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Introduction

In the last lecture, I recalled the fundamental connection{
planar networks with

n sources and n sinks

}
−→

{
totally nonnegative

n × n matrices

}

arising from counting non-intersecting path families.

The aim of this lecture is to do an analogous construction for Gr≥0(k , n).

Dimer model Gr≥0(k , n)

Electrical networks LG≥0(n + 1, 2n)

Ising model OG≥0(n, 2n)

In terms of classical enumerative combinatorics, the first two cases are
related to enumerating perfect matchings and trees in graphs. Both are
known to be related to determinants: for example, recall the matrix-tree
theorem.
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Totally nonnegative Grassmannian

Definition (Postnikov (2006))

A point V ∈ Gr(k , n) lies in the totally nonnegative Grassmannian
Gr≥0(k, n) if ∆I (V ) ≥ 0 for all I .

The totally positive Grassmannian Gr>0(k , n) is the locus where
∆I (V ) > 0. Example:[

1 2 0 −3
0 3 1 1

]
∆12 = 3

∆23 = 2

∆13 = 1

∆24 = 11

∆14 = 1

∆34 = 3

We have the Plücker relation: for {i1, . . . , ik−1} and {j1, j2, . . . , jk+1}

∆i1···ik−1j1∆j2···jk+1
−∆i1...ik−1j2∆j1j3···jk+1

+ · · ·+(−1)k∆i1...ik−1jk+1
∆j1···jk = 0

e.g. i = 1, {j1, j2, j3} = {2, 3, 4}
∆12∆34 −∆13∆24 + ∆14∆23 = 3 · 3− 1 · 11 + 2 · 1 = 0.
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Dimer model

N =

1

2

3

4

Bipartite graph embedded in a disk, with
n boundary vertices.

Boundary vertices are assumed to have de-
gree one, and by convention we do not draw
their colors.

An almost perfect matching Π is a collection of edges that uses every
interior vertex once, and may use any subset of the boundary vertices.

1

2

3

4

The boundary set ∂(Π) is the set of black
boundary vertices used union the set of white
boundary vertices not used. (∂(Π) = {3, 4}
in example)

We informally call these dimers, that is, polymers consisting of two atoms.
Dimer model: what does a random dimer look like? (Kasteleyn 1967)

(Fisher and Temperley 1961)
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Boundary measurements

We now assume that N has positive edge weights we . The weight of an
almost perfect matching Π is wt(Π) =

∏
e∈Π we .

Definition (Dimer generating function)

For a subset I ⊂ [n], define the boundary measurement

∆I (N) :=
∑

Π:∂(Π)=I

wt(Π)

If almost perfect matchings exist, it is easy to see that there is a unique
value of k such that ∆I (N) 6= 0 only if |I | = k .

1

2

3

4

a b

cd

∆13(N) = ac + bd

∆14(N) = b

∆23(N) = d

∆24(N) = 1

∆34(N) = c
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Boundary measurement map

Theorem (Postnikov, Talaska, Postnikov-Speyer-Williams, Kuo, L.)

The map N → (∆I (N))
I∈([n]

k ) defines a point M(N) ∈ Gr(k , n).

To prove the theorem, it suffices to check that ∆I (N) satisfies the Plücker
relations.

Theorem (Postnikov)

1 The map N → M(N) surjects onto Gr≥0(k , n).

2 If M(N) = M(N ′), then N and N ′ are related by local moves.

3 For each positroid cell Πf ,>0, there exists a network N(t1, t2, . . . , td)
with edge weights given by the parameters t1, . . . , td such that the
map (t1, t2, . . . , td) ∈ Rd

>0 → M(N(t1, t2, . . . , td)) is a
homeomorphism Rd

>0
∼= Πf ,>0.
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Double dimers

Since ∆I (N)∆J(N) counts double dimers, the Plücker relation is
equivalent to a statement about boundary connections of double dimers.

a b

Temperley-Lieb immanant (L., cf. Rhoades–Skandera):
For a (k, n)-partial noncrossing matching τ ,

Fτ (N) =
∑

wt(Σ)

summed over double dimers Σ with connectivity τ .
We have an identity ∆I∆J =

∑
Fτ

, summed over τ compatible with (I , J).
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Dimers and positroids

Let G be a planar bipartite graph. Then for any positive edge weights we ,
we have

M((G ,we)) ∈ Πf ,>0

where f = fG only depends on the underlying graph G .

We have dim(Πf ,>0) ≤ #Faces(G )− 1, and when equality holds we call
G reduced.

In the reduced case, we can read f off of G by the rules of the road.
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4

1

6 2

35

f (1) = 4
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Electrical networks

An electrical resistor network is an undirected weighted graph Γ.

21

1.3

0.5

1
40.1

2
1

1.5

Edge weight = conductance = 1/resistance
Some vertices are designated as boundary vertices. The rest are interior
vertices.
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Response matrix

The electrical properties are described by the response matrix

Λ(Γ) : R#boundary vertices −→ R#boundary vertices

voltage vector 7−→ current vector

which gives the current that flows through the boundary vertices when
specified voltages are applied.

Λij = current flowing through vertex j when

the voltage is set to 1 at vertex i and 0 at all other vertices.

Possibly surprisingly, Λ(Γ) is a symmetric matrix.
If all vertices are considered boundary vertices, then Λ(Γ) is simply the
Laplacian matrix of Γ.
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Axioms of electricity

The matrix Λ(Γ) can be computed using only two axioms.

Kirchhoff’s Law (1845)

The sum of currents flowing into an interior vertex is equal to 0.

Ohm’s Law (1827)

For each resistor we have

(V1 − V2) = I × R

where
I = current flowing throught the resistor
V1,V2 = voltages at two ends of resistor
R = resistance of the resistor

To compute Λ(Γ), we give variables to each edge (current through that
edge) and each vertex (voltage at that vertex). Then solve a large system
of linear equations.

Thomas Lam (U.Michigan, IAS) Total positivity April 16, 2019 12 / 28



Axioms of electricity

The matrix Λ(Γ) can be computed using only two axioms.

Kirchhoff’s Law (1845)

The sum of currents flowing into an interior vertex is equal to 0.

Ohm’s Law (1827)

For each resistor we have

(V1 − V2) = I × R

where
I = current flowing throught the resistor
V1,V2 = voltages at two ends of resistor
R = resistance of the resistor

To compute Λ(Γ), we give variables to each edge (current through that
edge) and each vertex (voltage at that vertex). Then solve a large system
of linear equations.

Thomas Lam (U.Michigan, IAS) Total positivity April 16, 2019 12 / 28



Groves

We now assume that Γ is embedded into a disk. A grove F in Γ is a
subforest such that every interior vertex is connected to some boundary
vertex.

5

4

3

2

1

The boundary partition σ(F ) of a
grove F is the noncrossing partition
whose parts are boundary vertices be-
longing to the same component of F .

σ(F ) = {2, 3, 4|1, 5}

Planarity =⇒ noncrossing.

Groves were studied by Carroll–Speyer, Kenyon–Wilson, ...
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Noncrossing partitions

1

2

3
4

5

6

7

8

9
10

11

12

The noncrossing partition σ = {1, 2, 5, 9|3, 4|6, 7, 8|10, 11|12}.

Let NCn denote the set of noncrossing partitions on {1, . . . , n}. Then
|NCn| = Cn = 1

n+1

(2n
n

)
. For n = 3, we have 5 noncrossing partitions.

(123), (1|23), (12|3), (13|2), (1|2|3).
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Grove measurements

Definition (Grove generating function)

For σ ∈ NCn, and an electrical network Γ, define

Lσ(Γ) =
∑

σ(F )=σ

wt(F )

where the weight of a grove F is the product of the weights of the edges
belonging to F .

We collect all the Lσ’s together to obtain a map
Γ 7−→ L(Γ) = (Lσ(Γ))σ∈NCn ∈ PNCn .

Proposition (essentially Kirchhoff 1800s)

Λ(Γ) = Λ(Γ′) if and only if L(Γ) = L(Γ′)

Define the compactified space of circular planar electrical networks:

En := {L(Γ) | Γ planar electrical network } ⊂ PNCn
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Example: the grove embedding

1

2

3

a

b

c

Γ

L1|2|3 = a + b + c ,

L123 = abc

L12|3 = ab,

L1|23 = bc,

L13|2 = ac ,

L(Γ) = (a + b + c : ab : bc : ac : abc) ∈ P4
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The totally nonnegative Lagrangian Grassmannian

Consider the (degenerate) skew-symmetric bilinear form on R2n

〈x , y〉 =
2n∑
k=1

(−1)k(xkyk+1 − xk+1yk)

where x2n+1 = (−1)nx1. A subspace U ⊂ R2n is isotropic if 〈·, ·〉 restricts
to 0 on U. We set

LG(n + 1, 2n) := {U ⊂ R2n | U is maximal isotropic } ⊂ Gr(n + 1, 2n).

We have dim(Gr(n+ 1, 2n)) = n2− 1 but dimLG(n+ 1, 2n) = n(n− 1)/2.

Definition

The totally nonnegative Lagrangian Grassmannian:

LG≥0(n + 1, 2n) := LG(n + 1, 2n) ∩Gr≥0(n + 1, 2n).

Our notion differs from that of Lusztig and Karpman. (Thanks to David
Speyer for a helpful discussion!)
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Embedding electrical networks into the Grassmannian

Theorem (L.)

There is a homeomorphism

ι : En −→ LG≥0(n + 1, 2n)

given by the formula

∆I (ι(Γ)) =
∑

σ∈NCn

aIσLσ(Γ)

where aIσ is a 0-1 matrix, with the 1-s given by concordant pairs (I , σ).

Earlier work: Curtis–Ingerman–Morrow (1998) and de
Verdière–Gitler–Vertigan (1996).
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Ising model

G = planar network in a disk (boundary vertices may have deg > 1)
Je = weight of edge e

b1

b6b5

b4

b3 b2

Je1

Je2
Je3

Je4

Je5

Je6

Je7

Je8

Je9

Je1

Je2
Je3

Je4

Je5

Je6

Je7

Je8

Je9

Spin configuration: a map σ : V → {±1}

wt(σ) :=
∏

{u,v}∈E

exp
(
J{u,v}σuσv

)

wt(σ) =
exp (Je1 + Je2 + Je6 + Je8)

exp (Je3 + Je4 + Je5 + Je7 + Je9)

Prob(σ):=
wt(σ)

Z

The Ising model is a model for ferromagnetism. (Lenz 1920, Ising 1925)
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Boundary correlations I

Correlation: 〈σuσv 〉 := Prob(σu = σv )− Prob(σu 6= σv ).

Definition

Boundary correlation matrix: M(G , J) = (mij)
n
i ,j=1, where mij := 〈σbiσbj 〉.

b1

b2b3

b4

b5 b6

M(G , J) is a symmetric matrix
with 1’s on the diagonal
and nonnegative entries

Lives inside R(n2)

Xn := {M(G ) | G is a planar network with n boundary vertices}
X n := closure of Xn inside the space of n × n matrices
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Boundary correlations II

b2 b1

Je
b2 b1

b2 b1
∞

M(G ) =

(
1 m12

m12 1

)
, m12 = 〈σ1σ2〉 =

2 exp(Je)− 2 exp(−Je)

2 exp(Je) + 2 exp(−Je)

Je = 0 Je ∈ (0,∞) Je =∞
m12 = 0 m12 ∈ (0, 1) m12 = 1

We have X2
∼= [0, 1) and X 2

∼= [0, 1].

X n is obtained from Xn by allowing Je =∞ (i.e., contracting edges).
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The totally nonnegative orthogonal Grassmannian

Consider the symmetric nondegenerate bilinear form on R2n given by

(x , y) =
2n∑
i=1

(−1)ixiyi .

A subspace W ⊂ R2n is isotropic if the restriction of (·, ·) to W is
identically 0. The orthogonal Grassmannian is given by

OG(n, 2n) := {W ∈ Gr(n, 2n) | ∆I (W ) = ∆[2n]\I (W ) for all I}

and consists of a component of the isotropic subspaces of Gr(n, 2n). We

have dim(Gr(n, 2n)) = n2 but dim(OG(n, 2n)) =
(n

2

)
= n(n−1)

2 .

Definition (Huang–Wen)

The totally nonnegative orthogonal Grassmannian:
OG≥0(n, 2n) := OG(n, 2n) ∩Gr≥0(n, 2n), i.e.,
OG≥0(n, 2n) := {W ∈ Gr(n, 2n) | ∆I (W ) = ∆[2n]\I (W ) ≥ 0 for all I}.

This notion differs from a general one of Lusztig.
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Boundary correlation map

Xn := {M(G ) | G is a planar Ising network with n boundary vertices}
X n := closure of Xn inside the space of n × n matrices.

We have Xn,X n ⊂ Matsym
n (R, 1) :=

{
symmetric n × n matrices
with 1’s on the diagonal

}
.

The doubling map φ:
1 m12 m13 m14

m12 1 m23 m24

m13 m23 1 m34

m14 m24 m34 1

 7→


1 1 m12 −m12 −m13 m13 m14 −m14

−m12 m12 1 1 m23 −m23 −m24 m24

m13 −m13 −m23 m23 1 1 m34 −m34

−m14 m14 m24 −m24 −m34 m34 1 1


Theorem (Galashin–Pylyavskyy (2018))

The map φ restricts to a homeomorphism
between X n and OG≥0(n, 2n).

Matsym
n (R, 1) OG(n, 2n)

X n OG≥0(n, 2n)

φ

∼
φ

Lis (2016): boundary correlations related to Gr≥0(n, 2n).
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Comparison

Dimer Electrical Ising

vertices bipartite one part one part

space Gr≥0(k , n) LG≥0(n + 1, 2n) OG≥0(n, 2n)

dimension k(n − k) n(n − 1)/2 n(n − 1)/2

enumeration dimer configurations groves spinned flows

moves square Y −∆ Y −∆

strata permutations matchings matchings

poset Bruhat order uncrossing uncrossing

The electrical network model and Ising model have the same indexing set
for strata, same closure relations, and same local moves (on the level of
unweighted graphs).
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Electrical network →planar bipartite graph

a aa

1

2

3

a

b

c

Γ

a

a

b b
c

c

1 2

3

45

6
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Ising network → planar bipartite graph

e
b2 b1

d4

d3 d2

d1

ce

ce

sese

Here se := sech(2Je), ce := tanh(2Je) so that s2
e + c2

e = 1.

b1

b6b5

b4

b3 b2

e1

e2
e3

e4

e5

e6

e7

e8

e9

1

12

11

109

8

7

6

5

4 3

2
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Uncrossing partial order Pn

or

Let P̂n be Pn with a minimum 0̂ added.
P̂n is Eulerian (L.)
P̂n is shellable (Kenyon–Hersh)
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Further directions

Explain the surprising similarity between the combinatorics appearing in
electrical networks and that in Ising models.

Develop a notion of matroids for electrical networks. (Subsets become
(non-crossing) partitions.)

Extend the contents of this lecture to other surfaces with boundary.

Some references:
A. Postnikov, Total positivity, Grassmannians, and networks,

arXiv:math/0609764.
T. Lam, Totally nonnegative Grassmannian and Grassmann polytopes,

CDM lectures 2014.
T. Lam, Electroid varieties and a compactification of the space of planar

electrical networks, Adv. in Math. 2018.
P. Galashin and P. Pylyavskyy, Ising model and the positive orthogonal

Grassmannian arXiv:1807.03282.
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