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Saturated chains in non-crossing partition posets



Poset of non-crossing partitions

Definition (Kreweras 1972)

non-crossing partition on n elements=
set partition of {1,...,n} which parts do
not intersect

Ordered by refinement.

, ot comp.



Saturated chains in NCP Poset [Stanley 1996]

Definition
A saturated chain in NC, is a maximal chain m; < ... < mp_».
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Definition
A saturated chain in NC, is a maximal chain m; < ... < mp_».
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Saturated chains in NCP Poset [Stanley 1996]

Definition
A saturated chain in NC, is a maximal chain m; < ... < mp_».
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Chains in NCPP
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71 : Chains in NCPP — PBT
7o : Decorated Dyck paths — PBT
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The multiplicity of a given leveled tree T

w(T)= [[ (h+1),

vel(T)

where L(T) = {left children in T}
and h, = nbr of inner vertices in the subtree of

T rooted in v.
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Hook formula(s)

Proposition (DO, Josuat-Verges)
The multiplicity of a given leveled tree T

w(T)= [ (b +1),

vEL(T)

where L(T) = {left children in T}
and h, = nbr of inner vertices in the subtree of

T rooted in v.




Hook formula(s)

Proposition (DO, Josuat-Verges)
The multiplicity of a given leveled tree T

w(T)= ][ (h+1),

vEL(T)

where L(T) = {left children in T}
and h, = nbr of inner vertices in the subtree of

T rooted in v.

Corollary (Hook formula)
[
(n+1)"1 :Z% < I] (h+1)
T HVGV(T) v VGL(T)

where the sum runs over any complete binary tree T.




Hook formula(s)

Corollary (Hook formula)

(n+1)"t=> ——— x ] (h+1)
HVEV(T) v VEL(T)

where the sum runs over any complete binary tree T.

Proposition (Postnikov 2005)

(n+1)"—1:Z"—n I1 (—+1)

T veV(T)

Rk: >+ W(T) given by A0088716



Minimal factorisations of a cycle



Minimal factorisations of a cycle

Definition

A factorisation of (12 ... n), o1---0j, is minimal if 3>, /(6;) = n+j — 1.

Proposition (Biane 1997)

Minimal factorizations
=4
Chains of NCPO <7y < --- <1
s.t. I(o;) blocks are merged between 7; and m;_1.




Enumeration

The number of factorisations (1,2,...,kn+1) =01 ---0, where o; is a

cycle on k + 1 elements is
(kn+1)""1,

Proposition (DO - Josuat-Verges)

We have with T running over plane (k + 1)-ary
trees with n increasingly-labeled internal vertices:

(kn+1)"=>" ] M,

T v left vertex

where h,, is equal to the number of leaves above v.

v
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Proposition (DO - Josuat-Verges)

We have with T running over plane (k + 1)-ary trees with n
increasingly-labeled internal vertices:

(kn+1)"*=>" ][ M,

T v left vertex

Corollary
Considering planar (k 4+ 1)-ary trees T, we get:

(kn+1)"—1=2< 11 m) Hhv'_l

T v left vertex




2-partition posets



2-partitions [Edelmann 1980]

Definition

A 2-partition is a couple (P, Q)4, where
@ P is a non-crossing partition,
o @ is set-partition

@ and ¢ is a bijections between parts of P and parts of @ s.t.

|Pi| = |o(P;)l-

Example:
m .
(7 (L (3HE5THE s ¢ 2 65 14T 3




2-partitions [Edelmann 1980]

Definition

A 2-partition is a couple (P, Q)4, where
@ P is a non-crossing partition,
o @ is set-partition

@ and ¢ is a bijections between parts of P and parts of @ s.t.

|Pi| = [¢(Pi)l.

Example:
m .
(7 {141{3H257) {6z > 2 6 5 1 4 7 3

Order : (P,Q)y < (P, Q")y iff P < P, Q < Q" and the bijections
commute with the order



2-partition poset on 3 vertices [Edelman]
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Zeta polynomial

Definition (Stanley 1974)
The Zeta polynomial of the posets of 2-partitions is defined by:

C(l,k,n) = |{m < ...7k|mi € P2p,rk(mi) = 1}




Zeta polynomial

Definition (Stanley 1974)

The Zeta polynomial of the posets of 2-partitions is defined by:

C(l,k,n) = |{m < ...7k|mi € P2p,rk(mi) = 1}

Proposition (DO - Josuat-Verges - Randazzo)

¢l k,n) =11 ("/”) S(n, 1 +1)

In particular, {(/,—1, n) is given by A198204.



Zeta polynomial

Definition (Stanley 1974)

The Zeta polynomial of the posets of 2-partitions is defined by:

C(l,k,n) = |{m < ...7k|mi € P2p,rk(mi) = 1}

Proposition (DO - Josuat-Verges - Randazzo)

¢l k,n) =11 ("/”) S(n, 1 +1)

In particular, {(/,—1, n) is given by A198204.
Corollary (Edelman)

> ¢l k,n) = (nk 4+ 1)
I




Some species

Proposition
The species of weak k-chains satisfies the following relation:

Cll<,t = Z C/I;Bl,t X (Cll<,t + 1)P’

p=>1

where C,I(’f 1.+ Is the species which coincides with C,’(_Lt on any set of size p
and send any other set to the empty set.

v
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Cll<,t = Z Clléfl,t X <Cll<,t + 1)P’

p=>1

where C,I(’f 1.+ Is the species which coincides with C,’(_Lt on any set of size p
and send any other set to the empty set.
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Obrigada pela vossa atencao !
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