Chains in non-crossing partition posets

Bérénice Delcroix-Oger work in progress with Matthieu Josuat-Vergès (LIGM) and Lucas Randazzo (LIGM)

SLC 82 Curia & 9th combinatorics days **April** 2019

Outline

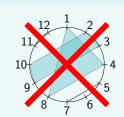
- 1 Saturated chains in non-crossing partition posets
- Minimal factorisations of a cycle
- 3 2-partition posets

Saturated chains in non-crossing partition posets

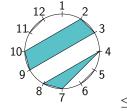
Poset of non-crossing partitions

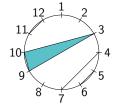
Definition (Kreweras 1972)

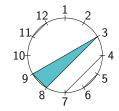
non-crossing partition on n elements= set partition of $\{1, \ldots, n\}$ which parts do not intersect



Ordered by refinement.

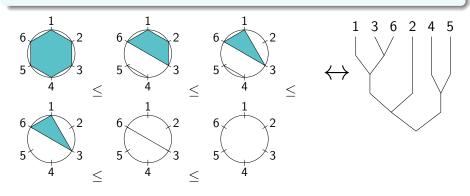




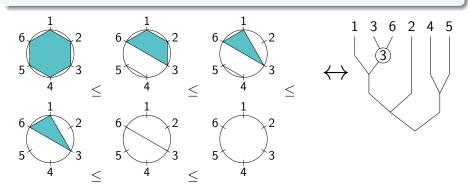


, not comp.

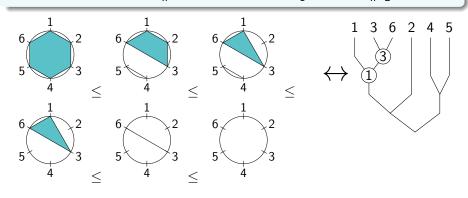
Definition



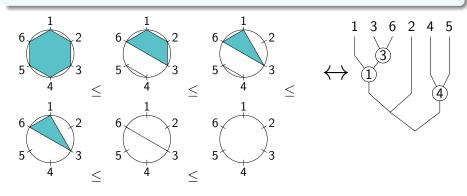
Definition



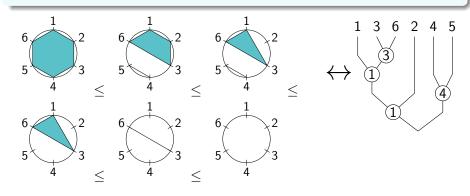
Definition



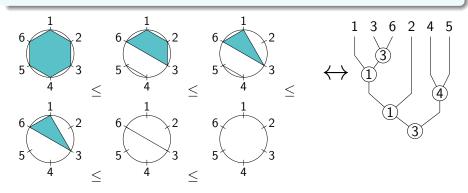
Definition



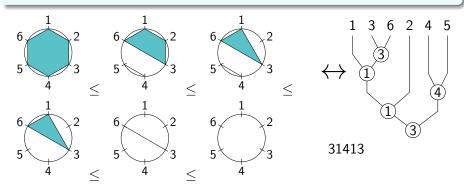
Definition



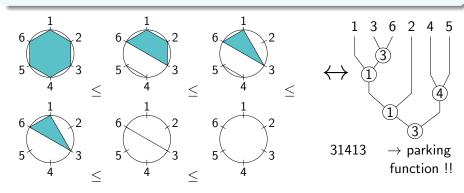
Definition



Definition



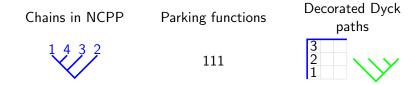
Definition

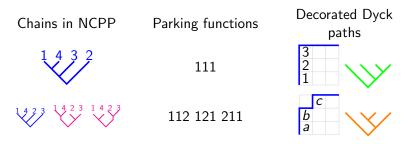


Chains in NCPP

Parking functions

Decorated Dyck paths





Chains in NCPP	Parking functions	Decorated Dyck paths	
1 4 3 2	111	3 2 1	
1423 1423 1423	112 121 211	b a	
1243 1243 1243	122 212 221	a C b	
1324 1342 1342	113 131 311	b a	
1234 1234 1234	123 132 213 231 312 321	a b	

 $\pi_{\mathbf{1}}:\mathsf{Chains}\;\mathsf{in}\;\mathsf{NCPP}\to\mathsf{PBT}$

 $\pi_2:\mathsf{Decorated}\;\mathsf{Dyck}\;\mathsf{paths}\to\mathsf{PBT}$

Shape		$\langle \rangle$	V /	W	W
π_1	6	4	3	2	1
π_2	6	3	3	3	1

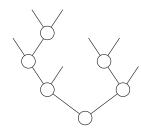
Hook formula(s)

Proposition (DO, Josuat-Vergès)

The multiplicity of a given leveled tree T

$$W(T) = \prod_{v \in L(T)} (h_v + 1),$$

where $L(T) = \{ left \ children \ in \ T \}$ and $h_v = nbr \ of \ inner \ vertices \ in \ the \ subtree \ of \ T \ rooted \ in \ v.$

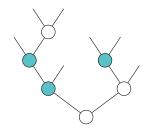


Proposition (DO, Josuat-Vergès)

The multiplicity of a given leveled tree T

$$W(T) = \prod_{v \in L(T)} (h_v + 1),$$

where $L(T) = \{ left \ children \ in \ T \}$ and $h_v = nbr \ of \ inner \ vertices \ in \ the \ subtree \ of \ T \ rooted \ in \ v.$

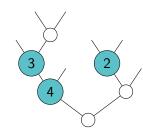


Proposition (DO, Josuat-Vergès)

The multiplicity of a given leveled tree T

$$W(T) = \prod_{v \in L(T)} (h_v + 1),$$

where $L(T) = \{ left \ children \ in \ T \}$ and $h_v = nbr \ of \ inner \ vertices \ in \ the \ subtree \ of \ T \ rooted \ in \ v.$



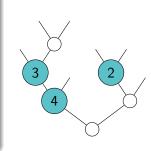
Hook formula(s)

Proposition (DO, Josuat-Vergès)

The multiplicity of a given leveled tree T

$$W(T) = \prod_{v \in L(T)} (h_v + 1),$$

where $L(T) = \{ left \ children \ in \ T \}$ and $h_v = nbr$ of inner vertices in the subtree of T rooted in v.



Corollary (Hook formula)

$$(n+1)^{n-1} = \sum_{T} \frac{n!}{\prod_{v \in V(T)} h_v} \times \prod_{v \in L(T)} (h_v + 1)$$

where the sum runs over any complete binary tree T.

Hook formula(s)

Corollary (Hook formula)

$$(n+1)^{n-1} = \sum_{T} \frac{n!}{\prod_{v \in V(T)} h_v} \times \prod_{v \in L(T)} (h_v + 1)$$

where the sum runs over any complete binary tree T.

Proposition (Postnikov 2005)

$$(n+1)^{n-1} = \sum_{T} \frac{n!}{2^n} \prod_{v \in V(T)} (\frac{1}{h_v} + 1)$$

Rk: $\sum_{T} W(T)$ given by A0088716

Minimal factorisations of a cycle

Minimal factorisations of a cycle

Definition

A factorisation of (1 2 ... n), $\sigma_1 \cdots \sigma_j$, is minimal if $\sum_i I(\sigma_i) = n + j - 1$.

Proposition (Biane 1997)

Minimal factorizations

$$\Leftrightarrow$$

Chains of NCP
$$\hat{0} \leq \pi_1 \leq \cdots \leq \hat{1}$$

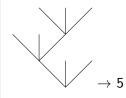
s.t. $I(\sigma_i)$ blocks are merged between π_i and π_{i-1} .

The number of factorisations $(1, 2, ..., kn + 1) = \sigma_1 \cdots \sigma_n$ where σ_i is a cycle on k + 1 elements is $(kn + 1)^{n-1}$.

We have with T running over plane (k + 1)-ary trees with n increasingly-labeled internal vertices:

$$(kn+1)^{n-1} = \sum_{T} \prod_{v \text{ left vertex}} h_v,$$

where h_v is equal to the number of leaves above v.



YAHF

Proposition (DO - Josuat-Vergès)

We have with T running over plane (k + 1)-ary trees with n increasingly-labeled internal vertices:

$$(kn+1)^{n-1} = \sum_{T} \prod_{v \text{ left vertex}} h_v,$$

Corollary

Considering planar (k+1)-ary trees T, we get:

$$(kn+1)^{n-1} = \sum_{T} \left(\prod_{v \ left \ vertex} h_v \right) \times \frac{n!}{\prod_{v} \frac{h_v - 1}{k}}$$

2-partition posets

Definition

A 2-partition is a couple $(P, Q)_{\phi}$, where

- P is a non-crossing partition,
- Q is set-partition
- and ϕ is a bijections between parts of P and parts of Q s.t. $|P_i| = |\phi(P_i)|$.

Example:

$$(\bullet) \bullet , \{14\}\{3\}\{257\}\{6\})_{3412} \leftrightarrow 2 \stackrel{\bullet}{6} \stackrel{\bullet}{5} \stackrel{\bullet}{1} \stackrel{\bullet}{4} \stackrel{\bullet}{7} \stackrel{\bullet}{3}$$

2-partitions [Edelmann 1980]

Definition

A 2-partition is a couple $(P, Q)_{\phi}$, where

- P is a non-crossing partition,
- Q is set-partition
- and ϕ is a bijections between parts of P and parts of Q s.t. $|P_i| = |\phi(P_i)|$.

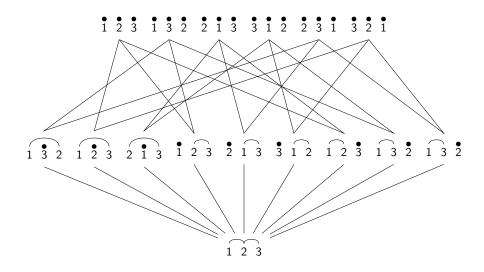
Example:

$$(\bullet) \bullet , \{14\}\{3\}\{257\}\{6\})_{3412} \leftrightarrow 2 \stackrel{\bullet}{6} \stackrel{\bullet}{5} \stackrel{\bullet}{1} \stackrel{\bullet}{4} \stackrel{\bullet}{7} \stackrel{\bullet}{3}$$

Order : $(P,Q)_{\phi} \leq (P',Q')_{\psi}$ iff $P \leq P'$, $Q \leq Q'$ and the bijections commute with the order

0 0 3

2-partition poset on 3 vertices [Edelman]



0 0 3

2-partition poset on 3 vertices P2₃[Edelman]



Zeta polynomial

Definition (Stanley 1974)

The Zeta polynomial of the posets of 2-partitions is defined by:

$$\zeta(\mathit{I},\mathit{k},\mathit{n}) = |\{\pi_1 \leq \dots \pi_\mathit{k} | \pi_\mathit{i} \in \mathit{P2}_\mathit{n}, \mathsf{rk}(\pi_\mathit{k}) = \mathit{I}\}|$$

Zeta polynomial

Definition (Stanley 1974)

The Zeta polynomial of the posets of 2-partitions is defined by:

$$\zeta(\mathit{I},\mathit{k},\mathit{n}) = |\{\pi_1 \leq \dots \pi_\mathit{k} | \pi_\mathit{i} \in \mathit{P2}_\mathit{n}, \mathsf{rk}(\pi_\mathit{k}) = \mathit{I}\}|$$

Proposition (DO - Josuat-Vergès - Randazzo)

$$\zeta(l,k,n) = l! \binom{kn}{l} S(n,l+1)$$

In particular, $\zeta(I, -1, n)$ is given by A198204.

Definition (Stanley 1974)

The Zeta polynomial of the posets of 2-partitions is defined by:

$$\zeta(\mathit{I},\mathit{k},\mathit{n}) = |\{\pi_1 \leq \dots \pi_\mathit{k} | \pi_\mathit{i} \in \mathit{P2}_\mathit{n}, \mathsf{rk}(\pi_\mathit{k}) = \mathit{I}\}|$$

Proposition (DO - Josuat-Vergès - Randazzo)

$$\zeta(l,k,n) = l! \binom{kn}{l} S(n,l+1)$$

In particular, $\zeta(l, -1, n)$ is given by A198204.

Corollary (Edelman)

$$\sum_{l} \zeta(l,k,n) = (nk+1)^{n-1}$$

Some species

Proposition

The species of weak k-chains satisfies the following relation:

$$\mathcal{C}_{k,t}^{l} = \sum_{p \geq 1} \mathcal{C}_{k-1,t}^{l,p} \times \left(\mathcal{C}_{k,t}^{l} + 1\right)^{p},$$

where $C_{k-1,t}^{l,p}$ is the species which coincides with $C_{k-1,t}^{l}$ on any set of size p and send any other set to the empty set.

0 3

Proposition

The species of weak k-chains satisfies the following relation:

$$\mathcal{C}_{k,t}^{l} = \sum_{p \geq 1} \mathcal{C}_{k-1,t}^{l,p} \times \left(\mathcal{C}_{k,t}^{l} + 1\right)^{p},$$

where $C_{k-1,t}^{l,p}$ is the species which coincides with $C_{k-1,t}^{l}$ on any set of size p and send any other set to the empty set.

Obrigada pela vossa atenção!