An action of the cactus group on shifted tableau crystals

83rd Séminaire Lotharingien de Combinatoire

Bad Boll, 1-4 September 2019

Inês Rodrigues

Faculdade de Ciências - Universidade de Lisboa

Motivation: projective representations of \mathfrak{S}_n

- A projective representation of G_n is an homomorphism
 ρ: G_n → PGL(V) = GL(V)/⟨id⟩. This may be regarded as a linear representation of the spin group G̃_n (double cover of G_n).
 - "Non-trivial" conjugacy classes \longleftrightarrow odd partitions of *n*.
 - Irreducible representations " ↔ " shifted diagrams of λ a strict partition of n.
 - Some of its characters ζ^{λ} are informed by **Schur** *Q*-functions:

$$Q_{\lambda}(\mathbf{x}) = rac{1}{n!}\sum_{\substack{\mu dash n \ \mu \, odd}} 2^{\lceil rac{\ell(\lambda) + \ell(\mu)}{2}
ceil} c_{\mu} \zeta^{\lambda}_{\mu} p_{\mu}(\mathbf{x})$$

See also: [Stembridge '89, Hoffman, Humphreys '92, Matsumoto, Śniady '19]

- Q-functions Q_λ were first introduced by [I. Schur, 1911] as Pfaffians of certain skew symmetric matrices indexed by strict partitions.
- They are special cases of Hall-Littlewood symmetric functions.
- A combinatorial definition was due to [Stembridge '89] in terms of shifted tableaux.
- Scaled to define Schur *P*-functions: $P_{\lambda} = 2^{-\ell(\lambda)}Q_{\lambda}$.
- Both Schur *P* and *Q*-functions are symmetric and they constitute a basis for the subalgebra Ω of the symmetric functions generated by the **odd degree** power sums.

Shifted Tableaux

 A strict partition is a sequence of non-negative integers
 λ = (λ₁ > ... > λ_k). They are represented by shifted diagrams
 (skew shapes defined as expected):

$$\lambda = (5, 4, 1)$$

- Primed alphabet $[n]' = \{1' < 1 < ... < n' < n\}.$
- A (semistandard) shifted tableau is a filling of a shifted shape λ/μ with letters of [n]' such that:
 - Every row and every column is weakly increasing.
 - There is at most one i per column and one i' per row, for all i.
- Canonical form: the first *i* is unprimed.

$$T = \underbrace{\begin{smallmatrix} 1 & 1 & 1 & 1 & 3' \\ 2 & 2 & 2 & 3' \\ 3 & 3 & 3 \\ \hline \end{array}$$

wt(T) = (4, 3, 3)w(T) = 32223'11113' $\mathbf{x}^{wt(T)} = x_1^4 x_2^3 x_3^3$

• Back to Schur *Q*-functions:

$$Q_{\lambda}(\mathbf{x}) = \sum_{T} \mathbf{x}^{wt(T)}$$

where the sum is over all semistandard shifted tableaux of shape λ (not just in canonical form). Same definition for skew shapes λ/μ .

- Many well-known algorithms for Young tableaux have a shifted analogue:
 - Jeu-de-taquin [Worley '84, Sagan '87]
 - Insertion algorithm, RSK [idem]
 - Evacuation, reversal [Worley '84, Thomas, Yong '09, Choi, Nam, Oh '17]
 - Tableau switching [Choi, Nam, Oh '17]

- A tableau of shape λ/μ and weight ν is said to be
 Littlewood-Richardson-Stembridge (LRS) if it rectifies to Y_ν
 (unique tableau of shape and weight ν). The number of such tableaux f^λ_{μν} is called the shifted Littlewood-Richardson coefficient.
- For $\lambda = (6, 5, 2, 1)$, $\mu = (4, 2)$ and $\nu = (4, 3, 1)$, we have the following LRS tableaux:

hence $f_{\mu\nu}^{\lambda} = 4$.

Shifted LR rule

• Shifted LR coefficients are structure constants of the following linear expansions, concerning bases of Ω:

$$P_{\mu}P_{\nu} = \sum_{\lambda} f_{\mu\nu}^{\lambda} P_{\lambda}$$
 $Q_{\lambda/\mu} = \sum_{\nu} f_{\mu\nu}^{\lambda} Q_{\nu}$

• They also appear in the context of orthogonal Grassmannian OG(2n + 1, n)

$$\tau_{\mu}\tau_{\nu} = \sum_{\lambda} f^{\lambda}_{\mu\nu}\tau_{\lambda}$$

where τ_{μ} is a Schubert class in the cohomology ring of the orthogonal Grassmannian.

(Shifted diagrams live in an ambient triangle)

Shifted LR coefficients and its symmetries

Like the LR coefficients for the product of Schur functions, the shifted analogue exhibit symmetries under the action of \mathfrak{S}_3 on the triple (μ, ν, λ) . Let $f_{\mu\nu\lambda} := f_{\mu\nu}^{\lambda^{\vee}}$

• $f_{\mu\nu\lambda} = f_{\nu\mu\lambda}$ (commutativity) $\longrightarrow P$ -functions product $P_{\mu}P_{\nu} = \sum_{\nu} f_{\mu\nu}^{\lambda}P_{\lambda}$ or shifted tableau switching.

• $f_{\mu\nu\lambda} = f_{\lambda\nu\mu} \longrightarrow$ shifted reversal (together with a "reflection").

These two may be combined to obtain other symmetries.

A Kashiwara crystal of type A (for GL_n) is a non-empty set B together with partial maps e_i, f_i : B → B, lenght functions ε_i, φ_i : B → Z, for i ∈ I = [n − 1], and weight function wt : B → Zⁿ satisfying the axioms:

(K1) For $x, y \in \mathcal{B}$, $e_i(x) = y$ iff $f_i(y) = x$. In that case,

(ε_i(y), φ_i(y)) = (ε_i(x) - 1, φ_i(x) + 1)
 wt(y) = wt(x) + α_i

(K2) For $x \in \mathcal{B}$, $\phi_i(x) - \varepsilon_i(x) = \langle wt(x), \alpha_i \rangle$ $(\alpha_i = \mathbf{e}_i - \mathbf{e}_{i+1} \text{ for } i \in I, \text{ where } \{\mathbf{e}_i\} \text{ canonical base of } \mathbb{R}^n)$

• This may be regarded as a directed graph, with vertices in \mathcal{B} and *i*-colored edges $y \xrightarrow{i} x$ iff $f_i(y) = x$, for $i \in I$.

- Semistandard Young tableaux (SSYT) of a given shape, in the alphabet [n], have a Kashiwara type A crystal structure, with *coplactic*¹ operators e_i and f_i . This crystal is isomorphic to the crystal basis of a $U_q(\mathfrak{gl}_n)$ -module.
- The Schützenberger involution is defined on the type A crystal B of SSYT of shape λ on alphabet [n] as the unique map ξ : B → B such that, for i ∈ I = [n − 1]:
 - $e_i\xi(x) = \xi f_{n-i}(x)$
 - $f_i\xi(x) = \xi e_{n-i}(x)$
 - $wt(\xi(x)) = \omega_{\{1,\ldots,n\}} \cdot wt(x)$

¹i.e. they commute with the jeu de taquin.

- The Schützenberger involution "flips" the crystal graph upside down (reverting the orientation of the arrows and its colors).
- For Young tableaux, it is realized by the **evacuation** (for normal shapes) or the **reversal** (the coplactic extension of the evacuation) involution.

Group actions on crystals

 $\lambda = (3, 1), I = \{1, 2\}$

- In type A tableau crystals, there is an action of \mathfrak{S}_n , where the action of the simple transpositions s_i is realized by the **crystal reflection operators** σ_i , that corresponds to the *restriction* of the Schützenberger involution (or reversal) to the letters i and i + 1.
- To obtain this restriction:
 - Temporarily forget about the letters different from *i* and *i* + 1, obtaining a skew tableau.
 - Apply the Schützenberger involution to the obtained tableau.
 - Put the letters back again.

Group actions on crystals

• These involutions take every string of color *i* to itself, "reflecting" it through the middle of the string:

 $\lambda = (3, 1), I = \{1, 2\}$

The *n*-fruit cactus group J_n is generated by $s_{p,q}$, for $1 \le p < q \le n$, subject to the following relations:

1.
$$s_{p,q}^2 = id.$$

2. $s_{p,q}s_{k,l} = s_{k,l}s_{p,q}$ for $\{p, \dots, q\} \cap \{k, \dots, l\} = \emptyset.$
3. $s_{p,q}s_{k,l} = s_{p+q-l,p+q-k}s_{p,q}$ for $\{k, \dots, l\} \subseteq \{p, \dots, q\}.$

$$J_3 = \langle s_{1,2}, s_{1,3}, s_{2,3} | s_{1,2}^2 = s_{2,3}^2 = s_{2,3}^2 = 1, s_{1,3}s_{1,2} = s_{2,3}s_{1,3} \rangle.$$

- Surjection $J_n \twoheadrightarrow \mathfrak{S}_n, s_{p,q} \mapsto \omega_{\{p,\dots,q\}}$.
- Acts internally on type A tableau crystals through the restriction of the Schützenberger involution to letters {p<...<q} [Halacheva '16].

Shifted crystals

- [Gillespie, Levinson, Purbhoo '17] introduced a type A "crystal-like" structure for shifted tableaux. Let $\mathcal{B}(\lambda/\mu, n)$ be the set of semistandard shifted tableaux of shape λ/μ in the alphabet [n]' and index set I = [n 1] together with:
 - Primed and unprimed operators: E_i, E'_i, F_i, F'_i , defined by rules, for $i \in I$ (commute with jeu de taquin)
 - Lenght functions: $\varepsilon_i (\hat{\varepsilon}_i, \varepsilon'_i)$ and $\phi_i (\hat{\phi}_i, \phi'_i)$, for $i \in I$.
 - Weight function: wt(T).
- This shifted crystal may be regarded as a directed graph, with vertices in B(λ/μ, n) and *i*-colored edges, for i ∈ I:
 - $x \longrightarrow y$ iff $F_i(x) = y$ iff $E_i(y) = x$.
 - $x \rightarrow y$ iff $F'_i(x) = y$ iff $E'_i(y) = x$.

Unlike type A tableau crystals, there are two possible arragements for *i*-colored strings:

Shifted crystals

- Taking primed and unprimed operators *independently* yields Kashiwara type *A* crystals.
- B(λ, n) has a unique highest weight and lowest weight elements: Y_λ and its evacuation. Any shifted tableau of this shape and alphabet can be obtained from these.
- The character of B(λ/μ, n) is the Schur Q-function Q_{λ/μ}(x₁,..., x_n).

•
$$\mathcal{B}(\lambda/\mu, n) \simeq \bigsqcup_{\nu} \mathcal{B}(\nu, n)^{f_{\mu\nu}^{\lambda}}.$$

• Taking characters of the connected components, it yields

$$Q_{\lambda/\mu} = \sum_{
u} f^{\lambda}_{\mu
u} Q_{
u}$$

 $\lambda = (2, 1), I = \{1, 2, 3\}$

- The Schützenberger involution is defined in B(λ, n) as the unique map η : B(λ, n) → B(λ, n) such that, for 1 ≤ i ≤ n − 1:
 - $E'_i\eta(T) = \eta F'_{n-i}(T), \qquad E_i\eta(T) = \eta F_{n-i}(T).$
 - $F'_i\eta(T) = \eta E'_{n-i}(T),$ $F_i\eta(T) = \eta E_{n-i}(T).$

•
$$wt(\eta(T)) = \omega_{\{1,\ldots,n\}} \cdot wt(T).$$

• It it realized by the shifted evacuation or shifted reversal.

- The shifted reflection operators σ_i may be defined using the crystal operators E'_i, E_i, F'_i, F_i.
 - It corresponds to the restriction of the Schützenberger involution to the letters *i*', *i*, (*i* + 1)', (*i* + 1).
 - Acts as s_i ∈ 𝔅_n on the weight of a tableau (in particular, it shows that Q-functions are symmetric functions).
 - Acts on strings by "double" reflection, through the vertical and horizontal middle axis (or rotation by π).

- We have $\sigma_i^2 = 1$ and $\sigma_i \sigma_j = \sigma_j \sigma_i$, for $|i j| \ge 2$.
- However, unlike the type A, the involutions σ_i do not realize an action of G_n on B(λ, n), since the braid relations may not hold:

A cactus group action on $\mathcal{B}(\lambda, n)$

 The restriction of the Schützenberger involution to the letters {p,...,q}' ⊆ [n]', η_{p,q}, defines an action of the *n*-fruit cactus group in B(λ, n):

 $s_{p,q} \cdot T = \eta_{p,q}(T).$

- Consider the subgraph B_{p,q}, obtained from B(λ, n) considering only the vertices in which the letters {p,...,q}' appear and the edges colored in {p,...,q-1}.
- Then η_{p,q} acts on the connected components of B_{p,q} regarding its vertices as skew shifted tableaux on the alphabet {p,...,q}'.

A cactus group action on $\mathcal{B}(\lambda, n)$

 The restriction of the Schützenberger involution to the letters {p,...,q}' ⊆ [n]', η_{p,q}, defines an action of the *n*-fruit cactus group in B(λ, n):

$$s_{p,q} \cdot T = \eta_{p,q}(T).$$

- Consider the subgraph B_{p,q}, obtained from B(λ, n) considering only the vertices in which the letters {p,...,q}' appear and the edges colored in {p,...,q-1}.
- Then η_{p,q} acts on the connected components of B_{p,q} regarding its vertices as skew shifted tableaux on the alphabet {p,...,q}'.

• The relations

$$\eta_{p,q}^2 = id$$

$$\eta_{p,q}\eta_{k,l} = \eta_{k,l}\eta_{p,q} \text{ for } \{p, \dots, q\} \cap \{k, \dots, l\} = \emptyset$$

are trivial.

For the relation

$$s_{p,q}s_{k,l} = s_{p+q-l,p+q-k}s_{p,q}$$
 for $\{k,\ldots,l\} \subseteq \{p,\ldots,q\}$

if suffices to show that

$$\eta_{1,n}\eta_{p,q} = \eta_{1+n-q,1+n-p}\eta_{1,n}$$

- The subgraph B_{p,q} is an union of connected components, each one isomorphic to some B(μ, q p + 1). Hence, each one has unique highest and lowest weights.
- η = η_{1,n} takes each connected component B⁰_{p,q} to another
 B⁰_{1+n-q,1+n-p}. Moreover, the highest weight of the former is sent to the lowest weight of the latter.

$$T = \boxed{\begin{array}{c|c}1 & 2\\ & 3\end{array}} \in \mathcal{B}((2,1),4)$$

$$T = \boxed{\begin{array}{c|c}1 & 2\\3\end{array}} \in \mathcal{B}((2,1),4)$$
$$\eta_{1,4}(T) = \boxed{\begin{array}{c|c}2 & 3\\4\end{array}}$$

$$T = \boxed{\begin{array}{c}1 \\ 3\end{array}} \in \mathcal{B}((2,1),4)$$
$$\eta_{1,4}(T) = \boxed{\begin{array}{c}2 \\ 4\end{array}}$$
$$\eta_{1,3}\eta_{1,4}(T) = \boxed{\begin{array}{c}1 \\ 4\end{array}}$$

An application to the symmetries of shifted LR coefficients

- In particular, we have $s_{i,i+1} \cdot T = \sigma_i(T)$.
- The action of s_{1,n} coincides with the Schützenberger involution in B(λ/μ, n).
- For T a LRS tableau,

$$s_{1,n} \cdot T = \sigma_{i_1} \dots \sigma_{i_k}(T)$$

where $\omega_{\{1,\ldots,n\}} = s_{i_1} \dots s_{i_k}$ is the longest permutation in \mathfrak{S}_n .

• It exhibits the symmetry $f_{\mu\nu\lambda} = f_{\lambda\nu\mu}$ (after "reflection").

Thank you!