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CW complexes

A CW complex is a Hausdorff topological space X together with a finite
partition X =

⊔
α∈P Xα of cells, such that for each α,

1 there is a continuous attaching map fα : B
d → X defined on a closed

ball, sending the open ball Bd homeomorphically onto Xα, and

2 the image of the boundary of B
d

under fα is contained in the union of
cells of smaller dimension.

A CW complex is regular if

1 fα is a homeomorphism onto the closure of Xα, and

2 the image of fα is a union of some cells Xβ.

Thus Xα is a closed ball.

e.g. non-regular
CW complex

regular
CW complex

regular
CW complex

Any polytope Q is a regular CW complex.
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CW posets

The face poset of a regular CW complex is the poset (P̂ = P t 0̂,�) where

α � β if and only if Xα ⊆ Xβ

and 0̂ is a minimum element corresponding to the “empty face”.

A regular CW complex is completely determined by its face poset.
Björner characterized the face posets of regular CW complexes, called

CW posets.

1

2 3

123

123 13 23

1 2 3

0̂
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Fomin–Shapiro conjecture

123

213 132

312 231

321

S3

By results of Edelman (1981), the Bruhat order on Sn is a CW poset.

Björner and Bernstein: Is there a ‘naturally occurring’ such regular CW
complex?

Fomin and Shapiro (2000) conjectured that the link of the identity in
U≥0 is such a regular CW complex. This was proved by Hersh (2014).
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Totally nonnegative Grassmannian is a regular CW complex

Theorem (Galashin–Karp–L. (2019))

The totally nonnegative Grassmannian Gr≥0(k, n) is a regular CW
complex. In particular, every closed positroid cell Πf ,≥0 is homeomorphic
to a closed ball.

Postnikov, Postnikov–Speyer–Williams, Williams, Rietsch–Williams

Theorem (Galashin–Karp–L. (2017))

The compactification of planar electrical networks En is homeomorphic to
a closed ball.

L., Hersh–Kenyon

Theorem (Galashin–Pylyavskyy (2018))

The space of boundary correlations of Ising models X n is homeomorphic
to a closed ball.

Conjecture: En and X n are regular CW complexes.
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Totally nonnegative flag variety

123

213 132

312 231

321

 

132

231312

213

123

321

S3 (Bruhat order)

The cells of the totally nonnegative flag variety for SL3 are indexed by
intervals in the Bruhat order of S3.
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Grassmann polytopes
By definition, a polytope is the image of a simplex under an affine map:

simplex in Pn−1

polytope in Pm

linear map
Rn → Rm+1

A Grassmann polytope (L.) is the image of a map Gr≥0k,n → Grk,k+m

induced by a linear map Z : Rn → Rk+m. (Here m ≥ 0 with k +m ≤ n.)
When the matrix Z has positive maximal minors, the Grassmann

polytope is called an amplituhedron (Arkani-Hamed and Trnka). In the
k = 1 case, amplituhedra are cyclic polytopes.

Conjecture: Grassmann polytopes are regular CW complexes, and
amplituhedra for m even are in addition homeomorphic to a ball.
(Karp–Williams, Galashin–Karp–L., Blagojević–Galashin–Palić–Ziegler)
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Thomas Lam (U.Michigan, IAS) Total positivity April 17, 2019 7 / 17



Grassmann polytopes
By definition, a polytope is the image of a simplex under an affine map:

simplex in Pn−1 Gr≥0k,n

polytope in Pm Grassmann polytope
in Grk,k+m

linear map
Rn → Rm+1

linear map
Rn → Rk+m

A Grassmann polytope (L.) is the image of a map Gr≥0k,n → Grk,k+m

induced by a linear map Z : Rn → Rk+m. (Here m ≥ 0 with k +m ≤ n.)

When the matrix Z has positive maximal minors, the Grassmann
polytope is called an amplituhedron (Arkani-Hamed and Trnka). In the
k = 1 case, amplituhedra are cyclic polytopes.

Conjecture: Grassmann polytopes are regular CW complexes, and
amplituhedra for m even are in addition homeomorphic to a ball.
(Karp–Williams, Galashin–Karp–L., Blagojević–Galashin–Palić–Ziegler)
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Triangulations of amplituhedra

simplex in Pn−1

polytope in Pm

linear map
Rn → Rm+1

Conjecture

Amplituhedra can be triangulated by (the images of) a collection of
positroid cells Πf ,≥0.

Karp–Williams: m = 1
Karp–Williams–Zhang: partial results for k = 2
Galashin–L.: compatibility with parity duality (swaps k and n − k −m)

A triangulation of a Grassmann polytope gives a formula for its canonical
differential form.
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Positive geometries

Arkani-Hamed, Bai, L. (2017): a positive geometry is a space X≥0
equipped with a meromorphic canonical form Ω(X≥0), with the property
that

1 every boundary C≥0 of X≥0 is a positive geometry,

2 Ω(X≥0) has simple poles along (the Zariski closure of) each C≥0, and
no other poles,

3 the residue ResCΩ(X≥0) is equal to Ω(C≥0).

Ω(X≥0) is required to be uniquely determined by these conditions.

The basic example is a simplex:

x

y

(0, 0) (1, 0)

(0, 1)

± dxdy

xy(1−x−y)
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Canonical forms

Theorem (Arkani-Hamed, Bai, L.)

Every projective polytope P is a positive geometry.

Proof: the canonical form of a simplex is easy to write down. Triangulate
P into simplices, and sum the canonical forms.

x

y

(0, 0) (1, 0)

(0, 1)

(2, 2)

Ω(P) =
dxdy

xy(1− x − y)
+

−9dxdy

(1− x − y)(2x − y − 2)(2y − x − 2)

=
2(2 + x + y)

xy(2x − y − 2)(2y − x − 2)
dxdy

Polytopes are in addition positively convex geometries: the form takes
constant sign in the interior of P.

Other examples: Gr≥0(k , n), Πf ,≥0, the nonnegative part of a toric
variety, M0,n(R)≥0, (G/B)≥0
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Amplituhedron form and scattering amplitudes

Conjecture

The amplituhedron is a positive geometry.

The canonical form of the amplituhedron can then be obtained by
summing the canonical forms of a triangulation made from positroid cells.

For m = 4, the canonical form of the amplituhedron is essentially the
m = 4 is the tree-level scattering amplitude in planar N = 4 SYM.

The data of the momentum four-vectors of n particles is stored inside
the n × (k + 4) Z -matrix defining the amplituhedron. The extra
k-dimensions keep track of supersymmetry.
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The data of the momentum four-vectors of n particles is stored inside
the n × (k + 4) Z -matrix defining the amplituhedron. The extra
k-dimensions keep track of supersymmetry.
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Proof of regularity I

Smale (1961), Freedman (1982), Perelman (2003):

Theorem (consequence of generalized Poincaré conjecture)

Suppose that X is a compact topological manifold with boundary, whose
interior X ◦ is contractible and whose boundary ∂X is homeomorphic to a
sphere. Then X is homeomorphic to a closed ball.

We want to show that the closure X of a positroid cell in the cell
decomposition of Gr≥0k,n is homeomorphic to a closed ball.

Postnikov (2006): X ◦ is homeomorphic to an open ball.

By induction, we can assume that every cell closure in the boundary of
X is homeomorphic to a closed ball, i.e. ∂X is a regular CW complex.

Williams (2007): The face poset of Gr≥0k,n is thin and shellable, so it is
the face poset of a sphere. By Björner (1984), the homeomorphism type
of a regular CW complex is determined by its face poset. Therefore by
induction, ∂X is homeomorphic to a sphere.
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Proof of regularity II

It remains to show that X is a topological manifold with boundary, i.e.
X looks like a closed half-space in Rd near any point on its boundary.

We prove that, locally near x ∈ Πf ,>0 the space X is the direct product

X
local' Πf ,>0 × Cone(Link(Πf ,>0,X ))

and furthermore that the link is itself a closed ball.

x

link(x)
ε

This implies that X is a topological manifold with boundary near x .

We prove that links are closed balls by induction. This does not reduce
to a third induction, since ‘links in links are links’.
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Affine Bruhat atlas
At the heart of Fomin and Shapiro’s approach are factorization

isomorphisms (first considered by Kazhdan and Lusztig)

Cu −→ Xu × X u,

one for each u ∈ Sn, where

1 Cu is a rotated open Schubert cell centred at u in the flag variety,

2 Xu and X u are Schubert and opposite Schubert cells in the flag
variety.

Combinatorially, this corresponds to the bijection

{all positive roots} ↔ {inversions of u}
⊔
{coinversions of u}.

There is no good choice for u (or I ) for an arbitrary positroid variety Πf .
(Combinatorial Bruhat atlas) Knutson–L.–Speyer (also He and L.): the

partial order on Bound(k , n) embeds as a lower order ideal in the Bruhat
order of the affine symmetric group S̃n.
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Affine Bruhat atlas

Snider (2011): rotated open Schubert cell CI := {∆I 6= 0} ⊂ Gr(k , n)
ϕI : CI ↪→ F̃ln

sending Π̊f ∩ CI to an open affine Richardson stratum.

e.g. Let I = {1, 3} with k = 2, n = 4. Then Snider’s embedding is

[
1 a 0 b
0 c 1 d

]
7→

. . .
. . .

. . .
. . .

. . .
. . .

· · · 0 a 0 b 1 0 · · ·
· · · 1 0 0 0 0 0 · · ·

· · · 0 d 0 c 1 0 · · ·
· · · 1 0 0 0 0 0 · · ·

· · · 0 a 0 b 1 0 · · ·
. . .

. . .
. . .

. . .
. . .

. . .

.

We obtain the conic structure near x by translating x to a ‘hidden’
point in F̃ln in the same cell as x , which is not in the image of the map ϕI .
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Further directions

We conjecture that the regularity theorem holds for totally nonnegative
parts of Kac-Moody flag varieties.

A corresponding combinatorial statement is that the interval order of
Bruhat order of a Kac-Moody Weyl group is shellable.

Understand the combinatorics and geometry of faces of Grassmann
polytopes. Vague conjecture: amplituhedron maximizes is the ‘upper
bound’ Grassmann polytope, analogous to cyclic polytopes.

Prove triangulations of amplituhedra and Grassmann polytopes exist.
Give explicit (and preferably triangulation independent) formulae for the

canonical form of a Grassmann polytope.
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