Non-reduced reflection
 factorizations of Coxeter elements
 (joint work with S. Yahiatene)

P. Wegener

University of Kaiserslautern
September 3, 2019

$$
W=\left\langle s_{1}, \ldots, s_{n} \mid\left(s_{i} s_{j}\right)^{m_{i j}}=1\right\rangle
$$

where

- $m_{i j}=1$
- $m_{i j}=m_{j i} \in \mathbb{Z}_{\geq 2} \cup\{\infty\}$ for $i \neq j$
($m_{i j}=\infty$ indicates that there is no relation between s_{i} and s_{j})
is called a Coxeter group. The set $S:=\left\{s_{1}, \ldots, s_{n}\right\}$ is called set of simple reflections and the pair (W, S) is called Coxeter system.
${ }_{5} L^{c^{8^{3}}} \mathrm{~A}$ group W with presentation

$$
W=\left\langle s_{1}, \ldots, s_{n} \mid\left(s_{i} s_{j}\right)^{m_{i j}}=1\right\rangle
$$

where

- $m_{i j}=1$
- $m_{i j}=m_{j i} \in \mathbb{Z}_{\geq 2} \cup\{\infty\}$ for $i \neq j$
($m_{i j}=\infty$ indicates that there is no relation between s_{i} and s_{j})
is called a Coxeter group. The set $S:=\left\{s_{1}, \ldots, s_{n}\right\}$ is called set of simple reflections and the pair (W, S) is called Coxeter system.
The set $R=\left\{w s_{;} w^{-1} \mid w \in W, 1 \leq i \leq n\right\}$ is called the set of reflections.

$$
W=\left\langle s_{1}, \ldots, s_{n} \mid\left(s_{i} s_{j}\right)^{m_{i j}}=1\right\rangle
$$

where

- $m_{i j}=1$
- $m_{i j}=m_{j i} \in \mathbb{Z}_{\geq 2} \cup\{\infty\}$ for $i \neq j$ ($m_{i j}=\infty$ indicates that there is no relation between s_{i} and s_{j}) is called a Coxeter group. The set $S:=\left\{s_{1}, \ldots, s_{n}\right\}$ is called set of simple reflections and the pair (W, S) is called Coxeter system.
The set $R=\left\{w s_{;} w^{-1} \mid w \in W, 1 \leq i \leq n\right\}$ is called the set of reflections.
finite Coxeter groups $\stackrel{1: 1}{\longleftrightarrow}$ finite real reflection groups

$$
\left(A_{n}, B_{n}, D_{n}, E_{6}, E_{7}, E_{8}, F_{4}, H_{3}, H_{4}, I_{2}(m)\right)
$$

Example. The symmetric group Sym(n) together with the generating set

$$
S=\{(1,2),(2,3), \ldots,(n-1, n)\}
$$

is a Coxeter system.

Example. The symmetric group $\operatorname{Sym}(n)$ together with the generating set

$$
S=\{(1,2),(2,3), \ldots,(n-1, n)\}
$$

is a Coxeter system. The set of reflections is given by

$$
R=\{(i, j) \mid 1 \leq i<j \leq n\} .
$$

Example. The symmetric group $\operatorname{Sym}(n)$ together with the generating set

$$
S=\{(1,2),(2,3), \ldots,(n-1, n)\}
$$

is a Coxeter system. The set of reflections is given by

$$
R=\{(i, j) \mid 1 \leq i<j \leq n\} .
$$

Example. The infinite dihedral group

$$
\operatorname{Dih}_{\infty}=\left\langle s, t \mid s^{2}=t^{2}=1\right\rangle
$$

is a Coxeter group.

Example. The symmetric group $\operatorname{Sym}(n)$ together with the generating set

$$
S=\{(1,2),(2,3), \ldots,(n-1, n)\}
$$

is a Coxeter system. The set of reflections is given by

$$
R=\{(i, j) \mid 1 \leq i<j \leq n\} .
$$

Example. The infinite dihedral group

$$
\operatorname{Dih}_{\infty}=\left\langle s, t \mid s^{2}=t^{2}=1\right\rangle
$$

is a Coxeter group. The set of reflections is given by the words of odd length ($s, t, s t s, t s t$, ststs, ...).

Let (W, S) be a Coxeter system with set of reflections R.
Associated to the generating sets R and S we have length functions

$$
\ell_{R}, \ell_{S}: W \rightarrow \mathbb{Z}_{\geq 0}
$$

Let (W, S) be a Coxeter system with set of reflections R.
Associated to the generating sets R and S we have length functions

$$
\ell_{R}, \ell_{S}: W \rightarrow \mathbb{Z}_{\geq 0}
$$

More precisely, for $w \in W$

$$
\begin{aligned}
& \ell_{R}(w):=\min \left\{k \mid w=r_{1} \cdots r_{k}, r_{i} \in R\right\} \\
& \ell_{S}(w):=\min \left\{k \mid w=s_{1} \cdots s_{k}, s_{i} \in S\right\}
\end{aligned}
$$

Let (W, S) be a Coxeter system with set of reflections R.
Associated to the generating sets R and S we have length functions

$$
\ell_{R}, \ell_{S}: W \rightarrow \mathbb{Z}_{\geq 0}
$$

More precisely, for $w \in W$

$$
\begin{aligned}
& \ell_{R}(w):=\min \left\{k \mid w=r_{1} \cdots r_{k}, r_{i} \in R\right\} \\
& \ell_{S}(w):=\min \left\{k \mid w=s_{1} \cdots s_{k}, s_{i} \in S\right\}
\end{aligned}
$$

Note that $\ell_{R}(w) \leq \ell_{S}(w)$ for all $w \in W$.

Let (W, S) be a Coxeter system with set of reflections R.
Associated to the generating sets R and S we have length functions

$$
\ell_{R}, \ell_{S}: W \rightarrow \mathbb{Z}_{\geq 0}
$$

More precisely, for $w \in W$

$$
\begin{aligned}
& \ell_{R}(w):=\min \left\{k \mid w=r_{1} \cdots r_{k}, r_{i} \in R\right\} \\
& \ell_{S}(w):=\min \left\{k \mid w=s_{1} \cdots s_{k}, s_{i} \in S\right\}
\end{aligned}
$$

Note that $\ell_{R}(w) \leq \ell_{S}(w)$ for all $w \in W$.
A tuple $\left(r_{1}, \ldots, r_{m}\right) \in R^{m}$ is called a reflection factorization for $w \in W$ if $w=r_{1} \cdots r_{m}$ and it is called a reduced reflection factorization if $m=\ell_{R}(w)$. We denote the set of all reduced reflection factorizations for w by $\operatorname{Red}_{R}(w)$.
$\mathcal{B}_{m}=\left\langle\sigma_{1}, \ldots, \sigma_{m-1} \mid \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}(|i-j|>1), \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}\right\rangle$
is called braid group on m strands $(m \in \mathbb{N})$.

$$
\mathcal{B}_{m}=\left\langle\sigma_{1}, \ldots, \sigma_{m-1} \mid \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}(|i-j|>1), \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}\right\rangle
$$

is called braid group on m strands $(m \in \mathbb{N})$. It acts on the set R^{m} by

$$
\begin{aligned}
\sigma_{i}\left(r_{1}, \ldots, r_{i}, r_{i+1}, \ldots, r_{m}\right) & =\left(r_{1}, \ldots, r_{i} r_{i+1} r_{i}, r_{i}, \ldots, r_{m}\right), \\
\sigma_{i}^{-1}\left(r_{1}, \ldots, r_{i}, r_{i+1}, \ldots, r_{m}\right) & =\left(r_{1}, \ldots, r_{i+1}, r_{i+1} r_{i} r_{i+1}, \ldots, r_{m}\right) .
\end{aligned}
$$

$$
\mathcal{B}_{m}=\left\langle\sigma_{1}, \ldots, \sigma_{m-1} \mid \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}(|i-j|>1), \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}\right\rangle
$$

is called braid group on m strands $(m \in \mathbb{N})$. It acts on the set R^{m} by

$$
\begin{aligned}
\sigma_{i}\left(r_{1}, \ldots, r_{i}, r_{i+1}, \ldots, r_{m}\right) & =\left(r_{1}, \ldots, r_{i} r_{i+1} r_{i}, r_{i}, \ldots, r_{m}\right), \\
\sigma_{i}^{-1}\left(r_{1}, \ldots, r_{i}, r_{i+1}, \ldots, r_{m}\right) & =\left(r_{1}, \ldots, r_{i+1}, r_{i+1} r_{i} r_{i+1}, \ldots, r_{m}\right) .
\end{aligned}
$$

We write $\left(r_{1}, \ldots, r_{m}\right) \sim\left(t_{1}, \ldots, t_{m}\right)$ to indicate that both tuples are in the same orbit under this action.

$$
\mathcal{B}_{m}=\left\langle\sigma_{1}, \ldots, \sigma_{m-1} \mid \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}(|i-j|>1), \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}\right\rangle
$$

is called braid group on m strands $(m \in \mathbb{N})$. It acts on the set R^{m} by

$$
\begin{aligned}
\sigma_{i}\left(r_{1}, \ldots, r_{i}, r_{i+1}, \ldots, r_{m}\right) & =\left(r_{1}, \ldots, r_{i} r_{i+1} r_{i}, r_{i}, \ldots, r_{m}\right), \\
\sigma_{i}^{-1}\left(r_{1}, \ldots, r_{i}, r_{i+1}, \ldots, r_{m}\right) & =\left(r_{1}, \ldots, r_{i+1}, r_{i+1} r_{i} r_{i+1}, \ldots, r_{m}\right) .
\end{aligned}
$$

We write $\left(r_{1}, \ldots, r_{m}\right) \sim\left(t_{1}, \ldots, t_{m}\right)$ to indicate that both tuples are in the same orbit under this action. Note that this action restricts to reflection factorizations of a given element $w \in W$ and we call it Hurwitz action.

$$
\mathcal{B}_{m}=\left\langle\sigma_{1}, \ldots, \sigma_{m-1} \mid \sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}(|i-j|>1), \sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}\right\rangle
$$

is called braid group on m strands $(m \in \mathbb{N})$. It acts on the set R^{m} by

$$
\begin{aligned}
\sigma_{i}\left(r_{1}, \ldots, r_{i}, r_{i+1}, \ldots, r_{m}\right) & =\left(r_{1}, \ldots, r_{i} r_{i+1} r_{i}, r_{i}, \ldots, r_{m}\right), \\
\sigma_{i}^{-1}\left(r_{1}, \ldots, r_{i}, r_{i+1}, \ldots, r_{m}\right) & =\left(r_{1}, \ldots, r_{i+1}, r_{i+1} r_{i} r_{i+1}, \ldots, r_{m}\right) .
\end{aligned}
$$

We write $\left(r_{1}, \ldots, r_{m}\right) \sim\left(t_{1}, \ldots, t_{m}\right)$ to indicate that both tuples are in the same orbit under this action. Note that this action restricts to reflection factorizations of a given element $w \in W$ and we call it Hurwitz action.

Remark. Let $\left(r_{1}, \ldots, r_{m}\right) \sim\left(t_{1}, \ldots, t_{m}\right)$.
$-\left\langle r_{1}, \ldots, r_{m}\right\rangle=\left\langle t_{1}, \ldots, t_{m}\right\rangle$,

- $\left\{\left\{\left[r_{1}\right], \ldots,\left[r_{m}\right]\right\}\right\}=\left\{\left\{\left[t_{1}\right], \ldots,\left[t_{m}\right]\right\}\right\}$ (multiset of conj. classes).

Let $\left(W,\left\{s_{1}, \ldots, s_{n}\right\}\right)$ be a Coxeter system. Then the element

$$
c=s_{\pi(1)} \cdots s_{\pi(n)}
$$

is called a Coxeter element for every $\pi \in \operatorname{Sym}(n)$.
${ }^{3}$ Example. We consider the symmetric group Sym(4) with set of simple reflections $S=\{(1,2),(2,3),(3,4)\}$. Recall that the set of reflections is given by all transpositions.

Example. We consider the symmetric group Sym(4) with set of simple reflections $S=\{(1,2),(2,3),(3,4)\}$. Recall that the set of reflections is given by all transpositions. The 4 -cycle $c=(1,2,3,4)$ is a Coxeter element and

$$
((1,2),(2,3),(3,4)) \in \operatorname{Red}_{R}(c) .
$$

Example. We consider the symmetric group Sym(4) with set of simple reflections $S=\{(1,2),(2,3),(3,4)\}$. Recall that the set of reflections is given by all transpositions. The 4 -cycle $c=(1,2,3,4)$ is a Coxeter element and

$$
((1,2),(2,3),(3,4)) \in \operatorname{Red}_{R}(c) .
$$

We have

$$
\begin{aligned}
((1,2),(2,3),(3,4)) & \sim((1,2),(3,4),(2,4)) \\
& \sim((3,4),(1,2),(2,4)) .
\end{aligned}
$$

Example. We consider the symmetric group Sym(4) with set of simple reflections $S=\{(1,2),(2,3),(3,4)\}$. Recall that the set of reflections is given by all transpositions. The 4 -cycle $c=(1,2,3,4)$ is a Coxeter element and

$$
((1,2),(2,3),(3,4)) \in \operatorname{Red}_{R}(c) .
$$

We have

$$
\begin{aligned}
((1,2),(2,3),(3,4)) & \sim((1,2),(3,4),(2,4)) \\
& \sim((3,4),(1,2),(2,4)) .
\end{aligned}
$$

We also have

$$
c=(3,4)(1,3)(1,2)(2,4)(3,4)
$$

Example. We consider the symmetric group Sym(4) with set of simple reflections $S=\{(1,2),(2,3),(3,4)\}$. Recall that the set of reflections is given by all transpositions. The 4 -cycle $c=(1,2,3,4)$ is a Coxeter element and

$$
((1,2),(2,3),(3,4)) \in \operatorname{Red}_{R}(c) .
$$

We have

$$
\begin{aligned}
((1,2),(2,3),(3,4)) & \sim((1,2),(3,4),(2,4)) \\
& \sim((3,4),(1,2),(2,4)) .
\end{aligned}
$$

We also have

$$
c=(3,4)(1,3)(1,2)(2,4)(3,4)
$$

and

$$
\begin{aligned}
((3,4),(1,3),(1,2),(2,4),(3,4)) & \sim((3,4),(1,2),(2,3),(2,4),(3,4)) \\
& \sim(\underbrace{((3,4),(1,2),(2,4)}_{\in \operatorname{Red}_{R}(c)},(3,4),(3,4)) .
\end{aligned}
$$

Lemma (Lewis-Reiner 2016). Let (W, S) be a finite Coxeter system with set of reflections R and let $w \in W$ with $\ell_{R}(w)=m$. If $w=t_{1} \cdots t_{m+2 k}$ with $t_{i} \in R$ and $k \in \mathbb{Z}_{\geq 0}$. Then

$$
\left(t_{1}, \ldots, t_{m+2 k}\right) \sim(\underbrace{r_{1}, \ldots, r_{m}}_{\in \operatorname{Red}_{R}(w)}, r_{i_{1}}, r_{i_{1}}, \ldots, r_{i_{k}}, r_{i_{k}})
$$

for some $r_{i} \in R$.

Theorem (Lewis-Reiner 2016). In a finite Coxeter group, two reflection factorizations of a Coxeter element lie in the same orbit under the Hurwitz action if and only if they share the same multiset of conjugacy classes.

Theorem (Lewis-Reiner 2016). In a finite Coxeter group, two reflection factorizations of a Coxeter element lie in the same orbit under the Hurwitz action if and only if they share the same multiset of conjugacy classes.

That is, if $c=r_{1} \cdots r_{m}=t_{1} \cdots t_{m}$, then

$$
\left(r_{1}, \ldots, r_{m}\right) \sim\left(t_{1}, \ldots, t_{m}\right) \Leftrightarrow\left\{\left\{\left[r_{1}\right], \ldots,\left[r_{m}\right]\right\}\right\}=\left\{\left\{\left[t_{1}\right], \ldots,\left[t_{m}\right]\right\}\right\} .
$$

Theorem (Lewis-Reiner 2016). In a finite Coxeter group, two reflection factorizations of a Coxeter element lie in the same orbit under the Hurwitz action if and only if they share the same multiset of conjugacy classes.

That is, if $c=r_{1} \cdots r_{m}=t_{1} \cdots t_{m}$, then
$\left(r_{1}, \ldots, r_{m}\right) \sim\left(t_{1}, \ldots, t_{m}\right) \Leftrightarrow\left\{\left\{\left[r_{1}\right], \ldots,\left[r_{m}\right]\right\}\right\}=\left\{\left\{\left[t_{1}\right], \ldots,\left[t_{m}\right]\right\}\right\}$.

The two main ingredients of the proof are the previous Lemma of Lewis and Reiner as well as the following result:

Theorem (Lewis-Reiner 2016). In a finite Coxeter group, two reflection factorizations of a Coxeter element lie in the same orbit under the Hurwitz action if and only if they share the same multiset of conjugacy classes.

That is, if $c=r_{1} \cdots r_{m}=t_{1} \cdots t_{m}$, then
$\left(r_{1}, \ldots, r_{m}\right) \sim\left(t_{1}, \ldots, t_{m}\right) \Leftrightarrow\left\{\left\{\left[r_{1}\right], \ldots,\left[r_{m}\right]\right\}\right\}=\left\{\left\{\left[t_{1}\right], \ldots,\left[t_{m}\right]\right\}\right\}$.

The two main ingredients of the proof are the previous Lemma of Lewis and Reiner as well as the following result:

Theorem (Deligne 1974, Igusa-Schiffler 2010). In an arbitrary Coxeter group, the Hurwitz action is transitive on the set of reduced reflection factorizations of a Coxeter element.

Theorem (Lewis-Reiner 2016). In a finite Coxeter group, two reflection factorizations of a Coxeter element lie in the same orbit under the Hurwitz action if and only if they share the same multiset of conjugacy classes.

That is, if $c=r_{1} \cdots r_{m}=t_{1} \cdots t_{m}$, then
$\left(r_{1}, \ldots, r_{m}\right) \sim\left(t_{1}, \ldots, t_{m}\right) \Leftrightarrow\left\{\left\{\left[r_{1}\right], \ldots,\left[r_{m}\right]\right\}\right\}=\left\{\left\{\left[t_{1}\right], \ldots,\left[t_{m}\right]\right\}\right\}$.

The two main ingredients of the proof are the previous Lemma of Lewis and Reiner as well as the following result:

Theorem (Deligne 1974, Igusa-Schiffler 2010). In an arbitrary Coxeter group, the Hurwitz action is transitive on the set of reduced reflection factorizations of a Coxeter element.

Question: Does the Theorem of Lewis and Reiner hold for arbitrary Coxeter groups?

Unfortunately, the Lemma of Lewis and Reiner does not hold for Coxeter groups in general, but...

Unfortunately, the Lemma of Lewis and Reiner does not hold for Coxeter groups in general, but...

Lemma (W.-Yahiatene 2019). Let (W, S) be an arbitrary Coxeter system with set of reflections R and let $w \in W$ with $\ell_{S}(w)=m$. If $w=t_{1} \cdots t_{m+2 k}$ with $t_{i} \in R$ and $k \in \mathbb{Z}_{\geq 0}$. Then

$$
\left(t_{1}, \ldots, t_{m+2 k}\right) \sim\left(r_{1}, \ldots, r_{m}, r_{i_{1}}, r_{i_{1}}, \ldots, r_{i_{k}}, r_{i_{k}}\right)
$$

for some $r_{i} \in R$.

Unfortunately, the Lemma of Lewis and Reiner does not hold for Coxeter groups in general, but...

Lemma (W.-Yahiatene 2019). Let (W, S) be an arbitrary Coxeter system with set of reflections R and let $w \in W$ with $\ell_{S}(w)=m$. If $w=t_{1} \cdots t_{m+2 k}$ with $t_{i} \in R$ and $k \in \mathbb{Z}_{\geq 0}$. Then

$$
\left(t_{1}, \ldots, t_{m+2 k}\right) \sim\left(r_{1}, \ldots, r_{m}, r_{i_{1}}, r_{i_{1}}, \ldots, r_{i_{k}}, r_{i_{k}}\right)
$$

for some $r_{i} \in R$.

For a Coxeter element $c \in W$ we have $\ell_{S}(c)=\ell_{R}(c)$. Therefore we are able to prove...

Theorem (W.-Yahiatene 2019). In an arbitrary Coxeter group, two reflection factorizations of a Coxeter element lie in the same orbit under the Hurwitz action if and only if they share the same multiset of conjugacy classes.

Theorem (W.-Yahiatene 2019). In an arbitrary Coxeter group, two reflection factorizations of a Coxeter element lie in the same orbit under the Hurwitz action if and only if they share the same multiset of conjugacy classes.

Corollary. Let (W, S) be a Coxeter system such that all elements of S are conjugated (for example, if the Coxeter graph is connected and has a spanning tree with odd labels on all of its edges), then the Hurwitz action is transitive on equal length reflection factorizations of a Coxeter element.

Thank you!

Outlook: Complex reflection groups

- G_{4}, G_{5} (Z. Peterson)
- the Shephard groups $G(p, 1, n)$ (Lewis, Yahiatene)
- computational evidence for G_{8} and G_{20}.

