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Frieze patterns

Definition

Let R be a subset of a commutative ring.
A frieze pattern over R is an array F of the form

...
0 1 ci´1,i`1 ci´1,i`2 ¨ ¨ ¨ ci´1,n`i 1 0

0 1 ci,i`2 ci,i`3 ¨ ¨ ¨ ci,n`i`1 1 0
0 1 ci`1,i`3 ci`1,i`4 ¨ ¨ ¨ ci`1,n`i`2 1 0

...

where ci ,j are numbers in R, and such that every (complete) adjacent
2ˆ 2 submatrix has determinant 1. We call n the height of the frieze
pattern F . We say that the frieze pattern F is periodic with period
m ą 0 if ci ,j “ ci`m,j`m for all i , j .

A frieze pattern is called tame if every adjacent 3ˆ 3-submatrix has
determinant 0.
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Frieze patterns

Example

(1) Frieze patterns over N are called Conway-Coxeter frieze patterns.

(2) The array

. . .

0 1 ´i ` 1 1 i ` 1 1 0
0 1 i ` 1 2i ` 1 2 1 0

0 1 2 ´2i ` 1 ´i ` 1 1 0
0 1 ´i ` 1 1 i ` 1 1 0

0 1 i ` 1 2i ` 1 2 1 0
0 1 2 ´2i ` 1 ´i ` 1 1 0

. . .

repeated infinitely many times to both sides, is a frieze pattern over the
Gaussian integers Zris; it is periodic with period 6.
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Frieze patterns

Example

(3) For every sequences pai qiPZ and pbi qiPZ we have a non-periodic frieze
pattern of the form

. . .

0 1 a1 ´1 b1 1 0
0 1 0 ´1 0 1 0

0 1 a2 ´1 b2 1 0
0 1 0 ´1 0 1 0

0 1 a3 ´1 b3 1 0
0 1 0 ´1 0 1 0

. . .
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η-matrices

Definition

For c in a commutative ring, let

ηpcq :“

ˆ

c ´1
1 0

˙

.

Remark

Notice that up to a transposition, ηpcq may be viewed as a reflection:

ηpcq

ˆ

0 1
1 0

˙

“

ˆ

´1 c
0 1

˙

and

ˆ

0 1
1 0

˙

ηpcq “

ˆ

1 0
c ´1

˙

.
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Propagation

Let F “ pci ,jq be a tame frieze pattern over R.

Consider an adjacent 3ˆ 3-submatrix M of F . The first two columns of M
cannot be linearly dependent because the upper left 2ˆ 2-submatrix has
determinant 1.

But then since F is tame, the determinant of M is zero, so

M “

¨

˝

a b sa` tb
c d sc ` td
e f se ` tf

˛

‚

for suitable a, b, c , d , e, f , s, t. Now the fact that all adjacent
2ˆ 2-determinants are 1 implies

1 “ bpsc ` tdq ´ dpsa` tbq “ spbc ´ adq “ ´s,

so s “ ´1.
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Propagation

We see that for fixed i , there is a ci such that

ηpci q

ˆ

cj ,i`1

cj ,i

˙

“

ˆ

´cj ,i ` cicj ,i`1

cj ,i`1

˙

“

ˆ

cj ,i`2

cj ,i`1

˙

(1)

for all j .

Extend the frieze:

...
´1 0 1 ci´1,i`1 ¨ ¨ ¨ ci´1,n`i 1 0 ´1

´1 0 1 ci,i`2 ¨ ¨ ¨ ci,n`i`1 1 0 ´1
´1 0 1 ci`1,i`3 ¨ ¨ ¨ ci`1,n`i`2 1 0 ´1

...

So in Fact, ci “ ci ,i`2.
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Propagation

m
ź

k“1

ηpckq “

ˆ

´1 0
0 ´1

˙

, and ci ,j`2 “

˜

j
ź

k“i

ηpckq

¸

1,1

.
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Propagation

Proposition

Tame frieze patterns over a commutative ring R correspond bijectively to
sequences pc1, . . . , cmq P R

m with

m
ź

k“1

ηpckq “

ˆ

´1 0
0 ´1

˙

.

Bad Boll, September 2019 12



Quiddity cycles

Definition

Let R be a subset of a commutative ring and λ P t˘1u.
A λ-quiddity cycle over R is a sequence pc1, . . . , cmq P R

m satisfying

m
ź

k“1

ηpckq “

ˆ

λ 0
0 λ

˙

“ λid. (2)

A p´1q-quiddity cycle is called a quiddity cycle for short.
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Quiddity cycles

Example

Consider the commutative ring C and R “ C.

p0, 0q is the only λ-quiddity cycle of length 2, for

ηpaqηpbq “

ˆ

ab ´ 1 ´a
b ´1

˙

“ ˘id

implies a “ b “ 0.

p1, 1, 1q and p´1,´1,´1q are the only λ-quiddity cycles of length 3
for

ηpaqηpbqηpcq “

ˆ

abc ´ a´ c ´ab ` 1
bc ´ 1 ´b

˙

“ ˘id

implies b “ ˘1, a “ b “ c .

pt, 2{t, t, 2{tq, t a unit and pa, 0,´a, 0q, a arbitrary, are the only
λ-quiddity cycles of length 4.
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Quiddity cycles

Definition

Let Dn be the dihedral group with 2n elements acting on t1, . . . , nu. If
c “ pc1, . . . , cnq is a λ-quiddity cycle, then we write

cσ :“ pc1, . . . , cnq
σ :“ pcσp1q, . . . , cσpnqq

for σ P Dn.

Proposition

Let c “ pc1, . . . , cmq be a λ-quiddity cycle. Then for any σ P Dn, the cycle
cσ is a λ-quiddity cycle as well.
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Quiddity cycles

Lemma

Let pa1, . . . , akq be a λ1-quiddity cycle and pb1, . . . , b`q be a λ2-quiddity
cycle. Then

pa1, . . . , akq ‘ pb1, . . . , b`q :“ pa1 ` b`, a2, . . . , ak´1, ak ` b1, b2, . . . , b`´1q

is a p´λ1λ2q-quiddity cycle of length k ` `´ 2 which we call the sum.

Proof.

We use the identities ηpa` bq “ ´ηpaqηp0qηpbq and ηp0q2 “ ´id:

ηpa1 ` b`qηpa2q ¨ ¨ ¨ ηpak´1qηpak ` b1qηpb2q ¨ ¨ ¨ ηpb`´1q

“ ηpb`qηp0qηpa1qηpa2q ¨ ¨ ¨ ηpak´1qηpakqηp0qηpb1qηpb2q ¨ ¨ ¨ ηpb`´1q

“ λ1ηpb`qηp0qηp0qηpb1qηpb2q ¨ ¨ ¨ ηpb`´1q

“ ´λ1ηpb`qηpb1qηpb2q ¨ ¨ ¨ ηpb`´1q “ ´λ
1λ2id.
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Quiddity cycles

a´ 1

a0

´a
´1

´1

´1 ´1

´1´a

0

0

Figure: pa, 0,´a, 0q ‘ p´1,´1,´1q “ pa´ 1, 0,´a,´1,´1q.
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Irreducibility

Definition (C., 2019)

Let R be a subset of a commutative ring.

A λ-quiddity cycle pc1, . . . , cmq P R
m, m ą 2 is called reducible over R if

there exist a λ1-quiddity cycle pa1, . . . , akq P R
k , a λ2-quiddity cycle

pb1, . . . , b`q P R
`, and σ P Dm such that λ “ ´λ1λ2, k, ` ą 2 and

pc1, . . . , cmq
σ “ pa1 ` b`, a2, . . . , ak´1, ak ` b1, b2, . . . , b`´1q

“ pa1, . . . , akq ‘ pb1, . . . , b`q.

A λ-quiddity cycle of length m ą 2 is called irreducible over R if it is not
reducible.

Tame frieze patterns are reducible/irreducible if their quiddity cycles are.
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Irreducibility

Lemma

Let R be a commutative ring. A λ-quiddity cycle is reducible over R if and
only if the corresponding tame frieze pattern contains an entry 1 or ´1.
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Combinatorial model

pa1, . . . , akq a λ1-quiddity cycle, and pb1, . . . , b`q a λ2-quiddity cycle.

a1

a2

a3

ak

b`

b1

ak´1 b2

b3

b`´1

pa1, . . . , akq ‘ pb1, . . . , b`q “ pa1 ` b`, a2, . . . , ak´1, ak ` b1, b2, . . . , b`´1q
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Bounds

Lemma

Let pc1, . . . , cmq P Cm such that
śm

j“1 ηpcjq is a scalar multiple of the
identity matrix. Then there is an index j P t1, . . . ,mu with |cj | ă 2.

Proof.

Let a, b P C with |a| ě |b| and |c | ě 2. Then

|ac ´ b| ě |ac | ´ |b| “ |a|p|c| ´ 1q ` |a| ´ |b| ě |a|p|c | ´ 1q ě |a|.

The claim follows from this inequality and from

ηpcq

ˆ

a
b

˙

“

ˆ

c ´1
1 0

˙ˆ

a
b

˙

“

ˆ

ac ´ b
a

˙

.
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Conway-Coxeter friezes

Theorem

The only irreducible λ-quiddity cycles over Zě0 are p0, 0, 0, 0q and p1, 1, 1q.

Theorem

Let pxijqi ,j be a (tame) frieze pattern with entries in Ną0 and c its quiddity
cycle. Then (up to a rotation) there exists a quiddity cycle c 1 such that
c “ p1, 1, 1q ‘ c 1 and such that the frieze pattern of c 1 has entries in Ną0.
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Conway-Coxeter friezes

Corollary

The set of frieze patterns with entries in Ną0 is in bijection with the set of
triangulations of convex polygons by non-intersecting diagonals.

. . .

0 1 1 3 2 1 0
0 1 4 3 2 1 0

0 1 1 1 1 1 0
0 1 2 3 4 1 0

0 1 2 3 1 1 0
0 1 2 1 2 1 0

. . .

21

4

1 2

2
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Other domains

Theorem (C., Holm, 2019)

The set of irreducible λ-quiddity cycles over Z is

tp1, 1, 1q, p´1,´1,´1q, pa, 0,´a, 0q, p0, a, 0,´aq | a P Zzt˘1uu.

Bad Boll, September 2019 24



Other domains

Proposition

Let k P Ną0 and i “
?
´1. Then

c “ p2i,´i` 1, 2, . . . , 2
loomoon

2k-times

, i` 1,´2i, i´ 1,´2, . . . ,´2
looooomooooon

2k-times

,´i´ 1q

is an irreducible quiddity cycle over Zris.

Corollary

There are infinitely many irreducible λ-quiddity cycles over the Gaussian
integers Zris.
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Other domains

Open Problem

Classify irreducible quiddity cycles for “interesting” sets R.
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Quiddity cycles over N and subsequences

Every triangulation of an n-gon by non-intersecting diagonals has an ear:

21

4

1 2

2

Every quiddity cycle over N contains an entry 1.

Every quiddity cycle over N contains a subsequence
p1, 1q, p1, 2q, p2, 1q, or p1, 3, 1q.

Every quiddity cycle over N except p1, 1, 1q contains a subsequence
p1, 2q, p2, 1q, or p1, 3, 1q.
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Quiddity cycles over N and subsequences

Theorem (C., 2018)

For any ` P N we may compute finite sets of sequences E and F , where
the elements of F have length at least `, and such that every quiddity
cycle over N not in E has an element of F as a (consecutive) subsequence.

In other words, this theorem gives a local description of quiddity cycles.
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Quiddity cycles over N and subsequences

For example if ` “ 4:

Corollary

Every quiddity cycle (considered up to the action of the dihedral group)
c R tp0, 0q, p1, 1, 1q, p1, 2, 1, 2qu contains at least one of

p1, 2, 2, 1q, p1, 2, 2, 2q, p1, 2, 2, 3q, p1, 2, 2, 4q, p1, 2, 3, 1q, p1, 2, 3, 2q,

p1, 2, 3, 3q, p1, 2, 4, 1q, p1, 2, 4, 3q, p1, 2, 5, 1q, p1, 2, 5, 2q, p1, 2, 6, 1q,

p1, 3, 1, 3q, p1, 3, 1, 4q, p1, 3, 1, 5q, p1, 3, 1, 6q, p1, 3, 4, 1q, p1, 4, 1, 2q,

p1, 5, 1, 2q, p1, 6, 1, 2q, p1, 7, 1, 2q, p2, 1, 3, 2q, p2, 1, 3, 3q, p2, 2, 1, 4q,

p2, 2, 1, 5q, p3, 1, 2, 3q, p3, 1, 2, 4q.
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Frieze patterns and arrangements

Frieze patterns over R correspond to arrangements of lines in R2.
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Arrangements of hyperplanes
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Arrangements

A finite set A :“ tH1, . . . ,Hnu of linear hyperplanes in a vector space
V “ K r is called an arrangement of hyperplanes.

Example
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A free arrangement
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A torsion subgroup of an elliptic curve
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Simplicial arrangements
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Simplicial arrangements

Let A :“ tH1, . . . ,Hnu be a finite set of hyperplanes in V “ Rr .

Let KpAq be the set of connected components (chambers) of
V z

Ť

HPAH.

Definition (Melchior, 1941)

If every chamber K is an open simplicial cone, i.e. there exist
β1, . . . , βr P V such that

K “
!

r
ÿ

i“1

aiβi | ai ą 0 for all i “ 1, . . . , r
)

,

then A is called a simplicial arrangement.
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Simplicial arrangements

Example
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Simplicial arrangements

Example

Source: Grünbaum, A catalogue of simplicial arrangements in the real projective plane.
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Simplicial arrangements

Theorem (Deligne, 1972)

The complement of a complexified finite simplicial arrangement is K pπ, 1q.
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Grünbaum’s catalogue for the real projective plane
(Grünbaum, 1972–2009)

‚ ‚ ‚
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Simplicial arrangements

Theorem (C., 2012)

We have a complete list of simplicial arrangements in the real projective
plane with at most 27 lines.
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“New” simplicial arrangements (22,23,24,25 lines)
(C., 2012)

8
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H. S. M. Coxeter:
“[...] the diagrams which profess to portray these known polygrams are
strangely unintelligible.”
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Reducibility

Definition

The product pA1 ˆA2,V1 ‘ V2q of two arrangements pA1,V1q, pA2,V2q

is defined by

A1 ˆA2 “ tH1 ‘ V2 | H1 P A1u Y tV1 ‘ H2 | H2 P A2u.

If an arrangement pA,V q can be written as a non-trivial product
pA,V q “ pA1 ˆA2,V1 ‘ V2q, then A is called reducible, otherwise
irreducible.
The rank of an arrangement pA,V q is rankA :“ dimpV q ´ dimp

Ş

HPAHq.
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Reducibility – Near pencil
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Reflections

Definition

Let K be a field, r P N, V :“ K r , and H a hyperplane in V .

A reflection on V at H is a σ P GLpV q, σ ‰ id of finite order
which fixes H.

Notice that the eigenvalues of σ are 1 and ζ for some root of unity ζ P K .

In this lecture we always have ζ “ ´1.
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Reflection groups

Example

Let W be a real reflection group acting on V “ Rr , i.e. a finite group
generated by reflections on V .

Let R Ď V ˚ be the set of roots of W .

Then A “ tkerα | α P Ru is a simplicial arrangement.

The reflection arrangement is the most symmetric type of simplicial
arrangement, one cannot “distinguish” the chambers, they all look the
same.
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Simplicial arrangements and reflections

α1
´α1

α3

α2

β2

β3

σ
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Simplicial arrangements and reflections

Lemma

Let A be a simplicial arrangement and K a chamber, i.e. there is a basis
B_ “ tα_1 , . . . , α

_
r u of V such that K “ xB_yą0. Let K̃ be the chamber

with
K X K̃ “ xα_2 , . . . , α

_
r yě0.

Then there is a unique β_ P V with

K̃ “ xB̃_yą0, B̃_ “ tβ_, α_2 , . . . , α
_
r u, and |B X´B̃| “ 1,

where B :“ pB_q˚ and B̃ :“ pB̃_q˚ denote the dual bases.

Bad Boll, September 2019 52



Simplicial arrangements and reflections

Proof.

Choose β_ P V such that K̃ “ xβ_, α_2 , . . . , α
_
r yą0. Let µ1, . . . , µr P R

be such that β_ “
řr

i“1 µiα
_
i (notice µ1 ‰ 0).

Let B̃ “ tβ1, . . . , βru be the dual basis of tβ_, α_2 , . . . , α
_
r u, and

B “ tα1, . . . , αru be dual to B_.

Then β1 “
1
µ1
α1 and βj “ ´

µj
µ1
α1 ` αj for j ą 1.

To obtain |B X´B̃| “ 1 we need ´α1 “ β1 P B̃ and hence µ1 “ ´1,
β1 “ ´α1 and βj “ µjα1 ` αj for j ą 1.

Thus a β_ as desired exists and is unique.

Bad Boll, September 2019 53



Simplicial arrangements and reflections

Proof.

Choose β_ P V such that K̃ “ xβ_, α_2 , . . . , α
_
r yą0. Let µ1, . . . , µr P R

be such that β_ “
řr

i“1 µiα
_
i (notice µ1 ‰ 0).

Let B̃ “ tβ1, . . . , βru be the dual basis of tβ_, α_2 , . . . , α
_
r u, and

B “ tα1, . . . , αru be dual to B_.

Then β1 “
1
µ1
α1 and βj “ ´

µj
µ1
α1 ` αj for j ą 1.

To obtain |B X´B̃| “ 1 we need ´α1 “ β1 P B̃ and hence µ1 “ ´1,
β1 “ ´α1 and βj “ µjα1 ` αj for j ą 1.

Thus a β_ as desired exists and is unique.

Bad Boll, September 2019 53



Simplicial arrangements and reflections

Proof.

Choose β_ P V such that K̃ “ xβ_, α_2 , . . . , α
_
r yą0. Let µ1, . . . , µr P R

be such that β_ “
řr

i“1 µiα
_
i (notice µ1 ‰ 0).

Let B̃ “ tβ1, . . . , βru be the dual basis of tβ_, α_2 , . . . , α
_
r u, and

B “ tα1, . . . , αru be dual to B_.

Then β1 “
1
µ1
α1 and βj “ ´

µj
µ1
α1 ` αj for j ą 1.

To obtain |B X´B̃| “ 1 we need ´α1 “ β1 P B̃ and hence µ1 “ ´1,
β1 “ ´α1 and βj “ µjα1 ` αj for j ą 1.

Thus a β_ as desired exists and is unique.

Bad Boll, September 2019 53



Simplicial arrangements and reflections

Proof.

Choose β_ P V such that K̃ “ xβ_, α_2 , . . . , α
_
r yą0. Let µ1, . . . , µr P R

be such that β_ “
řr

i“1 µiα
_
i (notice µ1 ‰ 0).

Let B̃ “ tβ1, . . . , βru be the dual basis of tβ_, α_2 , . . . , α
_
r u, and

B “ tα1, . . . , αru be dual to B_.

Then β1 “
1
µ1
α1 and βj “ ´

µj
µ1
α1 ` αj for j ą 1.

To obtain |B X´B̃| “ 1 we need ´α1 “ β1 P B̃ and hence µ1 “ ´1,
β1 “ ´α1 and βj “ µjα1 ` αj for j ą 1.

Thus a β_ as desired exists and is unique.

Bad Boll, September 2019 53



Simplicial arrangements and reflections

Corollary

Using the notation of the proof of the Lemma, the map

σ : V ˚ Ñ V ˚, αi ÞÑ βi

is a reflection. With respect to B “ pB_q˚, it becomes the matrix

¨

˚

˚

˚

˝

´1 µ2 . . . µr
0 1 0
...

. . .

0 0 1

˛

‹

‹

‹

‚

.
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Simplicial arrangements and reflections

Example

Let R “ tp1, 0q, p0, 1q, p1, 2qu P pR2q˚, A “ tαK | α P Ru.

Then K “ xB_yą0 is a chamber if B_ “ tα_1 “ p1, 0q, α
_
2 “ p0, 1qu,

K 1 “ xB̃_yą0 with B̃_ “ tβ̃_ “ p´2, 1q, α_2 “ p0, 1qu is an adjacent
chamber.

To obtain µ1 “ ´1, we need to choose β_ “ p´1, 1
2q, hence µ2 “

1
2 . The

unique reflection σ is
ˆ

´1 1
2

0 1

˙

with respect to B “ pB_q˚.
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Reflections and Cartan matrices

A a simplicial arrangement, K “ xB_yą0, B_ “ tα_1 , . . . , α
_
r u a chamber,

and B “ tα1, . . . , αru be dual to B_.

Corollary: for K , B there are unique reflections σ1, . . . , σr , represented by

¨

˚

˚

˚

˚

˚

˚

˝

1 0
. . .

µi ,1 ¨ ¨ ¨ ´1 ¨ ¨ ¨ µi ,r
. . .

0 1

˛

‹

‹

‹

‹

‹

‹

‚

,

for certain µi ,j P R, i ‰ j with respect to B.
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Reflections and Cartan matrices

Definition

The matrix CK ,B “ pci ,jq1ďi ,jďr with

ci ,j :“

#

´µi ,j if i ‰ j

2 if i “ j

is called the Cartan matrix of pK ,Bq in A. Note that

σi pαjq “ αj ´ ci ,jαi

for all 1 ď i , j ď r .

We sometimes write σK ,Bi to emphasize that σi depends on K and B.
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Reflections and Cartan matrices

Example

1 Let A be as in the last example. Then the Cartan matrix of pK ,Bq is

CK ,B “

ˆ

2 ´1
2

´2 2

˙

.

2 If W is a Weyl group with root system R, then all Cartan matrices of
pK ,Bq when B is a set of simple roots for the chamber K are equal
and coincide with the classical Cartan matrix of W .
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A Cartan graph
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Reflections and Cartan matrices

Definition

Let A be a simplicial arrangement in V “ Rr . We construct a category
CpAq with

objects: ObjpCpAqq “ tB “ pα1, . . . , αr q P pV
˚qr | xB˚yą0 P KpAqu

(where the bases B are ordered).

morphisms: for each B “ pα1, . . . , αr q P ObjpCpAqq and i “ 1, . . . , r

there is a morphism σK ,Bi P MorpB, pσK ,Bi pα1q, . . . , σ
K ,B
i pαr qqq.

All other morphisms are compositions of the generators σK ,Bi .

A reflection groupoid WpAq of A is a connected component of CpAq.

A Weyl groupoid is a reflection groupoid for which all Cartan matrices
are integral.
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Reflections and Cartan matrices

Using the so-called gate property, one can prove the existence of a type
function for the chamber complex of a simplicial arrangement. In other
words:

Proposition

Let A be a simplicial arrangement, WpAq a reflection groupoid, and
B1 “ pα1, . . . , αr q, B2 “ pβ1, . . . , βr q two objects with xB˚1 yą0 “ xB

˚
2 yą0.

Then there exist λ1, . . . , λr such that αi “ λiβi for all i “ 1, . . . , r .

In particular, for a fixed reflection groupoid we obtain a unique labelling of
the walls of each chamber with the labels 1, . . . , r .
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Reflections and Cartan matrices

Definition

Let A be a simplicial arrangement, WpAq a reflection groupoid, and
K “ xB˚yą0 a chamber for B “ pα1, . . . , αr q P ObjpWpAqq.
For i P t1, . . . , ru, let ρi pK q be the chamber adjacent to K with common
wall kerαi . We thus obtain well defined maps

ρi : KpAq ÞÑ KpAq

which satisfy ρ2
i “ id by the proposition.
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Crystallographic arrangements
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Crystallographic arrangements

Definition (C., 2011)

Let A be a simplicial arrangement in V and R Ď V ˚ a finite set such that
A “ tkerα | α P Ru and RαXR “ t˘αu for all α P R.

We call pA,V ,Rq a crystallographic arrangement if for all chambers
K P KpAq:

R Ď
ÿ

αPBK

Zα, (3)

where

BK “ tα P R | @x P K : αpxq ě 0, xkerαX Ky “ kerαu

corresponds to the set of walls of K .
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Crystallographic arrangements

Definition

Two crystallographic arrangements pA,V ,Rq, pA1,V ,R1q in V are called
equivalent if there exists ψ P AutpV ˚q with ψpRq “ R1. We then write
pA,V ,Rq – pA1,V ,R1q.

If A is an arrangement in V for which a set R Ď V ˚ exists such that
pA,V ,Rq is crystallographic, then we say that A is crystallographic.

Bad Boll, September 2019 65



Crystallographic arrangements

Example

1 Let R be the set of roots of the root system of a crystallographic
reflection group (i.e. a Weyl group). Then ptkerα | α P Ru,V ,Rq is
a crystallographic arrangement.

2 If R` :“ tp1, 0q, p3, 1q, p2, 1q, p5, 3q, p3, 2q, p1, 1q, p0, 1qu, then
ptαK | α P R`u, R2,R` Y´R`q is a crystallographic arrangement.
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Crystallographic arrangements

R` :“ tp1, 0q, p3, 1q, p2, 1q, p5, 3q, p3, 2q, p1, 1q, p0, 1qu

0 1 2 5 3 4 1 0
0 1 3 2 3 1 1 0

0 1 1 2 1 2 1 0
0 1 3 2 5 3 1 0

0 1 1 3 2 1 1 0
0 1 4 3 2 3 1 0

0 1 1 1 2 1 1 0
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Crystallographic arrangements

Definition

Let pA,V ,Rq be a crystallographic arrangement and K a chamber. Fixing
an ordering for BK , we obtain a unique reflection groupoid WpAq and
thus unique orderings for all BK 1 , K 1 P KpAq (type function). Hence we
obtain a unique coordinate map

ΥK : V Ñ Rr with respect to BK .

The elements of the standard basis tα1, . . . , αru “ ΥK pBK q are called
simple roots.

The set

RK :“ tΥK pαq | α P Ru Ď Nr
0 Y´Nr

0

is called the set of roots of A at K . The roots in RK
` :“ RK X Nr

0 are
called positive.
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Crystallographic arrangements

Let 1 ď i , j ď r . Then it is easy to see that

cKi ,j “

#

´maxtk P Ně0 | kαi ` αj P R
Ku i ‰ j

2 i “ j
,

where CK :“ pcKi ,jqi ,j is the Cartan matrix of pK ,BK q.

Recall that for every i “ 1, . . . , r , we have a reflection σKi : Zr Ñ Zr

defined by σKi pαjq “ αj ´ cKi ,jαi for all 1 ď j ď r .

Remark that if K̃ is the chamber adjacent to K with

xK X K̃y “ kerα for α P R with ΥK pαq “ ΥK̃ pαq “ αi ,

then the lemma implies σKi “ ΥK̃ ˝ pΥK q´1 and thus σKi pR
K q “ R K̃ .
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Crystallographic arrangements

To avoid confusion, we use different fonts for the “global” set R and the
“local” representations RK .

These local representations “are” the objects of the Weyl groupoid. Notice
that in the crystallographic case we have

MorpBK ,B K̃ q “ twK ,K̃ :“ ΥK̃ ˝ pΥK q´1u

for chambers K and K̃ .
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Volumes

Definition

Let m, r P N.

By the Smith normal form there is a unique left GLpZr q-invariant right
GLpZmq-invariant function Volm : pZr qm Ñ Z such that

Volmpa1α1, . . . , amαmq “ |a1 ¨ ¨ ¨ am| for all a1, . . . , am P Z, (4)

where | ¨ | denotes absolute value, i.e. Volmpβ1, . . . , βmq is the product of
the elementary divisors of the matrix with columns β1, . . . , βm.
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Volumes

If m “ 1 and β P Zrzt0u, then Vol1pβq is the greatest common divisor of
the coordinates of β.

If m “ r and β1, . . . , βr P Zr , then Volr pβ1, . . . , βr q is the absolute value
of the determinant of the matrix with columns β1, . . . , βr .
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Volumes

We obtain a “volume” for tuples of roots:

Definition

Let pA,V ,Rq be an irreducible crystallographic arrangement of rank r .
By the crystallographic property (3), for chambers K , K 1, the bases BK

and BK 1 differ by a map in GLpZr q. Thus for β1, . . . , βm P R,

VolmpΥ
K pβ1q, . . . ,Υ

K pβmqq “ VolmpΥ
K 1pβ1q, . . . ,Υ

K 1pβmqq.

Hence we have a well-defined map

Volm : Rm Ñ Z, pβ1, . . . , βmq ÞÑ VolmpΥ
K pβ1q, . . . ,Υ

K pβmqq

which does not depend on the choice of K .
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Localizations

Definition

Let pA,V ,Rq be a crystallographic arrangement and K a chamber.
For a subspace X ď Rr , we call SK ,X :“ X X RK a localization of the
crystallographic arrangement at K and X .

Notice that

SK ,X “ SK ,X` 9Y´ SK ,X` for SK ,X` :“ X X RK
` .
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Localizations

Localizations in crystallographic arrangements define crystallographic
arrangements.

Lemma

Let pA,V ,Rq be a crystallographic arrangement, K a chamber, and
X ď Rr . Then there is a subset ∆ Ď X X RK

` which is a set of simple
roots for the localization SK ,X “ X X RK , i.e.

SK ,X` Ď
ÿ

αP∆

N0α.
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Rank two

Definition

Define F-sequences as finite sequences of length ě 2 with entries in N2
0

given by the following recursion.

1 pp0, 1q, p1, 0qq is an F-sequence.

2 If pv1, . . . , vnq is an F-sequence, then
pv1, . . . , vi , vi ` vi`1, vi`1, . . . , vnq are F-sequences for
i “ 1, . . . , n ´ 1.

3 Every F-sequence is obtained recursively by (1) and (2).
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Rank two

R` :“ tp1, 0q, p3, 1q, p2, 1q, p5, 3q, p3, 2q, p1, 1q, p0, 1qu

p0, 1q p1, 0q

p1, 1q p3, 1q

p3, 2q

p5, 3q

p2, 1q
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Rank two

Theorem

Let pA,V q be an arrangement of rank two and R Ď V ˚ such that
A “ tkerα | α P Ru and RαXR “ t˘αu for all α P R.

Then pA,V ,Rq is a crystallographic arrangement if and only if there exists
a chamber K such that RK

` is an F-sequence.

In this case, RK
` is an F-sequence for all chambers K .
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Rank two

Remark

A crystallographic arrangement A of rank two and a chamber K define a
sequence of negative Cartan entries

pc1, . . . , cnq :“ p´cK1,2,´c
ρ1pKq
2,1 ,´c

ρ2pρ1pKqq
1,2 , . . .q

n “ |A|, which is the quiddity cycle of a Conway-Coxeter frieze pattern.
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Rank two

Corollary

Let pA,V ,Rq be a crystallographic arrangement of rank two and K a
chamber.

1 Any α P RK
` is either simple or the sum of two positive roots in RK

` .

2 If α, β are simple roots and kα` β P RK
` , then `α` β P RK

` for all
` “ 0, . . . , k .
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Arbitrary rank

The first claim of the corollary may be extended to arbitrary rank, we omit
the proof because it involves the length function of a Weyl groupoid:

Theorem

Let pA,V ,Rq be a crystallographic arrangement, K a chamber, and
α P RK

` a positive root. Then either α is simple, or it is the sum of two
positive roots in RK

` .

The second part of the corollary extends to arbitrary rank as well (we will
see this later).
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Localizations in rank three

Now assume that r “ 3, i.e. V “ R3.

Lemma

Let pA,V ,Rq be a crystallographic arrangement of rank three and K a
chamber. Then pA,V q is reducible if
|RK
` X xα1, α2y| “ |R

K
` X xα1, α3y| “ 2.

Proof.

Since σK1 pα2q “ α2, σK1 pα3q “ α3, the chamber ρ1pK q is also adjacent to
the localization xα2, α3y. But then any further β P RK

` ztα1u is in xα2, α3y,
thus A is a so-called near pencil arrangement which is reducible.
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Localizations in rank three

Figure: A localization and the roots on the boundary in the dual space.
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Localizations in rank three

Definition

Let pA,V ,Rq be a crystallographic arrangement, K1 a chamber,
1 ď i ‰ j ď r , and n :“ |xαi , αjy X RK

` |. We denote the 2n chambers
adjacent to the localization xαi , αjy by K1, . . . ,K2n: for ` ą 1, let

K` :“

#

ρi pK`´1q if ` is even,

ρjpK`´1q if ` is odd.

Notice that K2n`1 “ K1.
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Localizations in rank three

Definition

This sequence of chambers yields two sequences of integers:

c` :“

#

´cK`i ,j if ` is odd,

´cK`j ,i if ` is even,
d` :“

#

´cK`i ,k if ` is odd,

´cK`j ,k if ` is even

for ` “ 1, . . . , 2n and the unique k R ti , ju with 1 ď k ď r “ 3.

We call pc1, . . . , cnq the quiddity cycle
and pd1, . . . , d2nq the auxiliary cycle of the localization xαi , αjy.
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Localizations in rank three

Figure: A localization and the roots on the boundary in the dual space.
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Localizations in rank three

Proposition

Let pA,V ,Rq be an irreducible crystallographic arrangement of rank three
and K a chamber. Let β1 “ p0, 1, 0q, β2, . . . , βn´1, βn “ p1, 0, 0q be the
roots in the localization xα1, α2y ordered in such a way that pβ1, . . . , βnq
“is” an F-sequence. Let pd1, . . . , d2nq be the auxiliary cycle of the
localization xα2, α1y.

Then

1

γ` :“ α3 `
ÿ̀

k“1

dkβk , δ` :“ α3 `
ÿ̀

k“1

d2n`1´kβn`1´k ,

` “ 0, . . . , n are positive roots in RK with third coordinate 1. These
are the vertices of the convex set in the p˚, ˚, 1q-plane.

2 There are no consecutive d`’s both equal to 0.

3 |tγ` | ` “ 0, . . . , nu| ě n{2 and γ``1 ´ γ` P N3
0.
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Localizations in rank three

The next lemma is a crucial tool. It extends the convexity which was
observed in rank two to localizations and may be applied to pairs of roots
in the p˚, ˚, 1q-plane:

Lemma

Let pA,V ,Rq be a crystallographic arrangement, K a chamber, k P Ně2,
α P RK

` , β P Zr , dimxα, βyQ “ 2, α` kβ P RK , Vol2pα, βq “ 1, and
p´Nα` Zβq X Nr

0 “ H.

Then β P RK and α` `β P RK for all ` “ 0, . . . , k .
Moreover, there exists a chamber K 1 and 1 ď i , j ď r such that ´cK

1

i ,j ě k.

Bad Boll, September 2019 88



Localizations in rank three

Example

Figure: The lemma applied to the p˚, ˚, 1q-plane.

With α “ p0, 0, 1q, β “ p2, 1, 0q, and k “ 4, the lemma implies the
existence of the roots on the green line in the figure.

In fact, in this example the lemma implies that all lattice points in the
convex set in the figure are roots.
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Localizations in rank three

The next theorem is stronger than expected. If three roots have volume 1,
then they are close to be the walls of a chamber:

Theorem

Let K be a chamber and α, β, γ P RK
` . If Vol3pα, β, γq “ 1 and none of

α´ β, α´ γ, β ´ γ are contained in RK , then α, β, γ are the simple roots
in RK .
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Localizations in rank three

Corollary

Let K be a chamber and γ1, γ2, α P R
K . Assume that γ1, γ2 are simple

roots and that Vol3pγ1, γ2, αq “ 1. Then either α is a simple root or one
of α´ γ1, α´ γ2 is contained in RK .
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Localizations in rank three

Example

Figure: A path of roots in the p˚, ˚, 1q-plane.

Repeatedly applying the corollary with γ1 “ p1, 0, 0q, γ2 “ p0, 1, 0q, and
starting with α “ p10, 4, 1q yields (for example) the blue path of roots
displayed in the figure.
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Localizations in rank three

Remark

A short proof for the fact that all lattice points in the convex hull of the
roots in the p˚, ˚, 1q-plane are roots is still unknown.
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Localizations in rank three

Lemma

Let pA,V ,Rq be an irreducible crystallographic arrangement of rank three
and K a chamber. Then α1 ` α2 ` α3 P R

K .
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Bounds
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Bounds

k0 “ 3

Theorem

Let pA,V ,Rq be a crystallographic arrangement of rank three, K a
chamber, and |RK

` X xα1, α2y| ě 5. Then

k0 :“ mintk P N0 | kα1 ` 2α2 ` α3 P R
Ku P t0, . . . , 4u

and k0 ď 2 if cK1,3 “ 0.
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Bounds

Proof.

Let pc1, . . . , cnq be the quiddity cycle, pd1, . . . , d2nq the auxiliary cycle of
xα2, α1y, and γ0, . . . , γn as before. Then

γ0 “ p0, 0, 1q, γ1 “ p0, d1, 1q, γ2 “ pd2, c1d2 ` d1, 1q,

γ3 “ pc2d3 ` d2, c1c2d3 ` c1d2 ` d1 ´ d3, 1q,

γ4 “ pc2c3d4`c2d3`d2´d4, c1c2c3d4`c1c2d3`c1d2´c1d4´c3d4`d1´d3, 1q,

are positive roots. Moreover, p1, 1, 1q P RK .
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Bounds

Now we consider several cases:

Remark first that if p0, c, 1q P RK for c ą 1, then p0, 2, 1q P RK by a lemma since γ0 “ p0, 0, 1q P RK . Similarly, if

p1, c, 1q P RK for c ą 1, then p1, 2, 1q P RK by a lemma since p1, 1, 1q P RK . Hence

pk, c, 1q P RK
, k ď 1, c ą 1 ùñ k0 ď 1. (5)

Now we consider all possible values for the cycles.

If d1 ě 2, then k0 ď 1 by (5) since γ1 P RK . Hence assume d1 ď 1.
We first consider the case c1 ą 1.

If d1 “ 0, then d2 ą 0 (Prop.). Applying a lemma to γ0, pd2, c1d2, 1q “ γ2 P RK gives p1, c1, 1q P RK , thus k0 ď 1 by (5).

If d1 “ 1, d2 ą 0, then γ2 “ d2p1, c1, 0q ` γ1, thus p1, c1 ` 1, 1q P RK and k0 ď 1 by (5).

If d1 “ 1, d2 “ 0, then d3 ą 0, γ3 “ d3pc2, c1c2 ´ 1, 0q ` γ1 thus pc2, c1c2, 1q P RK which implies p1, c1, 1q P RK and
k0 ď 1 by (5).

Now consider the case c1 “ 1. This implies c2 ą 1 since |RK
` X xα1, α2y| ě 5.

If d1 “ 1, d2 ą 0, then γ2 “ d2p1, 1, 0q ` γ1, thus p1, 2, 1q P RK and k0 ď 1.

If d1 “ 1, d2 “ 0, then d3 ą 0, γ3 “ d3pc2, c2 ´ 1, 0q ` γ1 thus pc2, c2, 1q P RK which implies p2, 2, 1q P RK and k0 ď 2.

The last remaining case is d1 “ 0, and thus d2 ą 0. Notice that d1 “ 0 also implies p1, 0, 1q P RK since

δ1 “ pd2n, 0, 1q P RK and d2n ą 0. Recall also that we are still in the case c1 “ 1 and c2 ą 1.

If d2 ě 2, then γ2 “ pd2, d2, 1q P RK and thus p2, 2, 1q P RK and k0 ď 2. Hence we may assume d2 “ 1.

If d3 ą 0 then γ3 “ pc2d3 ` 1, c2d3 ` 1 ´ d3, 1q “ d3pc2, c2 ´ 1, 0q ` p1, 1, 1q, thus pc2 ` 1, c2, 1q P RK . But

pc2 ` 1, c2, 1q “ c2p1, 1, 0q ` p1, 0, 1q which implies p3, 2, 1q P RK and k0 ď 3.
Finally, assume that d3 “ 0, d4 ą 0. Then γ4 “ d4pc2c3 ´ 1, c2c3 ´ 1 ´ c3, 0q ` p1, 1, 1q implies

pc2c3, c2c3 ´ c3, 1q “ c3pc2, c2 ´ 1, 0q ` p0, 0, 1q P RK .

If c2 ą 2, then pc2, c2 ´ 1, 1q “ pc2 ´ 1qp1, 1, 0q ` p1, 0, 1q P RK and thus p3, 2, 1q P RK and k0 ď 3.

If c2 “ 2, then p2c3, c3, 1q P RK . If c3 ą 1 then this implies p4, 2, 1q P RK and k0 ď 4. The case c3 “ 1 is excluded since it

implies |RK
` X xα1, α2y| “ 4: by a remark, the only quiddity cycles containing p1, 2, 1q are p1, 2, 1, 2q and p2, 1, 2, 1q.

If cK1,3 “ 0 then d2n “ cK1,3 “ 0 implies d1 ą 0 by a Prop. All above cases with positive d1 imply k0 ď 2.
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Bounds

This allows to compute a global bound for Cartan entries in
crystallographic arrangements of rank greater than two:

Theorem

Let pA,V ,Rq be a crystallographic arrangement of rank greater or equal
to three.
Then all entries of the Cartan matrices are greater or equal to ´7.
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Bounds

Proof.

Assume that K is a chamber with largest Cartan entry ´cK1,2 ě 8, i.e.

|RK
` X xα1, α2y| ě 5.

By the theorem there exists k0 P t0, 1, 2, 3, 4u such that
γ :“ k0α1 ` 2α2 ` α3 P R

K
` .

In the adjacent chamber K 1 “ ρ1pK q, we have

γ1 :“ σK1 pγq “ p´k0 ´ 2cK1,2 ´ cK1,3qα1 ` 2α2 ` α3 P R
K 1
` .

Again by the theorem there exists k 10 P t0, 1, 2, 3, 4u such that
α :“ k 10α1 ` 2α2 ` α3 P R

K 1
` .

Bad Boll, September 2019 100



Bounds

Proof.

Assume that K is a chamber with largest Cartan entry ´cK1,2 ě 8, i.e.

|RK
` X xα1, α2y| ě 5.

By the theorem there exists k0 P t0, 1, 2, 3, 4u such that
γ :“ k0α1 ` 2α2 ` α3 P R

K
` .

In the adjacent chamber K 1 “ ρ1pK q, we have

γ1 :“ σK1 pγq “ p´k0 ´ 2cK1,2 ´ cK1,3qα1 ` 2α2 ` α3 P R
K 1
` .

Again by the theorem there exists k 10 P t0, 1, 2, 3, 4u such that
α :“ k 10α1 ` 2α2 ` α3 P R

K 1
` .

Bad Boll, September 2019 100



Bounds

Proof.

Assume that K is a chamber with largest Cartan entry ´cK1,2 ě 8, i.e.

|RK
` X xα1, α2y| ě 5.

By the theorem there exists k0 P t0, 1, 2, 3, 4u such that
γ :“ k0α1 ` 2α2 ` α3 P R

K
` .

In the adjacent chamber K 1 “ ρ1pK q, we have

γ1 :“ σK1 pγq “ p´k0 ´ 2cK1,2 ´ cK1,3qα1 ` 2α2 ` α3 P R
K 1
` .

Again by the theorem there exists k 10 P t0, 1, 2, 3, 4u such that
α :“ k 10α1 ` 2α2 ` α3 P R

K 1
` .

Bad Boll, September 2019 100



Bounds

Now applying a lemma to α and γ1 “ α` p´k0 ´ 2cK1,2 ´ cK1,3 ´ k 10qα1

yields a chamber K 2 with 1 ď i , j ď 3 and

´cK
2

i ,j ě ´k0 ´ 2cK1,2 ´ cK1,3 ´ k 10.

We have

k0 ď

#

2 if ´ cK1,3 “ 0,

4 if ´ cK1,3 ą 0,

thus

´cK
2

i ,j ě

#

´cK1,2 ` 2 ą ´cK1,2 if ´ cK1,3 “ 0,

´cK1,2 ´ cK1,3 ą ´c
K
1,2 if ´ cK1,3 ą 0.

This is a contradiction to the assumption that ´cK1,2 is
the largest Cartan entry.
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Bounds
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Bounds

Remark

In fact, entries of the Cartan matrices in rank greater or equal to three are
always greater or equal to ´6.
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Bounds

Notice that there are infinitely many non-equivalent crystallographic
arrangements of rank two with Cartan entries greater or equal to ´7.
(quiddity cycles over N with entries ď 7)

However:

Theorem

Any localization of rank two of an irreducible crystallographic arrangement
of rank three has at most 128 positive roots.
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Bounds

Proof.

Without loss of generality, assume that |RK
` X xα1, α2y| ą 128 for some

chamber K . Then by a previous proposition there are more than 64 roots
of the form kα1 ` `α2 ` α3,

i.e. there exist roots pa, b, 1q, pa1, b1, 1q P RK ,
pa, b, 1q ‰ pa1, b1, 1q with

a ” a1 pmod 8q, b ” b1 pmod 8q,

and by the same proposition we may assume a ě a1 and b ě b1. But then

pa, b, 1q “ pa1, b1, 1q ` kppa´ a1q{k , pb ´ b1q{k , 0q

for some k ě 8 and coprime pa´ a1q{k , pb ´ b1q{k P Z.
By the “green lemma”, this implies the existence of a Cartan entry less or
equal to ´8, contradicting the theorem.

Bad Boll, September 2019 104



Bounds

Proof.

Without loss of generality, assume that |RK
` X xα1, α2y| ą 128 for some

chamber K . Then by a previous proposition there are more than 64 roots
of the form kα1 ` `α2 ` α3, i.e. there exist roots pa, b, 1q, pa1, b1, 1q P RK ,
pa, b, 1q ‰ pa1, b1, 1q with

a ” a1 pmod 8q, b ” b1 pmod 8q,

and by the same proposition we may assume a ě a1 and b ě b1.

But then

pa, b, 1q “ pa1, b1, 1q ` kppa´ a1q{k , pb ´ b1q{k , 0q

for some k ě 8 and coprime pa´ a1q{k , pb ´ b1q{k P Z.
By the “green lemma”, this implies the existence of a Cartan entry less or
equal to ´8, contradicting the theorem.

Bad Boll, September 2019 104



Bounds

Proof.

Without loss of generality, assume that |RK
` X xα1, α2y| ą 128 for some

chamber K . Then by a previous proposition there are more than 64 roots
of the form kα1 ` `α2 ` α3, i.e. there exist roots pa, b, 1q, pa1, b1, 1q P RK ,
pa, b, 1q ‰ pa1, b1, 1q with

a ” a1 pmod 8q, b ” b1 pmod 8q,

and by the same proposition we may assume a ě a1 and b ě b1. But then

pa, b, 1q “ pa1, b1, 1q ` kppa´ a1q{k , pb ´ b1q{k , 0q

for some k ě 8 and coprime pa´ a1q{k , pb ´ b1q{k P Z.
By the “green lemma”, this implies the existence of a Cartan entry less or
equal to ´8, contradicting the theorem.

Bad Boll, September 2019 104



Bounds

Corollary

There is a finite set I of equivalence classes of crystallographic
arrangements of rank two such that every localization of rank two of an
irreducible crystallographic arrangement of rank three belongs to one of
the classes in I.

Proof.

By the theorem, a localization of rank two of a crystallographic
arrangement of rank three has at most 128 positive roots.
Since a crystallographic arrangement pA,V ,Rq of rank two corresponds to
a triangulation of a convex |R|{2-gon by non-intersecting diagonals, there
are only finitely many non-equivalent such arrangements with at most 128
positive roots.
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Bounds

Corollary

There exists a bound m, such that for any irreducible crystallographic
arrangement of rank r ą 2 and α, β P R,

Vol2pα, βq ď m.

Remark

In fact, the sharp bound is m “ 6.
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Bounds

Proof.

Viewing α and β as elements of the localization xα, βy, we may choose a
chamber K such that ΥK pαq “ αi , ΥK pβq “ aαi ` bαj for suitable
a, b P Z, without loss of generality i “ 1, j “ 2.

Since r ą 2, the roots ΥK pαq,ΥK pβq are roots in a localization
xα1, α2, α`y of rank three, ` ą 2.

Thus by a corollary, the localization xα, βy is one of finitely many possible
crystallographic arrangements of rank two up to equivalence, hence
coordinates of roots in these crystallographic arrangements are bounded by
some number m P N.
This implies Vol2pα, βq “ |b| ď m.
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Bounds

Theorem (C., Heckenberger (2015); C. (2019))

Let r ą 2. Then there are only finitely many equivalence classes of
irreducible crystallographic arrangements of rank r .

Proof.

Let K be a chamber of an irreducible crystallographic arrangement of rank
r ą 2. Consider the map

ψ : RK
` Ñ pZ{pm ` 1qZqr , pa1, . . . , ar q ÞÑ pa1, . . . , ar q.

Assume that |RK
` | ą pm ` 1qr . Then there exist α, β P RK

` , α ‰ β and
ψpαq “ ψpβq. Thus the volume Vol2pα, βq is divisible by pm ` 1q. Since
α ‰ β, this contradicts the corollary.
Hence there is a global bound for the number of positive roots. But the
number of equivalence classes of irreducible crystallographic arrangements
with bounded number of roots is bounded.
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Enumeration and classification

Bad Boll, September 2019 109



Enumeration and classification

Theorem

Let K be a chamber of an irreducible crystallographic arrangement.

Let α P RK
` . Then either α is simple, or it is the sum of two positive roots.
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Enumeration and classification – rank three

Function EnumeratepRq

1 If R defines a crystallographic arrangement, output R and continue.

2 Y :“ tα` β | α, β P R, α ‰ βuzR.

3 For all α P Y with α ą maxR:

1 Compute all localizations in R Y tαu.
2 If all Cartan entries are ě ´7, all localizations are crystallographic [and

... and ...] then call EnumeratepR Y tαuq.
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Enumeration and classification

The algorithm terminates and yields the result:

Theorem (C., Heckenberger (2012))

Up to equivalences, there are 55 irreducible crystallographic arrangements
of rank three.

With the knowledge about rank three, we enumerate crystallographic
arrangements in ranks four to eight with a similar algorithm.

An analysis of Dynkin diagrams leads to a complete classification.
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Classification

Theorem (C., Heckenberger, 2009/2010)

There are exactly three families of crystallographic arrangements:

1 The family of rank two parametrized by triangulations of a convex
n-gon by non-intersecting diagonals.

3 4

1

2

2

1 2

2 For each rank r ą 2, arrangements of type Ar , Br , Cr and Dr , and a
further series of r ´ 1 arrangements.

3 Further 74 “sporadic” arrangements of rank r , 3 ď r ď 8.
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Nichols algebras
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Braided vector spaces

Definition

Let V be a vector space,

c : V b V Ñ V b V

a linear isomorphism with

pc b idqpidb cqpc b idq “ pidb cqpc b idqpidb cq.

Then c is a braiding, and pV , cq is a braided vector space.
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Nichols algebras

Define a map ρ : Sn Ñ EndpVbnq by:

For a transposition pi , i ` 1q P Sn let

ρppi , i ` 1qq :“ idb ¨ ¨ ¨ b idb c b idb ¨ ¨ ¨ b id,

where c acts in the copies i and i ` 1 of V .

If ω “ τ1 . . . τ` is a reduced expression of ω P Sn, then

ρpωq :“ ρpτ1q . . . ρpτ`q.

Definition

Let Sn :“
ř

ωPSn
ρpωq.

BpV q :“
à

ně0

T npV q{ kerpSnq

is called the Nichols algebra of pV , cq.
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Examples

cpx b yq “ y b x for all x , y P V :

BpV q “ SpV q symmetric algebra

cpx b yq “ ´y b x for all x , y P V :

BpV q “ ΛpV q exterior algebra
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Nichols algebras – Motivation

Nichols (1978): construction of examples of Hopf algebras

Woronowicz (1988): build a “quantum differential calculus”

Lusztig (1993), Rosso (1994), Schauenburg (1996): abstract
definition of quantized universal enveloping algebras

Andruskiewitsch-Schneider (1998): essential tool in the classification
of pointed Hopf algebras
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Nichols algebras – Main problems

Let pV , cq be a braided vector space.

Is BpV q finite dimensional?

Compute the defining relations of BpV q.
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Examples

Let A “ paijq1ďi ,jďr be a Cartan matrix of finite type and d1, . . . , dr P Ną0

be such that diaij “ djaji .

Let V be a vector space over k with basis x1, . . . , xr , and q P k,
c : V b V Ñ V b V given by cpxi b xjq “ qdiaij xj b xi .

Theorem (Lusztig)

If q is a root of unity of odd order N with 3 - N, then BpV q is finite
dimensional with basis [. . .].

BpV q is the “positive part” of the Frobenius-Lusztig kernel of the Lie
algebra associated to A.
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Diagonal type

Definition

tx1, . . . , xru Basis of V ,

cpxi b xjq “ qijxj b xi , qij P C.

Then c and BpV q are called of diagonal type.

The numbers qij , i , j “ 1, . . . , r define a bicharacter

χ : Zr ˆ Zr Ñ C, ppa1, . . . , ar q, pb1, . . . , br qq ÞÑ
r
ź

i ,j“1

q
aibj
ij .
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PBW basis for diagonal type

Let pV , cq be of diagonal type.

Theorem (Kharchenko, 1999)

There exists a totally ordered index set pL,ďq and Zr -homogeneous
elements X` P BpV q, ` P L such that

tXm1
`1
¨ ¨ ¨Xmν

`ν
| ν ě 0, `1, . . . , `ν P L, `1 ą . . . ą `ν ,

0 ď mi ă h`ν @i “ 1, . . . , νu

is a vector space basis of BpV q, where

h` “ mintm P N | 1` q` ` . . .` qm´1
` “ 0u Y t8u

and q` “ χpdegX`, degX`q, ` P L.
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Finite dimensional Nichols algebras of diagonal type

Theorem (Heckenberger, 2006)

Let B be a finite dimensional Nichols algebra of diagonal type.

Let R` be the set of degrees of the PBW generators of B.
Then R` Y´R` is a root system of a finite Weyl groupoid.

Result (Angiono, 2013)

Explicit list of defining relations of a Nichols algebra of diagonal type with
finite root system.
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Yetter-Drinfeld modules

Definition

Let H be a Hopf algebra and V a module and a comodule over H. Then
V is called a Yetter-Drinfeld module if

δV phvq “ h1v´1Sph3q b h2v0 @h P H, v P V .

A Yetter-Drinfeld module V is a braided vector space via

c : V b V Ñ V b V , v b w ÞÑ v´1w b v0.

Example

G a finite group, H “ CG ñ

Yetter-Drinfeld modules are representations of the quantum double DpG q.
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Yetter-Drinfeld modules

Let V be a Yetter-Drinfeld module over CG where G is a finite group.

G abelian ñ BpV q of diagonal type.

G non-abelian, V irreducible ñ BpV q Nichols algebra of a rack.
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The Weyl groupoid in diagonal type – rank two

Let q “ pq1, q, q2q be a triple of numbers (in a commutative ring) and
assume that

mi :“ mintm P N0 | 1` qi ` q2
i ` . . .` qmi “ 0 or qmi q “ 1u

for i “ 1, 2 are well defined integers.

Let

σ1pq1, q, q2q “ pq1, q
´2m1
1 q´1, q

m2
1

1 qm1q2q

“

#

pq1, q
2
1q
´1, q1q

m1q2q if 1` q1 ` q2
1 ` . . .` qm1

1 “ 0

pq1, q, q2q if qm1
1 q “ 1

and similarly

σ2pq1, q, q2q “ pq1q
m2q

m2
2

2 , q´2m2
2 q´1, q2q.

Thus σ1, σ2 produce new triples of numbers which possibly define new
integers mi , and notice that σi pσi pq1, q, q2qq “ pq1, q, q2q.
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The Weyl groupoid in diagonal type – rank two

Definition

Assuming that the new mi are well defined again and again, the first triple
q0 :“ q “ pq1, q, q2q will produce an infinite sequence of the form

. . .
σ2
ÐÑ q´2

σ1
ÐÑ q´1

σ2
ÐÑ q0

σ1
ÐÑ q1

σ2
ÐÑ q2

σ1
ÐÑ . . .

where every σi has its own mi ,

thus we obtain a sequence of integers

. . . , c´2, c´1, c0, c1, c2, . . .

which we call the characteristic sequence of q “ pq1, q, q2q, where the ci
correspond to the maps in the following way (c0 “ m1, c´1 “ m2):

. . .
c´3
ÐÑ q´2

c´2
ÐÑ q´1

c´1
ÐÑ q0

c0
ÐÑ q1

c1
ÐÑ q2

c2
ÐÑ . . .

We say that a triple q is broken if the above procedure leads to a triple
for which one of the mi is not defined.
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The Weyl groupoid in diagonal type – rank two

Example

Let ζ P C be a primitive 9-th root of unity and q “ pζ6, ζ8, ζ6q. Then the
above picture is

. . .
5
ÐÑ pζ, ζ4, ζ6q

2
ÐÑ pζ6, ζ8, ζ6q

2
ÐÑ
σ1

pζ6, ζ4, ζq
5
ÐÑ pζ6, ζ4, ζq

2
ÐÑ . . .

and the characteristic sequence is p. . . , 2, 2, 5, 2, 2, 5, . . .q, thus periodic
with period p2, 2, 5q.
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The Weyl groupoid in diagonal type – rank two

To determine the triple q from a given characteristic sequence, the
knowledge of three consecutive entries ci , ci`1, ci`2 is (almost) sufficient.

Theorem

The Nichols algebra of diagonal type corresponding to a triple q is finite
dimensional if and only if the characteristic sequence of q is the quiddity
cycle of a Conway-Coxeter frieze pattern.

Corollary

A local description (` “ 3) of quiddity cycles leads to a complete
classification of finite dimensional Nichols algebras of diagonal type
in rank two.
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Question

What about “infinite” Weyl groupoids?
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The non-spherical case

Definition (C., Mühlherr, Weigel, 2014)

Let A be a set of linear hyperplanes in V and H ‰ T Ď V an open convex
cone (called the Tits cone). We call pA,T q a simplicial arrangement, if

1 H X T ‰ H @H P A,

2 @v P T Dε ą 0 : |tH P A | H X Uεpvq ‰ Hu| ă 8,

3 the connected components of T z
Ť

HPAH are simplicial cones,

4 every wall is in A.

pA,T ,Rq is a crystallographic arrangement, if

1 pA,T q is simplicial,

2 A “ tαK | α P Ru and RαX R “ t˘αu for all α P R,

3 for all K P KpAq:
R Ď

ÿ

αPBK

Zα.
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The non-spherical case

Definition (C., Mühlherr, Weigel, 2014)
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An affine simplicial arrangement
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Affine crystallographic arrangements
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The non-spherical case

Example

1 If V “ T , then A is a finite simplicial arrangement.

2 If T is a half-space, then pA,T q is called affine.

3 An affine Weyl group defines an affine crystallographic arrangement.

Theorem (C., Mühlherr, Weigel, 2014)

Correspondence: “Weyl groupoids” ÐÑ crystallographic arrangements.

Theorem (C., Mühlherr, 2013)

Characterization of Weyl groupoids of rank two with finitely many objects
via periodic continued fractions.

Bad Boll, September 2019 134



The non-spherical case

Example

1 If V “ T , then A is a finite simplicial arrangement.

2 If T is a half-space, then pA,T q is called affine.

3 An affine Weyl group defines an affine crystallographic arrangement.
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Affine crystallographic arrangements
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Some numbers

Quiddity cycle: c “ p1, 2, 3, 2, 1, 4, 1, 4q

mi :“ tj P t1, . . . , nu | ci ,j ě ci ,` for all ` “ 1, . . . , nu.

ci ,j |mi |

 p|m1|, |m2|, . . .q “ p1, 1, 3, 1, 1, 1, 2, 1q
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More numbers

Quiddity cycle: c “ p1, 3, 1, 4, 1, 3, 1, 4q

mi :“ tj P t1, . . . , nu | ci ,j ě ci ,` for all ` “ 1, . . . , nu.

ci ,j |mi |

 p|m1|, |m2|, . . .q “ p1, 2, 1, 2, 1, 2, 1, 2q
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Dense sequences

Theorem (C., 2013)

Let c be a quiddity cycle such that for all i , |mi | ą 1 or |mi`1| ą 1. Then
up to rotations, c is one of the following:

p1, 1, 1q, p1, 2, 1, 2q, p1, 3, 1, 3, 1, 3q,

p1, 3, 1, 4, 1, 3, 1, 4q, p1, 3, 1, 5, 1, 3, 1, 5, 1, 3, 1, 5q.
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Affine simplicial arrangements

Theorem (C., 2013)

Let c be a quiddity cycle and R Ď Z2 its root system (at any object). If

tpx , y , zqK | px , yq P R, z P Zu

is simplicial, then c is

p1, 1, 1q, p1, 2, 1, 2q, p1, 3, 1, 3, 1, 3q, or p1, 3, 1, 5, 1, 3, 1, 5, 1, 3, 1, 5q.
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Thank you!
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