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MacDonald Polynomials

Aetqn = a0 XN = B

> Whenn > N, basis of Ag, ) include elementary ey,
homogeneous h,, power p, and Schur s, symmetric
functions.

» {H, | A\ n} (Modified, Garsia & Haiman) Macdonald
Polynomials: basis of Ag (g4

» Applications in wide variety of subjects
» "Generalisation" of Hall-Littlewood, Jack polynomials....
» Kostka-Macdonald coefficients
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Macdonald Positivity Conjecture

Ky,.(g,t) € N[g, 1], i.e. the Macdonald polynomials are Schur
positive
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Strategy to prove Schur positivity of Macdonald Polynomials

» Construction, for each pu, a bi-graded module M, (Garsia
Haiman module), affording regular representation of &,,

> FIH is image of the bi-graded character of this module by
Frobenius characteristic map

» Garsia and Haiman reduced this to the problem of showing
that Dim(21,) = n!

» Proved by Haiman in 2001, using tools from Algebraic
Geometry
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The Delta operators
Working on the Macdonald positivity conjecture, Garsia and
Haiman infroduced the & y-module D H,, of diagonal harmonics.
It turns out that

F(DHy;q,t) = Ve,

> V is the operator defined by VH, := T,,H, where T, € N[g,t].
» The Delta operators, for some [ € A are defined by

ApH, = f[Bu(q.t)]H, ond ALH, = f[B,(q,t) — 1]H,,

where B, € Nig, t].
> On A,
A., =V and A, =A] +A]

€k—1

» Just a few weeks ago. Zabrocki found a module extending
the diagonal harmonics, whose bi-graded Frobenius
characteristic he conjectured to be Al e

n—k—1 1"
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Ve, =Ae, en Haglund, Haiman, Loehr
Remmel, Ulyanov, 2005.

Delta conjecture
en Haglund, Remmel,
Wilson, 2015

Generalised
én Delta conjecture
idem
Square conjecture
Loehr, Warrington, 2007

Ah/'m A/

€n—k—1

V(*l)nilpn

Generalised
Ap Ao (—1)"1p, Delta square conjecture
D-I-VW

[n—k]:
n]:

Proof
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2015
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2016
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Ahm A/en,k,len _ Z qdinv(D)tarea(D)xD
DePLD(m,n)*k

Dinv: count the number of pairs

» same diagonal,
lower label < upper label
(primary dinv)

» lower step one diagonal above
upper step

(3 lower label > upper label

(secondary dinv)
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The generalised Delta conjecture
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v 2P = H L1;(D)
© i=1
*
D where [;(D) is the label of the i-th
© vertical step of D and we set zg = 1.
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Generalised Delta conjecture: state of the art

Conditions Reference
m=0and k=0 Carlsson-Mellit
m=0and ¢=0 Garsio-Haglund-Remmel-Yoo
m=0and¢=1 Romero

m = 0and (-, h,—_qhqg) D'Adderio-lraci
<'7 en—dhd> D-I-VW

t=00rq=0 D-I-VW
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[n — k]t

[n]:

Ahm Aen—k (_1)n71pn _ Z qdinv(P)tarea(P)xP
PePLSQE (m,n)*k

PLSQE(m,n)**: partially lobelled,
decorated square paths ending east

D » Square paths of size m + n ending
east

» m zero labels, n nonzero labels,
strictly increasing in columns

) » L decorations on rises

» At least one vertical step starting
from the lowest diagonal has a
2 nonzero label

» if the first step is north, its label is
nonzero.

ClC®
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The generalised Delta square conjecture

[TL — k‘]t

[n]:

AhmAen_k(_l)n_lpn _ Z qdinv(P)tarea(P)mP

PePLSQE (m,n)*k

Area: number of whole squares
between the path and the lowest
diagonal touched by the path and not
in a row containing a decorated rise.
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Ahm Aen—k (_1>n—1pn _ Z qdinv(P)tarea(P)xP
PEePLSQE (m,n)*k

Dinv
» Primary: same diagonal
lower label < upper label
(4) » Secondary: lower step one

diagonal above upper step
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The generalised Delta square conjecture

[TL — k]t

[n]¢

ElC

Ahm Aen—k (_1>n—1pn _ Z qdinv(P)tarea(P)xP

PEePLSQE (m,n)*k

Dinv
» Primary: same diagonal
lower label < upper label

» Secondary: lower step one
diagonal above upper step
lower label > upper label

» Bonus: +1 for every nonzero label
undertheline z =y

7/14



The generalised Delta square conjecture

[n[—] k]tAhmAen_k(_Dn—lpn _ Z g4V (P)garea(P) P
nit PEePLSQE (m,n)*k
@ m-+n
k
% = H L1;(D)
@ =1
where [;(D) is the label of the i-th
vertical step of D and we set xg = 1.
©)
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Support for our square conjecture

» k& =m = 0is the square conjecture made by Loehr and
Warrington, proven by Sergel.

» Computer evidence (using MAPLE and PYTHON)

» We proved

» The case ¢ = 0. It coincides with the generalised Delta

conjecture.
» The case k =t = 0, which is straightforward.

» The Schréder case, i.e.

[n — K

[n];

<Ahm A€n,k (_1)”_11)717 61’7,7dhd>
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Schroder case: combinatorial meaning
Suppose the generalised Delta conjecture is frue, i.e.

[n— k]t

[n]¢

Ah AC 7k(_1)n_1p7l - Z qdinV(P)tarea(P)mp.
PEPLSQE (m,n)**

Then taking (-, e,—qhq) Of this equation gives Y~ ¢ gdinv(P)garealr)

on the RHS where S C PLSQE(m, n)** is the set of paths whose

reading word is a shuffle of m zeroes, the string n —d, ..., 1 and
the stingn —d+1,...,n.
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Schroder case: sketch of the proof

Two families of functions

> F(d,f,) such that

n,k;p

n—~{

> P

> 5\%) such that

—L

3

POEAES

o

=1

=0 ny A (1)

n
[n]¢

!
= (Ap,Ac, ,_ €n,en—dhd)-

Pn,s en—dh’d>-
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Schroder case: sketch of the proof

Theorem (D-1-VW)

(dé dinv(P) sarea( dinv(P) sarea(
B kip Z q ¢ n k p Z q ¢
PeF PeS

Where F C S C SQE(p, n)*“°? such that
» P c F = PisaDyckpath

» P e S < the number of vertical steps starting from the lowest
diagonal and that are not a zero valley equals k.

To prove this, we show that both sides satisfy the same recursion.
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Theorem: recursion for ' (D-1-VW)

Fork,l,d,p>0,n>k+/¢andn+p >d,the Fr(bd,f; satisfy the
following recursion: forn > 1

FTSL )—5£0q(n d)[ n }[n+p1}
i n—d P

and,forn>1and 1 <k <n,

g = ey S0 ] [

7=0 s=0 J
n— k—¢ s+j .
s+J| [stitu—1| _(d—k+st—v)
S5 a1 [T R,
u=0 v=0

with initial conditions

Fo(iiz = Iy, 05p 05d 05@ 0 and FT(L%Q = 5n,05 7()(Sd,()é&o.
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Theorem: recursion for S (D-1-VW)

Fork,t,d,p>0,n>k+/¢andn >d, the Sfj,f; satisfy the following
recursion: forn > 1

50 s ][40
T n—d D

and,forn>1and 1 <k <n,

Pk 4
(d,0) (@) | hyn—t—k y[stil [k+i—1
Smkp ‘F%kp t" zzjzz:q [ } [34_j__1 ~
q q

7=0 s=0
n——l—k s+j .
utvl [s+jt+u—1{  (d—k+st—v)
p—J 5
i 3 S [ME| P sty
u=0 v=0 q q

with initial conditions

Séfl;;?, = 0k,00p,004,00c0  and S(dc’f; = 00,00p,004,00¢,0-

n,
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Thank you for you attention
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Variables for the S recursion

» pis the number of zero valleys.
n is the numiber of vertical steps that are not zero valleys.

k is the number of minima in the area word whose index is
not a zero valley.

¢ is the number of decorated rises.
d is the number of decorated peak
k — s is the number of decorated peaks at height 0.

s is The number of minima in the area word whose index is
not a decorated peak nor a zero valley.

j is the number of zero valleys at height 0.
v is the number of decorated rises at height 1.

» u 4 v is the number of m + 1’s in the area word whose index is
not a zero valley.

vy

vVvyyvyy

vy

14714



Strategy for the S-recursion

» Start from a path Pin S = SQ&(p, n\k)*-°4.

» If it is a Dyck path, thanks to the F recursion it is counted by
(d.0)
F

n,k;p’*

» Otherwise, remove all the minima from the area word, and
then remove both the corresponding decoration on peaks,
and decorations on rises at height one (which are not rises
any more).

» In this way we obtain a path in

SQE(p —J,n— k‘\u + U)*e—v,od—(k_s)‘
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Variables for the F' recursion

>

vy

k is the number of zeroes in the area word whose index is not
a zero valley.

k — s is the number of decorated peaks at height 0.

The previous two imply that s is the number of zeroes in the
area word whose index in not a decorated peak nor a zero
valley.

j is the number of zero valleys at height O.
v is the number of decorated rises at height 1.

u + v is The number of 1’s in the area word whose index is not
a zero valley.
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Representation theory

p:6, —GLI g vuo
(i,5)ENXN
» V() are p invariant
» Character
Xp=1o0p:6, =C

> We can decompose x, = >_; o and x5 = S eaxa

where ¢, € N (mulfiplicity) and y, are the irreducible

characters of (pjy.i, V) (one per conjugacy class)
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Frobenius Characteristic map

F : Class(&,) — A”
Fo S f@pae

ceG,

» Irreducible characters get sent to Schur functions

» If a symmetric function is the image of the character of a
representation by the Frobenius map then is must be Schur
positive because F is linear

» Bi-graded Frobenius characteristic map

Fixp= Y dPFRG)
(4.5)
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Symmetric functions
Ay = K[X1,...., X§]®¥ space of symmetric functions.

Ag =P A%
=1

where A} is the space of homogeneous symmetric functions of
degree n.
» A lot of different basis for A%, indexed by partitions of n:
elementary ey, homogeneous hy, power symmetric p,.
» Link with representation theory of &,,: the Frobenius
characteristic map:

F : Closs(6,) — Ak

» Schur functions s, form another basis and are the image of
the irreducible characters by the Frobenius map.
» Scalar product (,) on A% such that s, are orthonormal — F is

an isometry
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