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General assumptions: A is always an associative, unital,
finite-dimensional non-semisimple algebra (usually a quiver
algebra) and M is always a finite-dimensional right A-module.

If not stated otherwise, K always denotes an algebraically closed
field.

Definition

A K -algebra A is called representation-finite, if there are only
finitely many different indecomposable A-modules up to
isomorphism; otherwise it is called representation-infinite.

Remark

We will be looking at so-called gendo-symmetric algebras and try
to determine, which of these algebras are representation-finite.
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Remember that a K -algebra A is called symmetric, iff

AAA ≅ AD(A)A as A-bimodules, where D(A) ∶= HomK(A,K).

Definition

Gendo-symmetric algebras are algebras isomorphic to
endomorphism rings of generators over symmetric algebras and
were introduced by Ming Fang and Steffen Koenig.

Thus, every gendo-symmetric algebra B has the form

B = EndA(AA ⊕M)
for some symmetric algebra A and some A-module M.

Question

Why are gendo-symmetric algebras interesting?

Because they contain other intriguing classes of algebras. E. g.,
every Schur Algebra S(n, r) with n ≥ r is gendo-symmetric.
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Andrzej Skowronski classified all representation-finite
symmetric algebras up to derived equivalence.

The class of gendo-symmetric algebras is not closed under
derived equivalences...

...but it is closed under almost ν-stable derived equivalences.
This is a new kind of derived equivalence, which is more
restrictive.

For symmetric algebras both equivalences coincide.

Therefore, the classifcation of all representation-finite
gendo-symmetric algebras - up to almost ν-stable derived
quivalence - would generalize Skowronski’s result.
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Representing gendo-symmetric algebras by
quivers and relations
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Skowronski showed that - up to derived equivalence - every
representation-finite symmetric algebra has one of the following
forms:

K [x]/(xn) for some n ≥ 2

Trivial extensions of representation-finite hereditary algebras,
which we denote by T (An) (n ≥ 2), T (Dn) (n ≥ 4) and
T (En) (n ∈ {6,7,8}), respectively

Symmetric Nakayama algebras with n ≥ 2 simple modules and
Loewy length nq + 1 for arbitrary q ≥ 2, which we denote by
Nn,q

Standard and non-standard penny-farthing algebras

Skowronski gave the representants via quivers and relations.
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The following theorem helps us during the classification:

Theorem

Every gendo-symmetric algebra originating from a
representation-finite symmetric algebra is almost ν-stable derived
equivalent to an algebra isomorphic to EndA(AA ⊕M), where A is
in canonical form (see above) and M is an A-module that does not
have any projective direct summand. In case the symmetric
algebras are standard, two algebras EndA1(A1A1

⊕M1) and
EndA2(A2A2

⊕M2) with the properties mentioned before are almost
ν-stable derived equivalent, if and only if A1 ≅ A2 and
M1 ≅ Ωi(M2) for some i ∈ Z.

Fact

Almost ν-stable derived equivalences preserve the representation
type!
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The computer
(the GAP-package qpa (=”quivers and path algebras”))

The theory of ray categories and their universal coverings:

This is a fully developed theory that gives us the following
combinatorial procedure to determine the representation type
of a finite-dimensional K -algebra A:
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We need the following

Theorem

Let A = KQ/I be a connected distributive algebra given by a quiver
and an admissible ideal. Let π ∶ P̃ → P be the universal covering of
P ∶= A⃗. Then, A is representation-finite, iff it satisfies the following
two conditions:

1 P is chainless

2 P̃ contains no algebra of the BHV-list as a full convex
subcategory.
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This allows us to use the following algorithm in order to decide the
representation type of a finite-dimensional connected algebra of the
form A = KQ/I :

Is A a distributive category?
No //

Yes
��

A is rep.-inf.!

Is P ∶= A⃗ chainless?
No //

Yes
��

A is rep.-inf.!

Does P̃ contain a crit. convex subcat. from BHV?
Yes //

No
��

A is rep.-inf.!

A is rep.-fin.!
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From now on we will restrict our attention to Nakayama algebras.
We start with some basic definitions:

Theorem

A basic and connected algebra A = KQ/I is a Nakayama
algebra, iff its ordinary quiver Q is one of the following quivers:

a Q = ○3
α3

||

○2α2

oo

○4
α4

��

○1
α1

bb

○5 ○0
α0

OO

○n−2
⋱

αn−2 //○n−1

αn−1

<<

b Q = ○1 ○2
α1oo ○3

α2oo ⋯ ○n−1
αn−1oo ○n

αnoo
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In the following, all algebras will be given by quivers and relations
and they are supposed to be connected.

Remark

A Nakayama algebra A is symmetric, iff the Loewy length of all
projective indecomposable A-modules is equal to n ⋅ q + 1, where n
denotes the number of simple A-modules and q is a natural
number.

Example

Let A = KG be a group algebra with the property that the p-Sylow
subgroup of G is cyclic and normal in G . Then, A is a (not
necessarily connected) Nakayama algebra.
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The case A = K [x]/(xw)

We were able to solve the case A ∶= K [x]/(xw) completely: Set
B ∶= EndA(A⊕A/Jk) and assume that w − k ≥ k . Then we have:

w > 3 and k = 1 → B is rep.-fin.!

w > 3 and k ≠ 1 → B is rep.-inf.!

w > 3 and C ∶= EndA(A⊕A/J ⊕A/Jw−1) → C is rep.-inf.!

w = 3 and k = 1 → B is rep.-fin.!

w = 3 and C ∶= EndA(A⊕A/J ⊕A/Jw−1) → C is rep.-fin.!

w = 2 and k = 1 → B is rep.-fin.!
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In the Nakayama algebra case where n,q ≥ 2 we have the following
results:

Theorem (B. ’16)

Let A be a symmetric Nakayama algebra with n ≥ 2 simple
modules and let q ∈ N≥2. Set B ∶= EndA(AA ⊕ e0A/e0Jk) and let
w ∶= nq + 1. Then:

If k = w − 1, then B is again a Nakayama algebra and thus
representation-finite.

If k = 1, then B is almost ν-stable derived equivalent to the
algebra appearing in the case k = w − 1 and, therefore,
representation-finite.

If k ∈ {2,⋯,w − 2}, then B is representation-infinite.
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representation-finite.

If k ∈ {2,⋯,w − 2}, then B is representation-infinite.
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Thus, up to almost ν-stable derived equivalence, the only case
until now where B is representation-finite is the case
B ∶= EndA(AA ⊕ S), where S ∶= e0A/e0J.

Hence, in order to find all representation-finite gendo-symmetric
algebras in this case, we have to look at the Ω-orbit of S , i.e. we
have to compute the endomorphism rings

EndA(AA ⊕ S ⊕
r

⊕
j=1

Ωij (S)) for ij ∈ {1,⋯,2n − 1},

because A is a periodic algebra with period 2n.

We did this partially. Namely, the following theorem was
conjectured by Marczinzik and proved by B.:
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Theorem (B. ’16)

If - up to almost ν-stable derived equivalence -

M ∶= Ω0(S) ⊕Ω1(S) ⊕Ω2(S) or

M ∶= Ω0(S) ⊕Ω1(S) ⊕Ω3(S) ⊕Ω4(S),

then B ∶= EndA(AA ⊕M) is representation-infinite.

We guess that this is indeed an ’”if and only if”’, but the proof of
this is work in progress:

Conjecture

In all other cases (concerning this Ω-orbit) B is
representation-finite.
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This is the end of my talk, but I don’t want to forget to mention:
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Thank you for your attention
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