A joint central limit theorem for the sum-of-digits function, and asymptotic divisibility of Catalan-like sequences

Michael Drmota and Christian Krattenthaler

Technische Universität Wien; Universität Wien

2-divisibility of central binomial coefficients

We all know that

$$
\binom{2 n}{n} \equiv 0 \quad(\bmod 2)
$$

2-divisibility of central binomial coefficients

We all know that

$$
\binom{2 n}{n} \equiv 0 \quad(\bmod 2) \quad \text { for } n \geq 1
$$

2-divisibility of central binomial coefficients

We all know that

$$
\binom{2 n}{n} \equiv 0 \quad(\bmod 2) \quad \text { for } n \geq 1
$$

We all know that

$$
\binom{2 n}{n} \equiv 0 \quad(\bmod 4) \quad \text { for } n \geq 2
$$

2-divisibility of central binomial coefficients

We all know that

$$
\binom{2 n}{n} \equiv 0 \quad(\bmod 2) \quad \text { for } n \geq 1
$$

We all know that

$$
\binom{2 n}{n} \equiv 0 \quad(\bmod 4) \quad \text { for } n \geq 3
$$

2-divisibility of central binomial coefficients

We all know that

$$
\binom{2 n}{n} \equiv 0 \quad(\bmod 2) \quad \text { for } n \geq 1
$$

We all know that not always

$$
\binom{2 n}{n} \equiv 0 \quad(\bmod 4)
$$

More precisely, the above holds if and only if n is not a power of 2 .

2-divisibility of central binomial coefficients

We all know that

$$
\binom{2 n}{n} \equiv 0 \quad(\bmod 2) \quad \text { for } n \geq 1
$$

We all know that not always

$$
\binom{2 n}{n} \equiv 0 \quad(\bmod 4)
$$

More precisely, the above holds if and only if n is not a power of 2 . In particular, this implies that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n<N:\binom{2 n}{n} \equiv 0(\bmod 4)\right\}=1
$$

2-divisibility of central binomial coefficients

How about

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n<N:\binom{2 n}{n} \equiv 0(\bmod 8)\right\}=?
$$

2-divisibility of central binomial coefficients

How about

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n<N:\binom{2 n}{n} \equiv 0(\bmod 8)\right\}=?
$$

We have

$$
\frac{1}{10} \#\left\{n<10:\binom{2 n}{n} \equiv 0(\bmod 8)\right\}=0.1
$$

2-divisibility of central binomial coefficients

How about

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n<N:\binom{2 n}{n} \equiv 0(\bmod 8)\right\}=?
$$

We have

$$
\frac{1}{50} \#\left\{n<50:\binom{2 n}{n} \equiv 0(\bmod 8)\right\}=0.56
$$

2-divisibility of central binomial coefficients

How about

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n<N:\binom{2 n}{n} \equiv 0(\bmod 8)\right\}=?
$$

We have

$$
\frac{1}{100} \#\left\{n<100:\binom{2 n}{n} \equiv 0(\bmod 8)\right\}=0.71
$$

2-divisibility of central binomial coefficients

How about

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n<N:\binom{2 n}{n} \equiv 0(\bmod 8)\right\}=?
$$

We have

$$
\frac{1}{1000} \#\left\{n<1000:\binom{2 n}{n} \equiv 0(\bmod 8)\right\}=0.944
$$

2-divisibility of central binomial coefficients

How about

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n<N:\binom{2 n}{n} \equiv 0(\bmod 8)\right\}=?
$$

We have

$$
\frac{1}{10000} \#\left\{n<10000:\binom{2 n}{n} \equiv 0(\bmod 8)\right\}=0.9896
$$

2-divisibility of central binomial coefficients

How about

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n<N:\binom{2 n}{n} \equiv 0(\bmod 8)\right\}=?
$$

We have

$$
\frac{1}{10000} \#\left\{n<10000:\binom{2 n}{n} \equiv 0(\bmod 8)\right\}=0.9896
$$

Apparently, again

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n<N:\binom{2 n}{n} \equiv 0(\bmod 8)\right\}=1
$$

2-divisibility of central binomial coefficients

How about

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n<N:\binom{2 n}{n} \equiv 0(\bmod 8)\right\}=?
$$

We have

$$
\frac{1}{10000} \#\left\{n<10000:\binom{2 n}{n} \equiv 0(\bmod 8)\right\}=0.9896
$$

Apparently, again

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n<N:\binom{2 n}{n} \equiv 0(\bmod 8)\right\}=1
$$

The same observation works modulo 16 , modulo 32 , etc.

2-divisibility of Catalan numbers

We all (?) know that

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n} \equiv 0 \quad(\bmod 2)
$$

if and only if $n \neq 2^{e}-1, e=0,1,2, \ldots$.

2-divisibility of Catalan numbers

We all (?) know that

$$
C_{n}=\frac{1}{n+1}\binom{2 n}{n} \equiv 0 \quad(\bmod 2)
$$

if and only if $n \neq 2^{e}-1, e=0,1,2, \ldots$.
In particular, this implies that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n<N: \frac{1}{n+1}\binom{2 n}{n} \equiv 0(\bmod 2)\right\}=1
$$

2-divisibility of Catalan numbers

How about

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n<N: \frac{1}{n+1}\binom{2 n}{n} \equiv 0(\bmod 4)\right\}=?
$$

2-divisibility of Catalan numbers

How about

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n<N: \frac{1}{n+1}\binom{2 n}{n} \equiv 0(\bmod 4)\right\}=?
$$

We have

$$
\frac{1}{10} \#\left\{n<10: \frac{1}{n+1}\binom{2 n}{n} \equiv 0(\bmod 4)\right\}=0.1
$$

2-divisibility of Catalan numbers

How about

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n<N: \frac{1}{n+1}\binom{2 n}{n} \equiv 0(\bmod 4)\right\}=?
$$

We have

$$
\frac{1}{50} \#\left\{n<50: \frac{1}{n+1}\binom{2 n}{n} \equiv 0(\bmod 4)\right\}=0.58
$$

2-divisibility of Catalan numbers

How about

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n<N: \frac{1}{n+1}\binom{2 n}{n} \equiv 0(\bmod 4)\right\}=?
$$

We have

$$
\frac{1}{100} \#\left\{n<100: \frac{1}{n+1}\binom{2 n}{n} \equiv 0(\bmod 4)\right\}=0.72
$$

2-divisibility of Catalan numbers

How about

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n<N: \frac{1}{n+1}\binom{2 n}{n} \equiv 0(\bmod 4)\right\}=?
$$

We have

$$
\frac{1}{1000} \#\left\{n<1000: \frac{1}{n+1}\binom{2 n}{n} \equiv 0(\bmod 4)\right\}=0.945
$$

2-divisibility of Catalan numbers

How about

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n<N: \frac{1}{n+1}\binom{2 n}{n} \equiv 0(\bmod 4)\right\}=?
$$

We have

$$
\frac{1}{10000} \#\left\{n<10000: \frac{1}{n+1}\binom{2 n}{n} \equiv 0(\bmod 4)\right\}=0.9897
$$

2-divisibility of Catalan numbers

How about

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n<N: \frac{1}{n+1}\binom{2 n}{n} \equiv 0(\bmod 4)\right\}=?
$$

We have

$$
\frac{1}{10000} \#\left\{n<10000: \frac{1}{n+1}\binom{2 n}{n} \equiv 0(\bmod 4)\right\}=0.9897
$$

Apparently, again

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n<N: \frac{1}{n+1}\binom{2 n}{n} \equiv 0(\bmod 4)\right\}=1
$$

and the same observation holds modulo 8 , modulo 16 , etc.

5-divisibility of Catalan numbers

However, there is nothing special about the modulus 2 :

5-divisibility of Catalan numbers

However, there is nothing special about the modulus 2 :
Here are the first few Catalan numbers:
$1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900$,
2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, 18367353072152, 69533550916004, 263747951750360, 1002242216651368, 3814986502092304, 14544636039226909, 55534064877048198, 212336130412243110, 812944042149730764, $3116285494907301262,11959798385860453492,45950804324621742364$, 176733862787006701400, 680425371729975800390, 2622127042276492108820, 10113918591637898134020, 39044429911904443959240,
150853479205085351660700, 583300119592996693088040, 2257117854077248073253720,8740328711533173390046320,

5-divisibility of Catalan numbers

However, there is nothing special about the modulus 2 :
We have

$$
\frac{1}{10000} \#\left\{n<10000:\binom{2 n}{n} \equiv 0(\bmod 25)\right\}=0.702
$$

5-divisibility of Catalan numbers

However, there is nothing special about the modulus 2 :
We have

$$
\frac{1}{100000} \#\left\{n<100000:\binom{2 n}{n} \equiv 0(\bmod 25)\right\}=0.82612
$$

5-divisibility of Catalan numbers

However, there is nothing special about the modulus 2 :
We have

$$
\frac{1}{100000} \#\left\{n<100000:\binom{2 n}{n} \equiv 0(\bmod 25)\right\}=0.82612
$$

More calculations indicate that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n<N: \frac{1}{n+1}\binom{2 n}{n} \equiv 0\left(\bmod 5^{\alpha}\right)\right\}=1
$$

for any α.

p-divisibility of Catalan numbers

p-divisibility of Catalan numbers

In a series of preprints on the ar χ iv, Rob Burns investigated divisibility properties of combinatorial numbers. In particular, using an automata method of Eric Rowland and Reem Yassawi, he proved that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n<N: \frac{1}{n+1}\binom{2 n}{n} \equiv 0(\bmod p)\right\}=1
$$

for any prime number p.

p-divisibility of Catalan numbers

In a series of preprints on the ar χ iv, Rob Burns investigated divisibility properties of combinatorial numbers. In particular, using an automata method of Eric Rowland and Reem Yassawi, he proved that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n<N: \frac{1}{n+1}\binom{2 n}{n} \equiv 0(\bmod p)\right\}=1
$$

for any prime number p.
Together with Michael Drmota, I decided to "do this properly".

p-divisibility of Catalan numbers

In a series of preprints on the ar χ iv, Rob Burns investigated divisibility properties of combinatorial numbers. In particular, using an automata method of Eric Rowland and Reem Yassawi, he proved that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n<N: \frac{1}{n+1}\binom{2 n}{n} \equiv 0(\bmod p)\right\}=1
$$

for any prime number p.
Together with Michael Drmota, I decided to "do this properly".

- Prove the same result for any prime power.

p-divisibility of Catalan numbers

In a series of preprints on the ar χ iv, Rob Burns investigated divisibility properties of combinatorial numbers. In particular, using an automata method of Eric Rowland and Reem Yassawi, he proved that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n<N: \frac{1}{n+1}\binom{2 n}{n} \equiv 0(\bmod p)\right\}=1
$$

for any prime number p.
Together with Michael Drmota, I decided to "do this properly".

- Prove the same result for any prime power.
- Prove this kind of result for a large(r) class of sequences.

How to "do this properly"

How to "do this properly"

Let $v_{p}(N)$ denote the p-adic valuation of the integer N, which by definition is the maximal exponent α such that p^{α} divides N.

Legendre's formula for the p-adic valuation of factorials implies

$$
v_{p}(n!)=\frac{1}{p-1}\left(n-s_{p}(n)\right)
$$

where $s_{p}(N)$ denotes the p-ary sum-of-digits function

$$
s_{p}(N)=\sum_{j \geq 0} \varepsilon_{j}(N)
$$

with $\varepsilon_{j}(N)$ denoting the j-th digit in the p-adic representation of N.

How to "do this properly"

Let $v_{p}(N)$ denote the p-adic valuation of the integer N, which by definition is the maximal exponent α such that p^{α} divides N.

Legendre's formula for the p-adic valuation of factorials implies

$$
v_{p}(n!)=\frac{1}{p-1}\left(n-s_{p}(n)\right)
$$

where $s_{p}(N)$ denotes the p-ary sum-of-digits function

$$
s_{p}(N)=\sum_{j \geq 0} \varepsilon_{j}(N)
$$

with $\varepsilon_{j}(N)$ denoting the j-th digit in the p-adic representation of N.

Hence, we have

$$
v_{p}\left(\frac{1}{n+1}\binom{2 n}{n}\right)=\frac{1}{p-1}\left(2 s_{p}(n)-s_{p}(2 n)\right)-v_{p}(n+1) .
$$

How to "do this properly"

Hence, we have

$$
v_{p}\left(\frac{1}{n+1}\binom{2 n}{n}\right)=\frac{1}{p-1}\left(2 s_{p}(n)-s_{p}(2 n)\right)-v_{p}(n+1) .
$$

How to "do this properly"

Hence, we have

$$
v_{p}\left(\frac{1}{n+1}\binom{2 n}{n}\right)=\frac{1}{p-1}\left(2 s_{p}(n)-s_{p}(2 n)\right)-v_{p}(n+1) .
$$

We see that, in order to prove that $v_{p}\left(\frac{1}{n+1}\binom{2 n}{n}\right)$ "becomes large" for most n (and the same for similar - "Catalan-like" sequences), we need sufficiently precise results on the distribution of linear combinations of the form

$$
c_{1} s_{q}\left(A_{1} n\right)+c_{2} s_{q}\left(A_{2} n\right)+\cdots+c_{d} s_{q}\left(A_{d} n\right), \quad n<N,
$$

with real numbers c_{j} and integers $A_{j} \geq 1,1 \leq j \leq d$.

How to "do this properly"

Hence, we have

$$
v_{p}\left(\frac{1}{n+1}\binom{2 n}{n}\right)=\frac{1}{p-1}\left(2 s_{p}(n)-s_{p}(2 n)\right)-v_{p}(n+1) .
$$

We see that, in order to prove that $v_{p}\left(\frac{1}{n+1}\binom{2 n}{n}\right)$ "becomes large" for most n (and the same for similar - "Catalan-like" sequences), we need sufficiently precise results on the distribution of linear combinations of the form

$$
c_{1} s_{q}\left(A_{1} n\right)+c_{2} s_{q}\left(A_{2} n\right)+\cdots+c_{d} s_{q}\left(A_{d} n\right), \quad n<N,
$$

with real numbers c_{j} and integers $A_{j} \geq 1,1 \leq j \leq d$.
Equivalently, we need sufficiently precise results on the distribution of the vector

$$
\left(s_{q}\left(A_{1} n\right), s_{q}\left(A_{2} n\right), \ldots, s_{q}\left(A_{d} n\right)\right), \quad n<N
$$

The general divisibility result

Theorem

Let p be a given prime number, α a positive integer, $P(n)$ a polynomial in n with integer coefficients, and $\left(C_{i}\right)_{1 \leq i \leq r},\left(D_{i}\right)_{1 \leq i \leq s}$, $\left(E_{i}\right)_{1 \leq i \leq t},\left(F_{i}\right)_{1 \leq i \leq t}$ given integer sequences with $C_{i}, D_{i}>0$ and $p \nmid \operatorname{gcd}\left(E_{i}, F_{i}\right)$ for all $i, \sum_{i=1}^{r} C_{i}=\sum_{i=1}^{s} D_{i}$, and $\left\{C_{i}: 1 \leq i \leq r\right\} \neq\left\{D_{i}: 1 \leq i \leq s\right\}$. If all elements of the sequence $(S(n))_{n \geq 0}$, defined by

$$
S(n):=\frac{P(n)}{\prod_{i=1}^{t}\left(E_{i} n+F_{i}\right)} \frac{\prod_{i=1}^{r}\left(C_{i} n\right)!}{\prod_{i=1}^{s}\left(D_{i} n\right)!}
$$

are integers, then

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n<N: S(n) \equiv 0\left(\bmod p^{\alpha}\right)\right\}=1
$$

The general divisibility result

Corollary

Let m be a positive integer, $P(n)$ a polynomial in n with integer coefficients, and $\left(C_{i}\right)_{1 \leq i \leq r},\left(D_{i}\right)_{1 \leq i \leq s},\left(E_{i}\right)_{1 \leq i \leq t},\left(F_{i}\right)_{1 \leq i \leq t}$ given integer sequences with $C_{i}, D_{i}>0$ and $p \nmid \operatorname{gcd}\left(E_{i}, F_{i}\right)$ for all i and primes p dividing $m, \sum_{i=1}^{r} C_{i}=\sum_{i=1}^{s} D_{i}$, and $\left\{C_{i}: 1 \leq i \leq r\right\} \neq\left\{D_{i}: 1 \leq i \leq s\right\}$. If all elements of the sequence $(S(n))_{n \geq 0}$, defined by

$$
S(n):=\frac{P(n)}{\prod_{i=1}^{t}\left(E_{i} n+F_{i}\right)} \frac{\prod_{i=1}^{r}\left(C_{i} n\right)!}{\prod_{i=1}^{s}\left(D_{i} n\right)!}
$$

are integers, then

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\{n<N: S(n) \equiv 0(\bmod m)\}=1
$$

The general divisibility result

This theorem covers:

The general divisibility result
This theorem covers:
(1) Binomial coefficients such as the central binomial coefficients $\binom{2 n}{n}$, or more generally $\binom{(a+b) n}{a n}$ for positive integers a and b, including variations such as $\binom{2 n}{n-1}$, etc.

The general divisibility result
This theorem covers:
(1) Binomial coefficients such as the central binomial coefficients $\binom{2 n}{n}$, or more generally $\binom{(a+b) n}{a n}$ for positive integers a and b, including variations such as $\binom{2 n}{n-1}$, etc.
(2) Multinomial coefficients such as $\frac{\left(\left(a_{1}+a_{2}+\cdots+a_{s}\right) n\right)!}{\left(a_{1} n\right)!\left(a_{2} n\right)!\cdots\left(a_{s} n\right)!}$, etc.

This theorem covers:
(1) Binomial coefficients such as the central binomial coefficients $\binom{2 n}{n}$, or more generally $\binom{(a+b) n}{a n}$ for positive integers a and b, including variations such as $\binom{2 n}{n-1}$, etc.
(2) Multinomial coefficients such as $\frac{\left(\left(a_{1}+a_{2}+\cdots+a_{s}\right) n\right)!}{\left(a_{1} n\right)!\left(a_{2} n\right)!\cdots\left(a_{s} n\right)!}$, etc.
(3) Fuß-Catalan numbers. These are defined by $\frac{1}{n}\binom{(m+1) n}{n-1}$, where m is a given positive integer.

This theorem covers:
(1) Binomial coefficients such as the central binomial coefficients $\binom{2 n}{n}$, or more generally $\binom{(a+b) n}{a n}$ for positive integers a and b, including variations such as $\binom{2 n}{n-1}$, etc.
(2) Multinomial coefficients such as $\frac{\left(\left(a_{1}+a_{2}+\cdots+a_{s}\right) n\right)!}{\left(a_{1} n\right)!\left(a_{2} n\right)!\cdots\left(a_{s} n\right)!}$, etc.
(3) Fuß-Catalan numbers. These are defined by $\frac{1}{n}\binom{(m+1) n}{n-1}$, where m is a given positive integer.
(4) Gessel's super ballot numbers (often also called super-Catalan numbers) $\frac{(2 n)!(2 m)!}{n!m!(m+n)!}$ for non-negative integers m, or for $m=a n$ with a a positive integer.

The general divisibility result

This theorem covers:
(1) Binomial coefficients such as the central binomial coefficients $\binom{2 n}{n}$, or more generally $\binom{(a+b) n}{a n}$ for positive integers a and b, including variations such as $\binom{2 n}{n-1}$, etc.
(2) Multinomial coefficients such as $\frac{\left(\left(a_{1}+a_{2}+\cdots+a_{s}\right) n\right)!}{\left(a_{1} n\right)!\left(a_{2} n\right)!\cdots\left(a_{s} n\right)!}$, etc.
(3) Fuß-Catalan numbers. These are defined by $\frac{1}{n}\binom{(m+1) n}{n-1}$, where m is a given positive integer.
(4) Gessel's super ballot numbers (often also called super-Catalan numbers) $\frac{(2 n)!(2 m)!}{n!m!(m+n)!}$ for non-negative integers m, or for $m=a n$ with a a positive integer.
(5) Many counting sequences in tree and map enumeration such as $\frac{m+1}{n((m-1) n+2)}\binom{m n}{n-1}, \frac{2 \cdot 3^{n}}{(n+2)(n+1)}\binom{2 n}{n}, \frac{2}{(3 n-1)(3 n-2)}\binom{3 n-1}{n}$,
$\frac{2}{(3 n+1)(n+1)}\binom{4 n+1}{n}, \frac{1}{2(n+2)(n+1)}\binom{2 n}{n}\binom{2 n+2}{n+1}$.

The actual main result

Theorem (CEntral limit theorem)

Let $q \geq 2$ be an integer, and let $A_{1}, A_{2}, \ldots, A_{d}$ be positive integers. Then the vector

$$
\left(s_{q}\left(A_{1} n\right), s_{q}\left(A_{2} n\right), \ldots, s_{q}\left(A_{d} n\right)\right), \quad 0 \leq n<N
$$

satisfies a d-dimensional central limit theorem with asymptotic mean vector $((q-1) / 2, \ldots,(q-1) / 2) \cdot \log _{q} N$ and asymptotic covariance matrix $\Sigma \cdot \log _{q} N$, where Σ is positive semi-definite. If we further assume that q is prime and that the integers $A_{1}, A_{2}, \ldots, A_{d}$ are not divisible by q, then Σ is explicitly given by

$$
\Sigma=\left(\frac{\left(q^{2}-1\right)}{12} \frac{\operatorname{gcd}\left(A_{i}, A_{j}\right)^{2}}{A_{i} A_{j}}\right)_{1 \leq i, j \leq d}
$$

The actual main result

Theorem (CEntral limit theorem)

Let $q \geq 2$ be an integer, and let $A_{1}, A_{2}, \ldots, A_{d}$ be positive integers. Then the vector

$$
\left(s_{q}\left(A_{1} n\right), s_{q}\left(A_{2} n\right), \ldots, s_{q}\left(A_{d} n\right)\right), \quad 0 \leq n<N
$$

satisfies a d-dimensional central limit theorem with asymptotic mean vector $((q-1) / 2, \ldots,(q-1) / 2) \cdot \log _{q} N$ and asymptotic covariance matrix $\Sigma \cdot \log _{q} N$, where Σ is positive semi-definite. If we further assume that q is prime and that the integers $A_{1}, A_{2}, \ldots, A_{d}$ are not divisible by q, then Σ is explicitly given by

$$
\Sigma=\left(\frac{\left(q^{2}-1\right)}{12} \frac{\operatorname{gcd}\left(A_{i}, A_{j}\right)^{2}}{A_{i} A_{j}}\right)_{1 \leq i, j \leq d}
$$

The actual main result

Theorem (CEntral limit theorem)

Let $q \geq 2$ be an integer, and let $A_{1}, A_{2}, \ldots, A_{d}$ be positive integers. Then the vector

$$
\left(s_{q}\left(A_{1} n\right), s_{q}\left(A_{2} n\right), \ldots, s_{q}\left(A_{d} n\right)\right), \quad 0 \leq n<N
$$

satisfies a d-dimensional central limit theorem with asymptotic mean vector $((q-1) / 2, \ldots,(q-1) / 2) \cdot \log _{q} N$ and asymptotic covariance matrix $\Sigma \cdot \log _{q} N$, where Σ is positive semi-definite. If we further assume that q is prime and that the integers $A_{1}, A_{2}, \ldots, A_{d}$ are not divisible by q, then Σ is explicitly given by

$$
\Sigma=\left(\frac{\left(q^{2}-1\right)}{12} \frac{\operatorname{gcd}\left(A_{i}, A_{j}\right)^{2}}{A_{i} A_{j}}\right)_{1 \leq i, j \leq d}
$$

For $q=2$, this had been proved earlier by (Johannes) Schmid and (Wolfgang) Schmidt, independently.

The actual main result

What goes into the proof?

The actual main result
What goes into the proof?

- One shows that $f(n)=s_{q}(A n)$, with A a positive integer, is a q-quasi-additive function, meaning that there exists $r \geq 0$ such that

$$
f\left(q^{k+r} a+b\right)=f(a)+f(b) \quad \text { for all } b<q^{k}
$$

The actual main result

What goes into the proof?

- One shows that $f(n)=s_{q}(A n)$, with A a positive integer, is a q-quasi-additive function, meaning that there exists $r \geq 0$ such that

$$
f\left(q^{k+r} a+b\right)=f(a)+f(b) \quad \text { for all } b<q^{k}
$$

- Kropf and Wagner had shown that a q-quasi-additive function $f(n)$ of at most logarithmic growth satisfies a central limit theorem of the form

$$
\frac{1}{N} \#\left\{n<N: f(n) \leq \mu \log _{q} N+t \sqrt{\sigma^{2} \log _{q} N}\right\}=\Phi(t)+o(1)
$$

where $\Phi(t)$ denotes the distribution function of the standard Gaußian distribution, for appropriate constants μ and σ^{2}. This implies the claim about the limit law and its expectation.

The actual main result

What goes into the proof?

- One shows that $f(n)=s_{q}(A n)$, with A a positive integer, is a q-quasi-additive function, meaning that there exists $r \geq 0$ such that

$$
f\left(q^{k+r} a+b\right)=f(a)+f(b) \quad \text { for all } b<q^{k}
$$

- Kropf and Wagner had shown that a q-quasi-additive function $f(n)$ of at most logarithmic growth satisfies a central limit theorem of the form

$$
\frac{1}{N} \#\left\{n<N: f(n) \leq \mu \log _{q} N+t \sqrt{\sigma^{2} \log _{q} N}\right\}=\Phi(t)+o(1)
$$

where $\Phi(t)$ denotes the distribution function of the standard Gaußian distribution, for appropriate constants μ and σ^{2}. This implies the claim about the limit law and its expectation.

- For the variance, one has to do a nasty calculation involving exponential sums.

Main ingredients of the proof of the divisibility result

Main ingredients of the proof of the divisibility result

Theorem

Let p be a given prime number, α a positive integer, $P(n)$ a polynomial in n with integer coefficients, and $\left(C_{i}\right)_{1 \leq i \leq r},\left(D_{i}\right)_{1 \leq i \leq s}$, $\left(E_{i}\right)_{1 \leq i \leq t},\left(F_{i}\right)_{1 \leq i \leq t}$ given integer sequences with $C_{i}, D_{i}>0$ and $p \nmid \operatorname{gcd}\left(E_{i}, F_{i}\right)$ for all $i, \sum_{i=1}^{r} C_{i}=\sum_{i=1}^{s} D_{i}$, and $\left\{C_{i}: 1 \leq i \leq r\right\} \neq\left\{D_{i}: 1 \leq i \leq s\right\}$. If all elements of the sequence $(S(n))_{n \geq 0}$, defined by

$$
S(n):=\frac{P(n)}{\prod_{i=1}^{t}\left(E_{i} n+F_{i}\right)} \frac{\prod_{i=1}^{r}\left(C_{i} n\right)!}{\prod_{i=1}^{s}\left(D_{i} n\right)!}
$$

are integers, then

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n<N: S(n) \equiv 0\left(\bmod p^{\alpha}\right)\right\}=1
$$

Main ingredients of the proof of the divisibility result

Here is our sequence:

$$
S(n):=\frac{P(n)}{\prod_{i=1}^{t}\left(E_{i} n+F_{i}\right)} \frac{\prod_{i=1}^{r}\left(C_{i} n\right)!}{\prod_{i=1}^{s}\left(D_{i} n\right)!} .
$$

Main ingredients of the proof of the divisibility result

Here is our sequence:

$$
S(n):=\frac{P(n)}{\prod_{i=1}^{t}\left(E_{i} n+F_{i}\right)} \frac{\prod_{i=1}^{r}\left(C_{i} n\right)!}{\prod_{i=1}^{s}\left(D_{i} n\right)!} .
$$

We have to consider

$$
\begin{aligned}
& v_{p}(S(n))=v_{p}(P(n))-\sum_{i=1}^{t} v_{p}\left(E_{i} n+F_{i}\right)+\sum_{i=1}^{r} v_{p}\left(\left(C_{i} n\right)!\right) \\
& -\sum_{i=1}^{s} v_{p}\left(\left(D_{i} n\right)!\right) \\
& \geq-\sum_{i=1}^{t} v_{p}\left(E_{i} n+F_{i}\right)-\frac{1}{p-1} \sum_{i=1}^{r} s_{p}\left(C_{i} n\right)+\frac{1}{p-1} \sum_{i=1}^{s} s_{p}\left(D_{i} n\right) .
\end{aligned}
$$

Main ingredients of the proof of the divisibility result

$$
\begin{aligned}
& v_{p}(S(n)) \geq-\sum_{i=1}^{t} v_{p}\left(E_{i} n+F_{i}\right) \\
&-\frac{1}{p-1} \sum_{i=1}^{r} s_{p}\left(C_{i} n\right)+\frac{1}{p-1} \sum_{i=1}^{s} s_{p}\left(D_{i} n\right)
\end{aligned}
$$

Main ingredients of the proof of the divisibility result

$$
\begin{aligned}
& v_{p}(S(n)) \geq-\sum_{i=1}^{t} v_{p}\left(E_{i} n+F_{i}\right) \\
&-\frac{1}{p-1} \sum_{i=1}^{r} s_{p}\left(C_{i} n\right)+\frac{1}{p-1} \sum_{i=1}^{s} s_{p}\left(D_{i} n\right)
\end{aligned}
$$

- It follows from an analysis of Bober (using Landau's criterion) that, if $S(n)$ is integral for all n, then $r<s$.

Main ingredients of the proof of the divisibility result

$$
\begin{aligned}
& v_{p}(S(n)) \geq-\sum_{i=1}^{t} v_{p}\left(E_{i} n+F_{i}\right) \\
&-\frac{1}{p-1} \sum_{i=1}^{r} s_{p}\left(C_{i} n\right)+\frac{1}{p-1} \sum_{i=1}^{s} s_{p}\left(D_{i} n\right)
\end{aligned}
$$

- It follows from an analysis of Bober (using Landau's criterion) that, if $S(n)$ is integral for all n, then $r<s$.
- One shows furthermore that, if $v_{p}(E n+B)$ is considered as a random variable for n in the integer interval $[0, N-1]$, then

$$
\mathbf{E}_{N}\left(v_{p}(E n+F)\right)=\left\{\begin{array}{ll}
0, & \text { if } p \mid E, \\
\frac{1}{p-1}+o(1), & \text { if } p \nmid E,
\end{array} \quad \text { as } N \rightarrow \infty,\right.
$$

and

$$
\operatorname{Var}_{N}\left(v_{p}(E n+F)\right)=\left\{\begin{array}{ll}
0, & \text { if } p \mid E, \\
\frac{p}{(p-1)^{2}}+o(1), & \text { if } p \nmid E,
\end{array} \quad \text { as } N \rightarrow \infty .\right.
$$

Main ingredients of the proof of the divisibility result

$$
\begin{aligned}
& v_{p}(S(n)) \geq-\sum_{i=1}^{t} v_{p}\left(E_{i} n+F_{i}\right) \\
& \quad-\frac{1}{p-1} \sum_{i=1}^{r} s_{p}\left(C_{i} n\right)+\frac{1}{p-1} \sum_{i=1}^{s} s_{p}\left(D_{i} n\right) .
\end{aligned}
$$

Main ingredients of the proof of the divisibility result

$$
\begin{aligned}
& v_{p}(S(n)) \geq-\sum_{i=1}^{t} v_{p}\left(E_{i} n+F_{i}\right) \\
&-\frac{1}{p-1} \sum_{i=1}^{r} s_{p}\left(C_{i} n\right)+\frac{1}{p-1} \sum_{i=1}^{s} s_{p}\left(D_{i} n\right)
\end{aligned}
$$

Let $T(n)$ denote the right-hand side of the inequality. From the previous considerations it follows that

$$
\mathbf{E}_{N}(T(n))=\Omega\left(\log _{p}(N)\right), \quad \text { as } N \rightarrow \infty
$$

and

$$
\operatorname{Var}_{N}(T(n))=O\left(\log _{p}(N)\right), \quad \text { as } N \rightarrow \infty
$$

Main ingredients of the proof of the divisibility result

$$
\begin{aligned}
& v_{p}(S(n)) \geq-\sum_{i=1}^{t} v_{p}\left(E_{i} n+F_{i}\right) \\
&-\frac{1}{p-1} \sum_{i=1}^{r} s_{p}\left(C_{i} n\right)+\frac{1}{p-1} \sum_{i=1}^{s} s_{p}\left(D_{i} n\right)
\end{aligned}
$$

Let $T(n)$ denote the right-hand side of the inequality. From the previous considerations it follows that

$$
\mathbf{E}_{N}(T(n))=\Omega\left(\log _{p}(N)\right), \quad \text { as } N \rightarrow \infty
$$

and

$$
\operatorname{Var}_{N}(T(n))=O\left(\log _{p}(N)\right), \quad \text { as } N \rightarrow \infty
$$

Chebyshev's inequality

$$
\mathbf{P}(|X-\mathbf{E}(X)|<\varepsilon)>1-\frac{1}{\varepsilon^{2}} \operatorname{Var}(X)
$$

with $\varepsilon=\left(\log _{p}(n)\right)^{3 / 4}$ and $X=T(n)$ then finishes the argument.

The general divisibility result

Theorem

Let p be a given prime number, α a positive integer, $P(n)$ a polynomial in n with integer coefficients, and $\left(C_{i}\right)_{1 \leq i \leq r},\left(D_{i}\right)_{1 \leq i \leq s}$, $\left(E_{i}\right)_{1 \leq i \leq t},\left(F_{i}\right)_{1 \leq i \leq t}$ given integer sequences with $C_{i}, D_{i}>0$ and $p \nmid \operatorname{gcd}\left(E_{i}, F_{i}\right)$ for all $i, \sum_{i=1}^{r} C_{i}=\sum_{i=1}^{s} D_{i}$, and $\left\{C_{i}: 1 \leq i \leq r\right\} \neq\left\{D_{i}: 1 \leq i \leq s\right\}$. If all elements of the sequence $(S(n))_{n \geq 0}$, defined by

$$
S(n):=\frac{P(n)}{\prod_{i=1}^{t}\left(E_{i} n+F_{i}\right)} \frac{\prod_{i=1}^{r}\left(C_{i} n\right)!}{\prod_{i=1}^{s}\left(D_{i} n\right)!}
$$

are integers, then

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{n<N: S(n) \equiv 0\left(\bmod p^{\alpha}\right)\right\}=1
$$

