DIVIDED SYMMETRIZATION

 AND
QUASISYMMETRIC FUNCTIONS

Philippe Nadeau (CNRS, Univ Lyon).
Joint work with Vasu Tewari (Univ of Pennsylvania)

SLC83, Bad Boll, Germany

Divided symmetrization

Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a polynomial in $\mathbb{Q}\left[x_{1}, \cdots, x_{n}\right]$, then its divided symmetrization $\left\langle f\left(x_{1}, \ldots, x_{n}\right)\right\rangle_{n}$ is defined by

$$
\left\langle f\left(x_{1}, \ldots, x_{n}\right)\right\rangle_{n}:=\sum_{w \in S_{n}} w \cdot \frac{f\left(x_{1}, \ldots, x_{n}\right)}{\prod_{1 \leq i \leq n-1}\left(x_{i}-x_{i+1}\right)}
$$

Lemma: $\langle f\rangle_{n}$ is a polynomial, symmetric in x_{1}, \cdots, x_{n}.
Let f be homogeneous of degree $\operatorname{deg}(f)=d$.

- if $d<n-1$, then $\left\langle f\left(x_{1}, \ldots, x_{n}\right)\right\rangle_{n}=0$;
- if $d \geq n-1$, then $\left\langle f\left(x_{1}, \ldots, x_{n}\right)\right\rangle_{n}$ has degree $d-n+1$.

As a consequence, $\langle\cdot\rangle_{n}$ is a linear form on the space R_{n} of poynomials in x_{1}, \cdots, x_{n} of degree $n-1$.

Divided symmetrization

The space R_{n} has dimension $\binom{2 n-2}{n-1}$, since it has a monomial basis given by $\mathbf{x}^{\mathbf{c}}:=x_{1}^{c_{1}} \cdots x_{n}^{c_{n}}$ where $\sum_{i} c_{i}=n-1$.

Our goal is to study $\langle\cdot\rangle_{n}: R_{n} \rightarrow \mathbb{Q}$.
Motivation 1 Let $V_{n}\left(z_{1}, \ldots, z_{n}\right)$ be the volume of the permutahedron $P_{n}\left(z_{1}, \ldots, z_{n}\right)$, defined as the convex hull of $\left(z_{1}, \ldots, z_{n}\right)$ and all points obtained by permuting the coordinates.

Proposition [Postnikov '06]

$$
(n-1)!V_{n}\left(z_{1}, \ldots, z_{n}\right)=\left\langle\left(z_{1} x_{1}+z_{2} x_{2}+\cdots+z_{n} x_{n}\right)^{n-1}\right\rangle_{n}
$$

It is thus a polynomial in z_{1}, \ldots, z_{n} with coefficients given by the $\left\langle\mathbf{x}^{\mathbf{c}}\right\rangle_{n}$.

Value on monomials

The evaluation of $\left\langle\mathbf{x}^{\mathbf{c}}\right\rangle_{n}$ is also due to Postnikov. It was reformulated and reproved by Petrov (2016).

- Given $\mathbf{c} \in \mathbb{N}^{n}$ s.t. $\sum_{i} c_{i}=n-1$, one can attach to it a set $S_{\mathrm{c}} \subseteq[n-1]$.
- Let $\beta_{\mathbf{c}}:=\mid w \in S_{n}$ such that for all $i, w_{i}>w_{i+1}$ iff $i \in S_{c} \mid$.

Proposition $\left\langle\mathbf{x}^{\mathbf{c}}\right\rangle_{n}=(-1)^{\left|S_{\mathbf{c}}\right|} \beta_{\mathbf{c}}$.
Definition of S_{c} : Build a path by attaching to c_{i} the step $\left(1, c_{i}-1\right)$.

$\mathbf{c}=(0,3,0,0,0,1,3,0)$ with $S_{\mathbf{c}}=\{1,4,5,6\}$.

Quasisymmetric polynomials

If \mathbf{a} is any vector in \mathbb{N}^{m}, let \mathbf{a}^{+}be the composition obtained by deleting all 0 's in a, so $(0,3,0,0,1,2,0,0,0)^{+}=(3,1,2)$.

A polynomial $P\left(x_{1}, \ldots, x_{m}\right)$ is quasisymmetric if the coefficients of $\mathbf{x}^{\mathbf{a}}$ and $\mathbf{x}^{\mathbf{b}}$ in P are equal whenever $\mathbf{a}^{+}=\mathbf{b}^{+}$.
This definition can be extended to series $f\left(x_{1}, x_{2}, \cdots\right)$ with bounded degree, called quasisymmetric functions.
Example $M_{\alpha}=$ the sum of all $\mathbf{x}^{\mathbf{a}}$ such that $\mathbf{a}^{+}=\alpha$ for a given composition α. Thus $M_{(3,1,2)}=\sum_{i<j<k} x_{i}^{3} x_{j} x_{k}^{2}$.
Notation Let f be a quasisymmetric function ($f \in \mathrm{QSym}$).

- $f\left(x_{1}, \cdots, x_{m}\right):=$ the quasisymmetric polynomial obtained by setting $x_{i}=0$ for $i>m$
- $f\left(1^{j}\right):=$ the value of $f\left(x_{1}, \cdots, x_{j}\right)$ at $(1, \ldots, 1)$.

If $f \in \operatorname{QSym}^{(k)}$, then $f\left(1^{j}\right)$ is a polynomial in j of degree $\leq k$

Action on quasisymmetric polynomials

Theorem [N.-Tewari '19] For any $f \in \operatorname{QSym}^{(n-1)}$,

$$
\sum_{j \geq 0} f\left(1^{j}\right) t^{j}=\frac{\sum_{m=0}^{n-1}\left\langle f\left(x_{1}, \ldots, x_{m}\right)\right\rangle_{n} t^{m}}{(1-t)^{n}}
$$

Remark This gives expression for $\left\langle f\left(x_{1}, \cdots, x_{m}\right)\right\rangle_{n}$ as linear combinations of the values $f\left(1^{j}\right)$ for $j \leq m$.

Proof sketch: By linearity, enough to do this for the basis M_{α}. Here one can evaluate the I.h.s. and we get the following identity, equivalent to the theorem:
$\left\langle M_{\alpha}\left(x_{1}, \ldots, x_{m}\right)\right\rangle_{n}=(-1)^{m-\ell(\alpha)}\binom{n-1-\ell(\alpha)}{m-\ell(\alpha)}$
To prove it, one shows first that the I.h.s. only depends on $\ell(\alpha)$, and concludes by evaluating at a special α.

Action on quasisymmetric polynomials

The preceding theorem is especially nice to apply in the case of F_{α}, the fundamental quasisymmetric functions.
Corollary If $|\alpha|=n-1$, one has $\left\langle F_{\alpha}\left(x_{1}, \ldots, x_{m}\right)\right\rangle_{n}=0$ if $\ell(\alpha)<m$, and $=1$ if $m=\ell(\alpha)$.

$$
f=\sum_{\alpha} c_{\alpha} F_{\alpha} \in \operatorname{Qsym}^{(n-1)} \Rightarrow\left\langle f\left(x_{1}, \ldots, x_{m}\right\rangle_{n}=\sum_{\ell(\alpha)=m} c_{\alpha}\right.
$$

This can be applied to several (quasi)symmetric functions for which combinatorial expansions are known.
Motivation 2 Our study of $\langle\cdot\rangle_{n}$ came from the investigation of the "cohomology class of the Peterson variety". Its coefficients in the Schubert basis are given precisely by $\left\langle\mathfrak{S}_{w}\right\rangle_{n}$, where \mathfrak{S}_{w} is a Schubert polynomial. If w is a Grassmannian permutation, then \mathfrak{S}_{w} is a Schur polynomial $s_{\lambda}\left(x_{1}, \ldots, x_{m}\right)$ and we can apply the result above.

Quotienting by quasisymmetric polynomials

If $f \in R_{n}$ has a homogeneous, symmetric factor of positive degree, then $\langle f\rangle_{n}=0$.
\Rightarrow By linearity, $\langle\cdot\rangle_{n}$ vanishes on $R_{n} \cap I_{n}$ where $I_{n} \subset \mathbb{Q}\left[\mathbf{x}_{n}\right]$ is the ideal generated by homogeneous symmetric polynomials in x_{1}, \ldots, x_{n} of positive degree.
Theorem [N .-Tewari '19] The form $\langle\cdot\rangle_{n}$ vanishes on $R_{n} \cap J_{n}$ where the ideal $J_{n} \subset \mathbb{Q}\left[\mathbf{x}_{n}\right]$ is generated by homogeneous quasisymmetric polynomials in x_{1}, \ldots, x_{n} of positive degree.

Now by the work of Aval-Bergeron-Bergeron (2004)
$R_{n}=\left(R_{n} \cap J_{n}\right) \oplus \operatorname{Vect}\left(\mathbf{x}^{\mathbf{c}} \mid \sum_{k=1}^{i} c_{k} \geq i\right.$ for $\left.i \leq n-1\right)(*$
Corollary Write $f \in R_{n}$ as $f=g+h$ according to (*). Then $\langle f\rangle_{n}=h(1, \ldots, 1)$.

