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MacDonald Polynomials
ΛC(q,t) := C(q, t)[X1, ..., XN ]SN =

⊕∞
i=1 ΛnC(q,t)

I When n ≥ N , basis of ΛnC(q,t) include elementary eλ,
homogeneous hλ, power pλ and Schur sλ symmetric
functions.

I {H̃λ | λ ` n} (modified, Garsia & Haiman) Macdonald
Polynomials: basis of ΛC(q,t)
I Applications in wide variety of subjects
I "Generalisation" of Hall-Littlewood, Jack polynomials,...
I Kostka-Macdonald coefficients

H̃µ =
∑
λ`n

K̃λµ(q, t)sλ

Macdonald Positivity Conjecture
K̃λµ(q, t) ∈ N[q, t], i.e. the Macdonald polynomials are Schur
positive
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n! conjecture

Strategy to prove Schur positivity of Macdonald Polynomials

I Construction, for each µ, a bi-graded moduleMµ (Garsia
Haiman module), affording regular representation of Sn

I H̃µ is image of the bi-graded character of this module by
Frobenius characteristic map

I Garsia and Haiman reduced this to the problem of showing
that Dim(Mµ) = n!

I Proved by Haiman in 2001, using tools from Algebraic
Geometry
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The Delta operators
Working on the Macdonald positivity conjecture, Garsia and
Haiman introduced the SN -module DHn of diagonal harmonics.
It turns out that

F(DHn; q, t) = ∇en

I ∇ is the operator defined by ∇H̃µ := TµH̃µ where Tµ ∈ N[q, t].
I The Delta operators, for some f ∈ Λ are defined by

∆f H̃µ := f [Bµ(q, t)]H̃µ and ∆′f H̃µ := f [Bµ(q, t)− 1]H̃µ,

where Bµ ∈ N[q, t].
I On Λ(n),

∆en = ∇ and ∆ek = ∆′ek + ∆′ek−1

I Just a few weeks ago, Zabrocki found a module extending
the diagonal harmonics, whose bi-graded Frobenius
characteristic he conjectured to be ∆′en−k−1

en.
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Combinatorial interpretations

Function Conjecture Proof

∇en = ∆enen

Shuffle conjecture
Haglund, Haiman, Loehr
Remmel, Ulyanov, 2005.

Carlsson
Mellit
2015

∆′en−k−1
en

Delta conjecture
Haglund, Remmel,

Wilson, 2015

∆hm∆′en−k−1
en

Generalised
Delta conjecture

idem

∇(−1)n−1pn
Square conjecture

Loehr, Warrington, 2007
Sergel
2016

[n−k]t
[n]t

∆hm∆en−k
(−1)n−1pn

Generalised
Delta square conjecture

D-I-VW
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The Delta conjecture

∆′en−k−1
en =

∑
D∈LD(n)∗k

qdinv(D)tarea(D)xD

1

3

4

6

2

6

∗

∗
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LD(n)∗k: labelled decorated Dyck
paths
I Dyck path of size n
I k decorations on rises (i.e. vertical
steps preceded by another
vertical step).

I vertical steps labelled with
nonzero, positive integers
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The generalised Delta conjecture
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PLD(m,n)∗k: partially labelled
decorated Dyck paths
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Area: number of whole squares
between the path and y = x, and not
in a row containing a decorated rise.
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(secondary dinv)
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4

6
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∗

xD :=

m+n∏
i=1

xli(D)

where li(D) is the label of the i-th
vertical step of D and we set x0 = 1.

5/14



Generalised Delta conjecture: state of the art

Conditions Reference
m = 0 and k = 0 Carlsson-Mellit
m = 0 and q = 0 Garsia-Haglund-Remmel-Yoo
m = 0 and q = 1 Romero

m = 0 and 〈·, hn−dhd〉 D’Adderio-Iraci
〈·, en−dhd〉 D-I-VW

t = 0 or q = 0 D-I-VW
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The generalised Delta square conjecture

[n− k]t
[n]t

∆hm∆en−k
(−1)n−1pn =

∑
P∈PLSQE(m,n)∗k

qdinv(P )tarea(P )xP

∗

2

0

2

4

0

1

3

1
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Area: number of whole squares
between the path and the lowest
diagonal touched by the path and not
in a row containing a decorated rise.

7/14



The generalised Delta square conjecture
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1
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I Primary: same diagonal
lower label < upper label
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I Bonus: +1 for every nonzero label
under the line x = y
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The generalised Delta square conjecture

[n− k]t
[n]t

∆hm∆en−k
(−1)n−1pn =

∑
P∈PLSQE(m,n)∗k

qdinv(P )tarea(P )xP

∗

2

0

2

4

0

1

3

1

xD :=

m+n∏
i=1

xli(D)

where li(D) is the label of the i-th
vertical step of D and we set x0 = 1.
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Support for our square conjecture

I k = m = 0 is the square conjecture made by Loehr and
Warrington, proven by Sergel.

I Computer evidence (using MAPLE and PYTHON)
I We proved

I The case q = 0. It coincides with the generalised Delta
conjecture.

I The case k = t = 0, which is straightforward.
I The Schröder case, i.e.

[n− k]t
[n]t

〈∆hm
∆en−k

(−1)n−1pn, en−dhd〉
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Schröder case: combinatorial meaning
Suppose the generalised Delta conjecture is true, i.e.

[n− k]t
[n]t

∆hm∆en−k
(−1)n−1pn =

∑
P∈PLSQE(m,n)∗k

qdinv(P )tarea(P )xP .

Then taking 〈·, en−dhd〉 of this equation gives
∑

P∈S q
dinv(D)tarea(P )

on the RHS where S ⊆ PLSQE(m,n)∗k is the set of paths whose
reading word is a shuffle of m zeroes, the string n− d, . . . , 1 and
the string n− d+ 1, . . . , n.

∗

0

0 The steps labelled n− d+ 1, . . . , n
must be peaks.
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reading word
4
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Schröder case: combinatorial meaning
Suppose the generalised Delta conjecture is true, i.e.
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1

6

0

2

55

4

reading word
4 5

The steps labelled n− d+ 1, . . . , n
must be peaks.
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1
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0

2

5
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reading word
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5

4
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0

2

5

4

reading word
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The steps labelled n− d+ 1, . . . , n
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9/14



Schröder case: combinatorial meaning
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Suppose the generalised Delta conjecture is true, i.e.
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Schröder case: combinatorial meaning
Suppose the generalised Delta conjecture is true, i.e.

[n− k]t
[n]t
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∗

0

0

SQE(m,n)∗k,◦d

I square paths of ending east
of size m+ n

I m zero labels in valleys
I d decorations on peaks
I dinv induced by the implied
labelling.

The steps labelled n− d+ 1, . . . , n
must be peaks.
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Schröder case: sketch of the proof

Two families of functions
I F

(d,`)
n,k;p such that

n−∑̀
k=1

F
(d,`)
n,k;p = 〈∆hp∆′en−`−1

en, en−dhd〉.

I S
(d,`)
n,k;p such that

n−∑̀
k=1

S
(d,`)
n,k;p =

[n− `]t
[n]t

〈∆hp∆en−`
(−1)n−1pn, en−dhd〉.
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Schröder case: sketch of the proof

Theorem (D-I-VW)

F
(d,`)
n,k;p =

∑
P∈F

qdinv(P )tarea(P ) S
(d,`)
n,k;p =

∑
P∈S

qdinv(P )tarea(P )

Where F ⊆ S ⊆ SQE(p, n)∗`,◦d such that
I P ∈ F ⇒ P is a Dyck path
I P ∈ S ⇔ the number of vertical steps starting from the lowest
diagonal and that are not a zero valley equals k.

To prove this, we show that both sides satisfy the same recursion.
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Theorem: recursion for F (D-I-VW)
For k, `, d, p ≥ 0, n ≥ k + ` and n+ p ≥ d, the F (d,`)

n,k;p satisfy the
following recursion: for n ≥ 1

F (d,`)
n,n;p = δ`,0q

(n−d
2 )
[

n

n− d

][
n+ p− 1

p

]
and, for n ≥ 1 and 1 ≤ k < n,

F
(d,`)
n,k;p = tn−k−`

p∑
j=0

k∑
s=0

q(
s
2)
[
k

s

]
q

[
k + j − 1

j

]
q

× tp−j
n−k−`∑
u=0

s+j∑
v=0

q(
v
2)
[
s+ j

v

]
q

[
s+ j + u− 1

u

]
q

F
(d−k+s,`−v)
n−k,u+v;p−j ,

with initial conditions

F
(d,`)
0,k;p = δk,0δp,0δd,0δ`,0 and F

(d,`)
n,0;p = δn,0δp,0δd,0δ`,0.
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Theorem: recursion for S (D-I-VW)
For k, `, d, p ≥ 0, n ≥ k + ` and n ≥ d, the S(d,`)

n,k;p satisfy the following
recursion: for n ≥ 1

S(d,`)
n,n;p = δ`,0q

(n−d
2 )
[

n

n− d

][
n+ p− 1

p

]
and, for n ≥ 1 and 1 ≤ k < n,

S
(d,`)
n,k;p = F

(d,`)
n,k;p + qktn−`−k

p∑
j=0

k∑
s=0

q(
s
2)
[
s+ j

s

]
q

[
k + j − 1

s+ j − 1

]
q

×

× tp−j
n−`−k∑
u=0

s+j∑
v=0

q(
v
2)
[
u+ v

v

]
q

[
s+ j + u− 1

s+ j − v

]
q

S
(d−k+s,`−v)
n−k,u+v;p−j ,

with initial conditions

S
(d,`)
0,k;p = δk,0δp,0δd,0δ`,0 and S

(d,`)
n,0;p = δn,0δp,0δd,0δ`,0.
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Thank you for you attention
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Variables for the S recursion
I p is the number of zero valleys.
I n is the number of vertical steps that are not zero valleys.
I k is the number of minima in the area word whose index is
not a zero valley.

I ` is the number of decorated rises.
I d is the number of decorated peak
I k − s is the number of decorated peaks at height 0.
I s is the number of minima in the area word whose index is
not a decorated peak nor a zero valley.

I j is the number of zero valleys at height 0.
I v is the number of decorated rises at height 1.
I u+ v is the number of m+ 1’s in the area word whose index is
not a zero valley.

14/14



Strategy for the S-recursion

I Start from a path P in S = SQE(p, n\k)∗`,◦d.
I If it is a Dyck path, thanks to the F recursion it is counted by
F

(d,`)
n,k;p.

I Otherwise, remove all the minima from the area word, and
then remove both the corresponding decoration on peaks,
and decorations on rises at height one (which are not rises
any more).

I In this way we obtain a path in

SQE(p− j, n− k\u+ v)∗`−v,◦d−(k−s).
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Variables for the F recursion

I k is the number of zeroes in the area word whose index is not
a zero valley.

I k − s is the number of decorated peaks at height 0.
I The previous two imply that s is the number of zeroes in the
area word whose index in not a decorated peak nor a zero
valley.

I j is the number of zero valleys at height 0.
I v is the number of decorated rises at height 1.
I u+ v is the number of 1’s in the area word whose index is not
a zero valley.
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Representation theory

ρ : Sn −→ GL

 ⊕
(i,j)∈N×N

V (j,j)


I V (i,j) are ρ invariant
I Character

χρ = tr ◦ ρ : Sn → C

I We can decompose χρ =
∑

(i,j) χ
(i,j)
ρ and χ(i,j)

ρ =
∑
cλχλ

where cλ ∈ N (multiplicity) and χλ are the irreducible
characters of (ρ|V (i,j) , V (i,j)) (one per conjugacy class)
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Frobenius Characteristic map

F : Class(Sn)→ ΛnC

f 7→ 1

n!

∑
σ∈Sn

f(σ)pλ(σ)

I Irreducible characters get sent to Schur functions
I If a symmetric function is the image of the character of a
representation by the Frobenius map then is must be Schur
positive because F is linear

I Bi-graded Frobenius characteristic map

F : χρ 7→
∑
(i,j)

qitjF(χ(i,j)
ρ )
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Symmetric functions
ΛK := K[X1, ...., XN ]SN space of symmetric functions.

ΛK =

∞⊕
i=1

ΛnK

where ΛnK is the space of homogeneous symmetric functions of
degree n.
I A lot of different basis for ΛnK , indexed by partitions of n:
elementary eλ, homogeneous hλ, power symmetric pλ.

I Link with representation theory of Sn: the Frobenius
characteristic map:

F : Class(Sn)→ ΛnK

I Schur functions sλ form another basis and are the image of
the irreducible characters by the Frobenius map.

I Scalar product 〈, 〉 on ΛnK such that sλ are orthonormal→ F is
an isometry
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