary correlations II

$$
\begin{gathered}
M(G)=\left(\begin{array}{cc}
1 & m_{12} \\
m_{12} & 1
\end{array}\right), \quad m_{12}=\left\langle\sigma_{1} \sigma_{2}\right\rangle=\frac{2 \exp \left(J_{e}\right)-2 \exp \left(-J_{e}\right)}{2 \exp \left(J_{e}\right)+2 \exp \left(-J_{e}\right)} \\
\begin{array}{|c|c|c|}
J_{e}=0 & J_{e} \in(0, \infty) & J_{e}=\infty \\
\hline m_{12}=0 & m_{12} \in(0,1) & m_{12}=1 \\
\hline
\end{array}
\end{gathered}
$$

- We have $\mathcal{X}_{2} \cong[0,1)$ and $\overline{\mathcal{X}}_{2} \cong[0,1]$.
- $\overline{\mathcal{X}}_{n}$ is obtained from \mathcal{X}_{n} by allowing $J_{e}=\infty$ (i.e., contracting edges).

The totally nonnegative orthogonal Grassmannian

Consider the symmetric nondegenerate bilinear form on $\mathbb{R}^{2 n}$ given by

$$
(x, y)=\sum_{i=1}^{2 n}(-1)^{i} x_{i} y_{i}
$$

A subspace $W \subset \mathbb{R}^{2 n}$ is isotropic if the restriction of (\cdot, \cdot) to W is identically 0 . The orthogonal Grassmannian is given by

$$
\mathrm{OG}(n, 2 n):=\left\{W \in \operatorname{Gr}(n, 2 n) \mid \Delta_{I}(W)=\Delta_{[2 n] \backslash I}(W) \text { for all } I\right\}
$$

and consists of a component of the isotropic subspaces of $\operatorname{Gr}(n, 2 n)$. We have $\operatorname{dim}(\operatorname{Gr}(n, 2 n))=n^{2}$ but $\operatorname{dim}(\mathrm{OG}(n, 2 n))=\binom{n}{2}=\frac{n(n-1)}{2}$.

The totally nonnegative orthogonal Grassmannian

Consider the symmetric nondegenerate bilinear form on $\mathbb{R}^{2 n}$ given by

$$
(x, y)=\sum_{i=1}^{2 n}(-1)^{i} x_{i} y_{i}
$$

A subspace $W \subset \mathbb{R}^{2 n}$ is isotropic if the restriction of (\cdot, \cdot) to W is identically 0 . The orthogonal Grassmannian is given by

$$
\mathrm{OG}(n, 2 n):=\left\{W \in \operatorname{Gr}(n, 2 n) \mid \Delta_{l}(W)=\Delta_{[2 n] \backslash I}(W) \text { for all } I\right\}
$$

and consists of a component of the isotropic subspaces of $\operatorname{Gr}(n, 2 n)$. We have $\operatorname{dim}(\operatorname{Gr}(n, 2 n))=n^{2}$ but $\operatorname{dim}(\operatorname{OG}(n, 2 n))=\binom{n}{2}=\frac{n(n-1)}{2}$.

Definition (Huang-Wen)

The totally nonnegative orthogonal Grassmannian:

$$
\begin{aligned}
& \mathrm{OG}_{\geq 0}(n, 2 n):=\mathrm{OG}(n, 2 n) \cap \operatorname{Gr}_{\geq 0}(n, 2 n), \text { i.e., } \\
& \mathrm{OG}_{\geq 0}(n, 2 n):=\left\{W \in \operatorname{Gr}(n, 2 n) \mid \Delta_{l}(W)=\Delta_{[2 n] \backslash I}(W) \geq 0 \text { for all } I\right\} .
\end{aligned}
$$

This notion differs from a general one of Lusztig.

Boundary correlation map

$\mathcal{X}_{n}:=\{M(G) \mid G$ is a planar Ising network with n boundary vertices $\}$ $\overline{\mathcal{X}}_{n}:=$ closure of \mathcal{X}_{n} inside the space of $n \times n$ matrices.
We have $\mathcal{X}_{n}, \overline{\mathcal{X}}_{n} \subset \operatorname{Mat}_{n}^{\text {sym }}(\mathbb{R}, 1):=\left\{\begin{array}{c}\text { symmetric } n \times n \text { matrices } \\ \text { with } 1 \text { 's on the diagonal }\end{array}\right\}$.

Boundary correlation map

$\mathcal{X}_{n}:=\{M(G) \mid G$ is a planar Ising network with n boundary vertices $\}$ $\overline{\mathcal{X}}_{n}:=$ closure of \mathcal{X}_{n} inside the space of $n \times n$ matrices.
We have $\mathcal{X}_{n}, \overline{\mathcal{X}}_{n} \subset \operatorname{Mat}_{n}^{\text {sym }}(\mathbb{R}, 1):=\left\{\begin{array}{c}\text { symmetric } n \times n \text { matrices } \\ \text { with } 1 \text { 's on the diagonal }\end{array}\right\}$.
The doubling map ϕ :
$\left(\begin{array}{cccc}1 & m_{12} & m_{13} & m_{14} \\ m_{12} & 1 & m_{23} & m_{24} \\ m_{13} & m_{23} & 1 & m_{34} \\ m_{14} & m_{24} & m_{34} & 1\end{array}\right) \mapsto\left(\begin{array}{cccccccc}1 & 1 & m_{12} & -m_{12} & -m_{13} & m_{13} & m_{14} & -m_{14} \\ -m_{12} & m_{12} & 1 & 1 & m_{23} & -m_{23} & -m_{24} & m_{24} \\ m_{13} & -m_{13} & -m_{23} & m_{23} & 1 & 1 & m_{34} & -m_{34} \\ -m_{14} & m_{14} & m_{24} & -m_{24} & -m_{34} & m_{34} & 1 & 1\end{array}\right)$

Boundary correlation map

$\mathcal{X}_{n}:=\{M(G) \mid G$ is a planar Ising network with n boundary vertices $\}$ $\overline{\mathcal{X}}_{n}:=$ closure of \mathcal{X}_{n} inside the space of $n \times n$ matrices.
We have $\mathcal{X}_{n}, \overline{\mathcal{X}}_{n} \subset \operatorname{Mat}_{n}^{\text {sym }}(\mathbb{R}, 1):=\left\{\begin{array}{c}\text { symmetric } n \times n \text { matrices } \\ \text { with } 1 \text { 's on the diagonal }\end{array}\right\}$.
The doubling map ϕ :
$\left(\begin{array}{cccc}1 & m_{12} & m_{13} & m_{14} \\ m_{12} & 1 & m_{23} & m_{24} \\ m_{13} & m_{23} & 1 & m_{34} \\ m_{14} & m_{24} & m_{34} & 1\end{array}\right) \mapsto\left(\begin{array}{cccccccc}1 & 1 & m_{12} & -m_{12} & -m_{13} & m_{13} & m_{14} & -m_{14} \\ -m_{12} & m_{12} & 1 & 1 & m_{23} & -m_{23} & -m_{24} & m_{24} \\ m_{13} & -m_{13} & -m_{23} & m_{23} & 1 & 1 & m_{34} & -m_{34} \\ -m_{14} & m_{14} & m_{24} & -m_{24} & -m_{34} & m_{34} & 1 & 1\end{array}\right)$

Boundary correlation map

$\mathcal{X}_{n}:=\{M(G) \mid G$ is a planar Ising network with n boundary vertices $\}$ $\overline{\mathcal{X}}_{n}:=$ closure of \mathcal{X}_{n} inside the space of $n \times n$ matrices.
We have $\mathcal{X}_{n}, \overline{\mathcal{X}}_{n} \subset \operatorname{Mat}_{n}^{\text {sym }}(\mathbb{R}, 1):=\left\{\begin{array}{c}\text { symmetric } n \times n \text { matrices } \\ \text { with } 1 \text { 's on the diagonal }\end{array}\right\}$.
The doubling map ϕ :
$\left(\begin{array}{cccc}1 & m_{12} & m_{13} & m_{14} \\ m_{12} & 1 & m_{23} & m_{24} \\ m_{13} & m_{23} & 1 & m_{34} \\ m_{14} & m_{24} & m_{34} & 1\end{array}\right) \mapsto\left(\begin{array}{cccccccc}1 & 1 & m_{12} & -m_{12} & -m_{13} & m_{13} & m_{14} & -m_{14} \\ -m_{12} & m_{12} & 1 & 1 & m_{23} & -m_{23} & -m_{24} & m_{24} \\ m_{13} & -m_{13} & -m_{23} & m_{23} & 1 & 1 & m_{34} & -m_{34} \\ -m_{14} & m_{14} & m_{24} & -m_{24} & -m_{34} & m_{34} & 1 & 1\end{array}\right)$

Boundary correlation map

$\mathcal{X}_{n}:=\{M(G) \mid G$ is a planar Ising network with n boundary vertices $\}$ $\overline{\mathcal{X}}_{n}:=$ closure of \mathcal{X}_{n} inside the space of $n \times n$ matrices.
We have $\mathcal{X}_{n}, \overline{\mathcal{X}}_{n} \subset \operatorname{Mat}_{n}^{\text {sym }}(\mathbb{R}, 1):=\left\{\begin{array}{c}\text { symmetric } n \times n \text { matrices } \\ \text { with } 1 \text { 's on the diagonal }\end{array}\right\}$.
The doubling map ϕ :
$\left(\begin{array}{cccc}1 & m_{12} & m_{13} & m_{14} \\ m_{12} & 1 & m_{23} & m_{24} \\ m_{13} & m_{23} & 1 & m_{34} \\ m_{14} & m_{24} & m_{34} & 1\end{array}\right) \mapsto\left(\begin{array}{cccccccc}1 & 1 & m_{12} & -m_{12} & -m_{13} & m_{13} & m_{14} & -m_{14} \\ -m_{12} & m_{12} & 1 & 1 & m_{23} & -m_{23} & -m_{24} & m_{24} \\ m_{13} & -m_{13} & -m_{23} & m_{23} & 1 & 1 & m_{34} & -m_{34} \\ -m_{14} & m_{14} & m_{24} & -m_{24} & -m_{34} & m_{34} & 1 & 1\end{array}\right)$

Boundary correlation map

$\mathcal{X}_{n}:=\{M(G) \mid G$ is a planar Ising network with n boundary vertices $\}$ $\overline{\mathcal{X}}_{n}:=$ closure of \mathcal{X}_{n} inside the space of $n \times n$ matrices.
We have $\mathcal{X}_{n}, \overline{\mathcal{X}}_{n} \subset \operatorname{Mat}_{n}^{\text {sym }}(\mathbb{R}, 1):=\left\{\begin{array}{c}\text { symmetric } n \times n \text { matrices } \\ \text { with } 1 \text { 's on the diagonal }\end{array}\right\}$.
The doubling map ϕ :
$\left(\begin{array}{cccc}1 & m_{12} & m_{13} & m_{14} \\ m_{12} & 1 & m_{23} & m_{24} \\ m_{13} & m_{23} & 1 & m_{34} \\ m_{14} & m_{24} & m_{34} & 1\end{array}\right) \mapsto\left(\begin{array}{cccccccc}1 & 1 & m_{12} & -m_{12} & -m_{13} & m_{13} & m_{14} & -m_{14} \\ -m_{12} & m_{12} & 1 & 1 & m_{23} & -m_{23} & -m_{24} & m_{24} \\ m_{13} & -m_{13} & -m_{23} & m_{23} & 1 & 1 & m_{34} & -m_{34} \\ -m_{14} & m_{14} & m_{24} & -m_{24} & -m_{34} & m_{34} & 1 & 1\end{array}\right)$

Boundary correlation map

$\mathcal{X}_{n}:=\{M(G) \mid G$ is a planar Ising network with n boundary vertices $\}$ $\overline{\mathcal{X}}_{n}:=$ closure of \mathcal{X}_{n} inside the space of $n \times n$ matrices.
We have $\mathcal{X}_{n}, \overline{\mathcal{X}}_{n} \subset \operatorname{Mat}_{n}^{\text {sym }}(\mathbb{R}, 1):=\left\{\begin{array}{c}\text { symmetric } n \times n \text { matrices } \\ \text { with } 1 \text { 's on the diagonal }\end{array}\right\}$. The doubling map ϕ :

$$
\left(\begin{array}{cccc}
1 & m_{12} & m_{13} & m_{14} \\
m_{12} & 1 & m_{23} & m_{24} \\
m_{13} & m_{23} & 1 & m_{34} \\
m_{14} & m_{24} & m_{34} & 1
\end{array}\right) \mapsto\left(\begin{array}{cccccccc}
1 & 1 & m_{12} & -m_{12} & -m_{13} & m_{13} & m_{14} & -m_{14} \\
-m_{12} & m_{12} & 1 & 1 & m_{23} & -m_{23} & -m_{24} & m_{24} \\
m_{13} & -m_{13} & -m_{23} & m_{23} & 1 & 1 & m_{34} & -m_{34} \\
-m_{14} & m_{14} & m_{24} & -m_{24} & -m_{34} & m_{34} & 1 & 1
\end{array}\right)
$$

Theorem (Galashin-Pylyavskyy (2018))

The map ϕ restricts to a homeomorphism between $\overline{\mathcal{X}}_{n}$ and $\mathrm{OG}_{\geq 0}(n, 2 n)$.

$$
\begin{aligned}
\operatorname{Mat}_{n}^{\text {sym }}(\mathbb{R}, 1) & \overleftrightarrow{\phi}{ }_{\uparrow}^{\longrightarrow} \mathrm{OG}(n, 2 n) \\
\overline{\mathcal{X}}_{n} \xrightarrow[\phi]{\sim} & \mathrm{OG}_{\geq 0}(n, 2 n)
\end{aligned}
$$

Boundary correlation map

$\mathcal{X}_{n}:=\{M(G) \mid G$ is a planar Ising network with n boundary vertices $\}$ $\overline{\mathcal{X}}_{n}:=$ closure of \mathcal{X}_{n} inside the space of $n \times n$ matrices.
We have $\mathcal{X}_{n}, \overline{\mathcal{X}}_{n} \subset$ Mat $_{n}^{\text {sym }}(\mathbb{R}, 1):=\left\{\begin{array}{c}\text { symmetric } n \times n \text { matrices } \\ \text { with } 1 \text { 's on the diagonal }\end{array}\right\}$. The doubling map ϕ :

$$
\left(\begin{array}{cccc}
1 & m_{12} & m_{13} & m_{14} \\
m_{12} & 1 & m_{23} & m_{24} \\
m_{13} & m_{23} & 1 & m_{34} \\
m_{14} & m_{24} & m_{34} & 1
\end{array}\right) \mapsto\left(\begin{array}{cccccccc}
1 & 1 & m_{12} & -m_{12} & -m_{13} & m_{13} & m_{14} & -m_{14} \\
-m_{12} & m_{12} & 1 & 1 & m_{23} & -m_{23} & -m_{24} & m_{24} \\
m_{13} & -m_{13} & -m_{23} & m_{23} & 1 & 1 & m_{34} & -m_{34} \\
-m_{14} & m_{14} & m_{24} & -m_{24} & -m_{34} & m_{34} & 1 & 1
\end{array}\right)
$$

Theorem (Galashin-Pylyavskyy (2018))

The map ϕ restricts to a homeomorphism between $\overline{\mathcal{X}}_{n}$ and $\mathrm{OG}_{\geq 0}(n, 2 n)$.

$$
\begin{aligned}
& \operatorname{Mat}_{n}^{\text {sym }}(\mathbb{R}, 1) \underset{\phi}{\longrightarrow} \mathrm{OG}(n, 2 n) \\
& \uparrow \\
& \overline{\mathcal{X}}_{n} \xrightarrow[\phi]{\sim} \mathrm{OG}_{\geq 0}(n, 2 n)
\end{aligned}
$$

Lis (2016): boundary correlations related to $\operatorname{Gr}_{\geq 0}(n, 2 n)$.

Comparison

	Dimer	Electrical	Ising
vertices	bipartite	one part	one part
space	$\operatorname{Gr}_{\geq 0}(k, n)$	$\mathrm{LG}_{\geq 0}(n+1,2 n)$	$\mathrm{OG}_{\geq 0}(n, 2 n)$
dimension	$k(n-k)$	$n(n-1) / 2$	$n(n-1) / 2$
enumeration	dimer configurations	groves	spinned flows
moves	square	$Y-\Delta$	$Y-\Delta$
strata	permutations	matchings	matchings
poset	Bruhat order	uncrossing	uncrossing

The electrical network model and Ising model have the same indexing set for strata, same closure relations, and same local moves (on the level of unweighted graphs).

Electrical network \rightarrow planar bipartite graph

Ising network \rightarrow planar bipartite graph

Here $s_{e}:=\operatorname{sech}\left(2 J_{e}\right), \quad c_{e}:=\tanh \left(2 J_{e}\right)$ so that $s_{e}^{2}+c_{e}^{2}=1$.

Uncrossing partial order P_{n}

Uncrossing partial order P_{n}

Let \hat{P}_{n} be P_{n} with a minimum $\hat{0}$ added.

- \hat{P}_{n} is Eulerian (L.)
- \hat{P}_{n} is shellable (Kenyon-Hersh)

Further directions

- Explain the surprising similarity between the combinatorics appearing in electrical networks and that in Ising models.

Further directions

- Explain the surprising similarity between the combinatorics appearing in electrical networks and that in Ising models.
- Develop a notion of matroids for electrical networks. (Subsets become (non-crossing) partitions.)

Further directions

- Explain the surprising similarity between the combinatorics appearing in electrical networks and that in Ising models.
- Develop a notion of matroids for electrical networks. (Subsets become (non-crossing) partitions.)
- Extend the contents of this lecture to other surfaces with boundary.

Further directions

- Explain the surprising similarity between the combinatorics appearing in electrical networks and that in Ising models.
- Develop a notion of matroids for electrical networks. (Subsets become (non-crossing) partitions.)
- Extend the contents of this lecture to other surfaces with boundary.

Some references:

- A. Postnikov, Total positivity, Grassmannians, and networks, arXiv:math/0609764.
- T. Lam, Totally nonnegative Grassmannian and Grassmann polytopes, CDM lectures 2014.
- T. Lam, Electroid varieties and a compactification of the space of planar electrical networks, Adv. in Math. 2018.
- P. Galashin and P. Pylyavskyy, Ising model and the positive orthogonal Grassmannian arXiv:1807.03282.

