An action of the cactus group on shifted tableau crystals

83rd Séminaire Lotharingien de Combinatoire
Bad Boll, 1-4 September 2019

Inês Rodrigues

Faculdade de Ciências - Universidade de Lisboa

Motivation: projective representations of \mathfrak{S}_{n}

- A projective representation of \mathfrak{S}_{n} is an homomorphism $\rho: \mathfrak{S}_{n} \longrightarrow P G L(V)=G L(V) /\langle i d\rangle$. This may be regarded as a linear representation of the spin group $\tilde{\mathfrak{S}}_{n}$ (double cover of \mathfrak{S}_{n}).
- "Non-trivial" conjugacy classes \longleftrightarrow odd partitions of n.
- Irreducible representations " \longleftrightarrow " shifted diagrams of λ a strict partition of n.
- Some of its characters ζ^{λ} are informed by Schur Q-functions:

$$
Q_{\lambda}(\mathrm{x})=\frac{1}{n!} \sum_{\substack{\mu \vdash n \\ \mu \text { odd }}} 2^{\left\lceil\frac{\ell(\lambda)+\ell(\mu)}{2}\right\rceil} c_{\mu} \zeta_{\mu}^{\lambda} p_{\mu}(\mathrm{x})
$$

See also: [Stembridge '89, Hoffman, Humphreys '92, Matsumoto, Śniady '19]

Motivation: Schur P - and Q-functions

- Q-functions Q_{λ} were first introduced by [I. Schur, 1911] as Pfaffians of certain skew symmetric matrices indexed by strict partitions.
- They are special cases of Hall-Littlewood symmetric functions.
- A combinatorial definition was due to [Stembridge '89] in terms of shifted tableaux.
- Scaled to define Schur P-functions: $P_{\lambda}=2^{-\ell(\lambda)} Q_{\lambda}$.
- Both Schur P - and Q-functions are symmetric and they constitute a basis for the subalgebra Ω of the symmetric functions generated by the odd degree power sums.

Shifted Tableaux

- A strict partition is a sequence of non-negative integers $\lambda=\left(\lambda_{1}>\ldots>\lambda_{k}\right)$. They are represented by shifted diagrams (skew shapes defined as expected):

$$
\square \lambda=(5,4,1)
$$

- Primed alphabet $[n]^{\prime}=\left\{1^{\prime}<1<\ldots<n^{\prime}<n\right\}$.
- A (semistandard) shifted tableau is a filling of a shifted shape λ / μ with letters of $[n]^{\prime}$ such that:
- Every row and every column is weakly increasing.
- There is at most one i per column and one i^{\prime}

$$
T=\begin{array}{|l|l|l|l|l|}
\hline 1 & 1 & 1 & 1 & 3^{\prime} \\
\hline & 2 & 2 & 2 & 3^{\prime} \\
\hline & & 3 & & \\
& & & &
\end{array}
$$

$$
\begin{gathered}
w t(T)=(4,3,3) \\
w(T)=32223^{\prime} 11113^{\prime} \\
x^{w t(T)}=x_{1}^{4} x_{2}^{3} x_{3}^{3}
\end{gathered}
$$ per row, for all i.

- Canonical form: the first i is unprimed.

Shifted Tableaux

- Back to Schur Q-functions:

$$
Q_{\lambda}(\mathbf{x})=\sum_{T} \mathbf{x}^{w t(T)}
$$

where the sum is over all semistandard shifted tableaux of shape λ (not just in canonical form). Same definition for skew shapes λ / μ.

- Many well-known algorithms for Young tableaux have a shifted analogue:
- Jeu-de-taquin [Worley '84, Sagan '87]
- Insertion algorithm, RSK [idem]
- Evacuation, reversal [Worley '84, Thomas, Yong '09, Choi, Nam, Oh '17]
- Tableau switching [Choi, Nam, Oh '17]

Shifted LR rule

- A tableau of shape λ / μ and weight ν is said to be Littlewood-Richardson-Stembridge (LRS) if it rectifies to Y_{ν} (unique tableau of shape and weight ν). The number of such tableaux $f_{\mu \nu}^{\lambda}$ is called the shifted Littlewood-Richardson coefficient.
- For $\lambda=(6,5,2,1), \mu=(4,2)$ and $\nu=(4,3,1)$, we have the following LRS tableaux:

hence $f_{\mu \nu}^{\lambda}=4$.

Shifted LR rule

- Shifted LR coefficients are structure constants of the following linear expansions, concerning bases of Ω :

$$
P_{\mu} P_{\nu}=\sum_{\lambda} f_{\mu \nu}^{\lambda} P_{\lambda} \quad Q_{\lambda / \mu}=\sum_{\nu} f_{\mu \nu}^{\lambda} Q_{\nu}
$$

- They also appear in the context of orthogonal Grassmannian $O G(2 n+1, n)$

$$
\tau_{\mu} \tau_{\nu}=\sum_{\lambda} f_{\mu \nu}^{\lambda} \tau_{\lambda}
$$

where τ_{μ} is a Schubert class in the cohomology ring of the orthogonal Grassmannian.

Shifted LR coefficients and its symmetries

Like the LR coefficients for the product of Schur functions, the shifted analogue exhibit symmetries under the action of \mathfrak{S}_{3} on the triple (μ, ν, λ). Let $f_{\mu \nu \lambda}:=f_{\mu \nu}^{\lambda \vee}$

- $f_{\mu \nu \lambda}=f_{\nu \mu \lambda}$ (commutativity) $\longrightarrow P$-functions product $P_{\mu} P_{\nu}=\sum_{\nu} f_{\mu \nu}^{\lambda} P_{\lambda}$ or shifted tableau switching.

- $f_{\mu \nu \lambda}=f_{\lambda \nu \mu} \longrightarrow$ shifted reversal (together with a "reflection").

These two may be combined to obtain other symmetries.

Type A crystals

- A Kashiwara crystal of type A (for $G L_{n}$) is a non-empty set \mathcal{B} together with partial maps $e_{i}, f_{i}: \mathcal{B} \longrightarrow \mathcal{B}$, lenght functions $\varepsilon_{i}, \phi_{i}: \mathcal{B} \longrightarrow \mathbb{Z}$, for $i \in I=[n-1]$, and weight function $w t: \mathcal{B} \longrightarrow \mathbb{Z}^{n}$ satisfying the axioms:
(K1) For $x, y \in \mathcal{B}, e_{i}(x)=y$ iff $f_{i}(y)=x$. In that case,
- $\left(\varepsilon_{i}(y), \phi_{i}(y)\right)=\left(\varepsilon_{i}(x)-1, \phi_{i}(x)+1\right)$
- $w t(y)=w t(x)+\alpha_{i}$
(K2) For $x \in \mathcal{B}, \phi_{i}(x)-\varepsilon_{i}(x)=\left\langle w t(x), \alpha_{i}\right\rangle$ $\left(\alpha_{i}=\mathbf{e}_{i}-\mathbf{e}_{i+1}\right.$ for $i \in I$, where $\left\{\mathbf{e}_{i}\right\}$ canonical base of \mathbb{R}^{n})
- This may be regarded as a directed graph, with vertices in \mathcal{B} and i-colored edges $y \xrightarrow{i} x$ iff $f_{i}(y)=x$, for $i \in I$.

Type A crystals

- Semistandard Young tableaux (SSYT) of a given shape, in the alphabet [n], have a Kashiwara type A crystal structure, with coplactic ${ }^{1}$ operators e_{i} and f_{i}. This crystal is isomorphic to the crystal basis of a $U_{q}\left(\mathfrak{g l}_{n}\right)$-module.
- The Schützenberger involution is defined on the type A crystal \mathcal{B} of SSYT of shape λ on alphabet $[n$] as the unique $\operatorname{map} \xi: \mathcal{B} \longrightarrow \mathcal{B}$ such that, for $i \in I=[n-1]$:
- $e_{i} \xi(x)=\xi f_{n-i}(x)$
- $f_{i} \xi(x)=\xi e_{n-i}(x)$
- $w t(\xi(x))=\omega_{\{1, \ldots, n\}} \cdot w t(x)$

[^0]
Type A crystals

- The Schützenberger involution "flips" the crystal graph upside down (reverting the orientation of the arrows and its colors).
- For Young tableaux, it is realized by the evacuation (for normal shapes) or the reversal (the coplactic extension of the evacuation) involution.

Group actions on crystals

$\lambda=(3,1), I=\{1,2\}$

- In type A tableau crystals, there is an action of \mathfrak{S}_{n}, where the action of the simple transpositions s_{i} is realized by the crystal reflection operators σ_{i}, that corresponds to the restriction of the Schützenberger involution (or reversal) to the letters i and $i+1$.
- To obtain this restriction:
- Temporarily forget about the letters different from i and $i+1$, obtaining a skew tableau.
- Apply the Schützenberger involution to the obtained tableau.
- Put the letters back again.

$$
\sigma_{2}: \begin{array}{|l|l|l|}
\hline 1 & 2 & 3 \\
\hline 2 & &
\end{array} \begin{array}{|l|l|l|l|l|l|l|}
\hline 1 & 2 & 3 \\
\hline 2 & & \\
\hline 1 & 3 & 3 \\
\hline 2 & & \begin{array}{|l|l|l|}
\hline 1 & 3 & 3 \\
\hline 2 & & \\
\hline
\end{array} \\
\hline
\end{array}
$$

$$
\lambda=(3,1), I=\{1,2\}
$$

Group actions on crystals

- These involutions take every string of color i to itself, "reflecting" it through the middle of the string:

$$
\lambda=(3,1), I=\{1,2\}
$$

The internal action of the cactus group on type A crystals

The n-fruit cactus group J_{n} is generated by $s_{p, q}$, for $1 \leq p<q \leq n$, subject to the following relations:

1. $s_{p, q}^{2}=i d$.
2. $s_{p, q} s_{k, I}=s_{k, l} s_{p, q}$ for $\{p, \ldots, q\} \cap\{k, \ldots, I\}=\emptyset$.
3. $s_{p, q} s_{k, l}=s_{p+q-l, p+q-k} s_{p, q}$ for $\{k, \ldots, l\} \subseteq\{p, \ldots, q\}$.

- For $n=3$,

$$
J_{3}=\left\langle s_{1,2}, s_{1,3}, s_{2,3} \mid s_{1,2}^{2}=s_{2,3}^{2}=s_{2,3}^{2}=1, s_{1,3} s_{1,2}=s_{2,3} s_{1,3}\right\rangle .
$$

- Surjection $J_{n} \rightarrow \mathfrak{S}_{n}, S_{p, q} \mapsto \omega_{\{p, \ldots, q\}}$.
- Acts internally on type A tableau crystals through the restriction of the Schützenberger involution to letters $\{p<\ldots<q\}$ [Halacheva '16].

Shifted crystals

- [Gillespie, Levinson, Purbhoo '17] introduced a type A "crystal-like" structure for shifted tableaux. Let $\mathcal{B}(\lambda / \mu, n)$ be the set of semistandard shifted tableaux of shape λ / μ in the alphabet $[n]^{\prime}$ and index set $I=[n-1]$ together with:
- Primed and unprimed operators: $E_{i}, E_{i}^{\prime}, F_{i}, F_{i}^{\prime}$, defined by rules, for $i \in I$ (commute with jeu de taquin)
- Lenght functions: $\varepsilon_{i}\left(\hat{\varepsilon}_{i}, \varepsilon_{i}^{\prime}\right)$ and $\phi_{i}\left(\hat{\phi}_{i}, \phi_{i}^{\prime}\right)$, for $i \in I$.
- Weight function: $w t(T)$.
- This shifted crystal may be regarded as a directed graph, with vertices in $\mathcal{B}(\lambda / \mu, n)$ and i-colored edges, for $i \in I$:
- $x \longrightarrow y$ iff $F_{i}(x)=y$ iff $E_{i}(y)=x$.
- $x \rightarrow->y$ iff $F_{i}^{\prime}(x)=y$ iff $E_{i}^{\prime}(y)=x$.

Unlike type A tableau crystals, there are two possible arragements for i-colored strings:

Shifted crystals

- Taking primed and unprimed operators independently yields Kashiwara type A crystals.
- $\mathcal{B}(\lambda, n)$ has a unique highest weight and lowest weight elements: Y_{λ} and its evacuation. Any shifted tableau of this shape and alphabet can be obtained from these.
- The character of $\mathcal{B}(\lambda / \mu, n)$ is the Schur Q-function $Q_{\lambda / \mu}\left(x_{1}, \ldots, x_{n}\right)$.
- $\mathcal{B}(\lambda / \mu, n) \simeq \bigsqcup_{\nu} \mathcal{B}(\nu, n)^{f_{\mu \nu}^{\lambda}}$.
- Taking characters of the connected components, it yields

$$
Q_{\lambda / \mu}=\sum_{\nu} f_{\mu \nu}^{\lambda} Q_{\nu}
$$

Shifted crystals

- The Schützenberger involution is defined in $\mathcal{B}(\lambda, n)$ as the unique map $\eta: \mathcal{B}(\lambda, n) \longrightarrow \mathcal{B}(\lambda, n)$ such that, for $1 \leq i \leq n-1$:
- $E_{i}^{\prime} \eta(T)=\eta F_{n-i}^{\prime}(T), \quad E_{i} \eta(T)=\eta F_{n-i}(T)$.
- $F_{i}^{\prime} \eta(T)=\eta E_{n-i}^{\prime}(T), \quad F_{i} \eta(T)=\eta E_{n-i}(T)$.
- $w t(\eta(T))=\omega_{\{1, \ldots, n\}} \cdot w t(T)$.
- It it realized by the shifted evacuation or shifted reversal.

Shifted crystals

- The shifted reflection operators σ_{i} may be defined using the crystal operators $E_{i}^{\prime}, E_{i}, F_{i}^{\prime}, F_{i}$.
- It corresponds to the restriction of the Schützenberger involution to the letters $i^{\prime}, i,(i+1)^{\prime},(i+1)$.
- Acts as $s_{i} \in \mathfrak{S}_{n}$ on the weight of a tableau (in particular, it shows that Q-functions are symmetric functions).
- Acts on strings by "double" reflection, through the vertical and horizontal middle axis (or rotation by π).

Shifted crystals

- We have $\sigma_{i}^{2}=1$ and $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$, for $|i-j| \geq 2$.
- However, unlike the type A, the involutions σ_{i} do not realize an action of \mathfrak{S}_{n} on $\mathcal{B}(\lambda, n)$, since the braid relations may not hold:

$$
\begin{aligned}
& \sigma_{1} \sigma_{2} \sigma_{1}\left(\begin{array}{|l|l|l|l|l}
1 & 1 & 1 & 1 & 3^{\prime} \\
\hline & 2 & 2 & 3^{\prime}
\end{array}\right)=\begin{array}{|l|l|l|l|l|}
\hline 1 & 1 & 1 & 2 & 3 \\
\hline & 2 & 3^{\prime} & 3 & \\
\hline
\end{array} \\
& \sigma_{2} \sigma_{1} \sigma_{2}\left(\begin{array}{|l|l|l|l|l}
1 & 1 & 1 & 1 & 3^{\prime} \\
\hline & 2 & 2 & 3^{\prime} \\
\cline { 2 - 6 }
\end{array}\right. \\
& \hline
\end{aligned}
$$

A cactus group action on $\mathcal{B}(\lambda, n)$

- The restriction of the Schützenberger involution to the letters $\{p, \ldots, q\}^{\prime} \subseteq[n]^{\prime}$, $\eta_{p, q}$, defines an action of the n-fruit cactus group in $\mathcal{B}(\lambda, n)$:

$$
s_{p, q} \cdot T=\eta_{p, q}(T)
$$

- Consider the subgraph $\mathcal{B}_{p, q}$, obtained from $\mathcal{B}(\lambda, n)$ considering only the vertices in which the letters $\{p, \ldots, q\}^{\prime}$ appear and the edges colored in $\{p, \ldots, q-1\}$.
- Then $\eta_{p, q}$ acts on the connected components of $\mathcal{B}_{p, q}$ regarding its vertices as skew shifted tableaux on the alphabet $\{p, \ldots, q\}^{\prime}$.

A cactus group action on $\mathcal{B}(\lambda, n)$

- The restriction of the Schützenberger involution to the letters $\{p, \ldots, q\}^{\prime} \subseteq[n]^{\prime}$, $\eta_{p, q}$, defines an action of the n-fruit cactus group in $\mathcal{B}(\lambda, n)$:

$$
s_{p, q} \cdot T=\eta_{p, q}(T)
$$

- Consider the subgraph $\mathcal{B}_{p, q}$, obtained from $\mathcal{B}(\lambda, n)$ considering only the vertices in which the letters $\{p, \ldots, q\}^{\prime}$ appear and the edges colored in $\{p, \ldots, q-1\}$.
- Then $\eta_{p, q}$ acts on the connected components of $\mathcal{B}_{p, q}$ regarding its vertices as skew shifted tableaux on the alphabet $\{p, \ldots, q\}^{\prime}$.

A cactus group action on $\mathcal{B}(\lambda, n)$ (sketch of proof)

- The relations

$$
\begin{aligned}
& \eta_{p, q}^{2}=i d \\
& \eta_{p, q} \eta_{k, l}=\eta_{k, I} \eta_{p, q} \text { for }\{p, \ldots, q\} \cap\{k, \ldots, l\}=\emptyset
\end{aligned}
$$

are trivial.

- For the relation

$$
s_{p, q} s_{k, l}=s_{p+q-l, p+q-k} s_{p, q} \text { for }\{k, \ldots, l\} \subseteq\{p, \ldots, q\}
$$

if suffices to show that

$$
\eta_{1, n} \eta_{p, q}=\eta_{1+n-q, 1+n-p} \eta_{1, n}
$$

- The subgraph $\mathcal{B}_{p, q}$ is an union of connected components, each one isomorphic to some $\mathcal{B}(\mu, q-p+1)$. Hence, each one has unique highest and lowest weights.
- $\eta=\eta_{1, n}$ takes each connected component $\mathcal{B}_{p, q}^{0}$ to another $\mathcal{B}_{1+n-q, 1+n-p}^{0}$. Moreover, the highest weight of the former is sent to the lowest weight of the latter.

A cactus group action on $\mathcal{B}(\lambda, n)$ (sketch of proof)

$$
T=\begin{array}{|l|l|}
\hline & 2 \\
\hline & 3 \\
\hline
\end{array} \in \mathcal{B}((2,1), 4)
$$

A cactus group action on $\mathcal{B}(\lambda, n)$ (sketch of proof)

$$
\begin{gathered}
T=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline & 3 \\
\hline
\end{array} \in \mathcal{B}((2,1), 4) \\
\eta_{1,4}(T)=\begin{array}{|l|l|}
\hline 2 & 3 \\
\hline & 4 \\
\hline
\end{array}
\end{gathered}
$$

A cactus group action on $\mathcal{B}(\lambda, n)$ (sketch of proof)

$$
\begin{gathered}
T=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline & 3 \\
\hline
\end{array} \in \mathcal{B}((2,1), 4) \\
\eta_{1,4}(T)=\begin{array}{|l|l|}
\hline 2 & 3 \\
\hline & 4 \\
\hline
\end{array} \\
\eta_{1,3} \eta_{1,4}(T)=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline & 4 \\
\hline
\end{array}
\end{gathered}
$$

A cactus group action on $\mathcal{B}(\lambda, n)$ (sketch of proof)

$$
\begin{aligned}
& T=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline & 3 \\
\hline
\end{array} \in \mathcal{B}((2,1), 4) \\
& \eta_{1,4}(T)=\begin{array}{|l|l|}
\hline 2 & 3 \\
\hline & 4 \\
\hline
\end{array} \\
& \eta_{1,3} \eta_{1,4}(T)=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline & 4 \\
\hline
\end{array} \\
& \eta_{2,4}(T)=\begin{array}{|l|l|}
\hline 1 & 3 \\
\hline & 4 \\
\hline
\end{array}
\end{aligned}
$$

A cactus group action on $\mathcal{B}(\lambda, n)$ (sketch of proof)

$$
\begin{aligned}
& T=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline & 3 \\
\hline
\end{array} \in \mathcal{B}((2,1), 4) \\
& \eta_{1,4}(T)=\begin{array}{|l|l|}
\hline 2 & 3 \\
\hline & 4 \\
\hline
\end{array} \\
& \eta_{1,3} \eta_{1,4}(T)=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline & 4 \\
\hline
\end{array} \\
& \eta_{2,4}(T)=\begin{array}{|l|l|}
\hline 1 & 3 \\
\hline & 4 \\
\hline
\end{array} \\
& \eta_{1,4} \eta_{2,4}(T)=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline & 4 \\
\hline
\end{array}
\end{aligned}
$$

A cactus group action on $\mathcal{B}(\lambda, n)$ (sketch of proof)

$$
\begin{gathered}
T=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline
\end{array} \in \mathcal{B}((2,1), 4) \\
\eta_{1,4}(T)=\begin{array}{|l|l|}
\hline 2 & 3 \\
\hline & 4 \\
\hline
\end{array} \\
\eta_{1,3} \eta_{1,4}(T)=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline & 4 \\
\eta_{2,4}(T)=\begin{array}{|l|l|}
\hline 1 & 3 \\
\hline & 4 \\
\hline
\end{array} \\
\eta_{1,4} \eta_{2,4}(T)=\begin{array}{|l|l|}
\hline 1 & 2 \\
\hline
\end{array}
\end{array} . \begin{array}{l}
4 \\
\hline
\end{array}
\end{gathered}
$$

An application to the symmetries of shifted LR coefficients

- In particular, we have $s_{i, i+1} \cdot T=\sigma_{i}(T)$.
- The action of $s_{1, n}$ coincides with the Schützenberger involution in $\mathcal{B}(\lambda / \mu, n)$.
- For T a LRS tableau,

$$
s_{1, n} \cdot T=\sigma_{i_{1}} \ldots \sigma_{i_{k}}(T)
$$

where $\omega_{\{1, \ldots, n\}}=s_{i_{1}} \ldots s_{i_{k}}$ is the longest permutation in \mathfrak{S}_{n}.

- It exhibits the symmetry $f_{\mu \nu \lambda}=f_{\lambda \nu \mu}$ (after "reflection").

Thank you!

[^0]: $1_{\text {i.e. }}$ they commute with the jeu de taquin.

