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QUIVERS WITH POTENTIALS ASSOCIATED TO TRIANGULATIONS
OF CLOSED SURFACES WITH AT MOST TWO PUNCTURES

JAN GEUENICH, DANIEL LABARDINI-FRAGOSO, AND JOSÉ LUIS MIRANDA-OLVERA

Abstract. We tackle the classification problem of non-degenerate potentials for quivers

arising from triangulations of surfaces in the cases left open by Geiss, Labardini-Fragoso

and Schröer. Namely, for once-punctured closed surfaces of positive genus, we show that

the quiver of any triangulation admits infinitely many non-degenerate potentials that are

pairwise not weakly right-equivalent; we do so by showing that the potentials obtained

by adding the 3-cycles coming from triangles and a fixed power of the cycle surrounding

the puncture are well behaved under flips and QP-mutations. For twice-punctured closed

surfaces of positive genus, we prove that the quiver of any triangulation admits exactly

one non-degenerate potential up to weak right-equivalence, thus confirming the veracity

of a conjecture of the aforementioned authors.
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1. Introduction

Albeit technical in nature, the problem of classifying all non-degenerate potentials on a

given 2-acyclic quiver is relevant in different interesting, seemingly unrelated, contexts. In

cluster algebra theory, having only one weak right-equivalence class means, very roughly

speaking, that Derksen, Weyman and Zelevinsky’s representation-theoretic approach to

the corresponding cluster algebra can be performed in essentially only one way.

The classification problem of non-degenerate potentials plays also a role in algebraic ge-

ometry and in symplectic geometry (more precisely, in the subjects of Bridgeland stability

conditions and Fukaya categories). In [1, Theorem 9.9], the uniqueness of non-degenerate

2010 Mathematics Subject Classification. Primary 16P10, 16G20; Secondary 13F60, 57N05, 05E99.
Key words and phrases. Surface, marked points, punctures, triangulation, flip, quiver, potential, mu-

tation, non-degenerate potential.



2 JAN GEUENICH, DANIEL LABARDINI-FRAGOSO, AND JOSÉ LUIS MIRANDA-OLVERA

potentials on the quivers arising from positive genus closed surfaces with at least three

punctures is used by Bridgeland and Smith to prove that there is a short exact sequence

1 // Sph4(D(Σ,M)) // Aut4(D(Σ,M)) // MCG±(Σ,M) // 1,

where D(Σ,M) is the 3-Calabi–Yau triangulated category associated to (Σ,M), defined

as the full subcategory that the dg-modules with finite-dimensional cohomology deter-

mine inside the derived category of the Ginzburg dg-algebra of the quiver with poten-

tial of any1 tagged triangulation of (Σ,M), the group Aut4(D(Σ,M)) is the quotient

of the group of auto-equivalences of D(Σ,M) that preserve the distinguished connected

component Tilt4(D(Σ,M)) by the subgroup of auto-equivalences that act trivially on

Tilt4(D(Σ,M)), Sph4(D(Σ,M)) is the subgroup of Aut4(D(Σ,M)) generated by (the quo-

tient images of) the twist functors at the simple objects of a heart A ∈ Tilt4(D(Σ,M)),

and MCG±(Σ,M) = MCG(Σ,M) n ZM
2 is the signed mapping class group.

In [14, Theorem 1.1], Smith shows that, if (Σ,M) is a positive genus closed surface with

at least three punctures (i.e., |M| ≥ 3), then there is a linear fully faithful embedding

of the 3-Calabi–Yau triangulated category D(Σ,M) into a Fukaya category of a 3-fold

that fibres over Σ (with poles of a quadratic differential removed from Σ). He explains

that the reason behind the hypothesis |M| ≥ 3 in [14, Theorem 1.1] arises from the fact

that, for positive genus closed surfaces with at least three punctures, the quiver of any

triangulation has exactly one non-degenerate potential up to weak right-equivalence (a

fact shown by Geiss, Labardini-Fragoso and Schröer [3]). See [14, Sections 1.3 and 2.2].

Together with results from his work [1] with Bridgeland, the embeddings from the

previous paragraph allow Smith to obtain non-trivial computations of spaces of stability

conditions on Fukaya categories of symplectic six-manifolds.

In this paper we prove the following result.

Theorem 1.1. (1) For once-punctured closed surfaces of positive genus, the quiver of

any triangulation admits infinitely many non-degenerate potentials that are pair-

wise not weakly right-equivalent, provided the underlying field has characteristic

zero.

(2) For twice-punctured closed surfaces of positive genus, the quiver of any triangu-

lation admits exactly one non-degenerate potential up to weak right-equivalence,

provided the underlying field is algebraically closed.

Let (Σ,M) be a once-punctured closed surface, n a positive integer and x ∈ K any

scalar. For a triangulation τ of (Σ,M) let S(τ, x, n) be the potential obtained by adding

the 3-cycles of Q(τ) arising from triangles of τ and the x-multiple of the nth power of the

cycle ofQ(τ) that runs around the puncture of (Σ,M). The following result of independent

interest plays a central role in our proof of part (1) of Theorem 1.1:

Theorem 1.2. Let (Σ,M) be a once-punctured closed surface. If τ and σ are trian-

gulations of (Σ,M) related by the flip of an arc k ∈ τ , then the quivers with potential

1That D(Σ,M) is independent of the tagged triangulation used follows after combining results of Keller

and Yang [5] and Labardini [8], see [9, Section 5].
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(Q(τ), S(τ, x, n)) and (Q(σ), S(σ, x, n)) are related by the mutation of quivers with poten-

tial µk.

That the quivers associated to triangulations of once-punctured closed surfaces of posi-

tive genus admit more than one weak right-equivalence class of non-degenerate potentials

has always been expected, since the articles [2] of Derksen, Weyman and Zelevinsky and

[6, 7] of Labardini-Fragoso exhibit non-degenerate potentials for the Markov quiver2 that

are not weakly right-equivalent.

In [3, Theorem 8.4], Geiss, Labardini-Fragoso and Schröer proved that every quiver

associated to some triangulation of a positive-genus closed surface with at least three

punctures admits exactly one weak right-equivalence class of non-degenerate potentials,

and conjectured that the same result holds in the case of two punctures. The reason why

their proof fails for twice-punctured closed surfaces is that these do not admit triangula-

tions all of whose arcs connect distinct punctures. The fact that such triangulations do

exist for closed surfaces with at least three punctures plays an essential role in the proof

of [3, Theorem 8.4].

The structure of the paper is straightforward: in Section 2 we prove a few facts (some of

them quite technical) about the form of cycles and non-degenerate potentials for quivers

arising from combinatorially nice triangulations of surfaces with empty boundary (see

conditions (2.1) and (2.2)). Section 3 is devoted to proving part (1) of Theorem 1.1,

whereas Section 4 is devoted to showing part (2).

2. Preliminaries

Let K be any field. For a quiver Q, the vertex span is the K-algebra R defined as the

K-vector space with basis {ej | j ∈ Q0}, with multiplication defined as the K-bilinear

extension of the rule

eiej := δi,jej, for all i, j ∈ Q0,

where δi,j ∈ K is the Kronecker delta of i and j. Thus, R is (a K-algebra isomorphic

to) KQ0 with both sum and multiplication defined componentwise. The complete path

algebra of Q is the K-vector space

K〈〈Q〉〉 :=
∏
`∈Z≥0

A(`),

where A(0) := R, and for ` > 0, A(`) is the K-vector space with basis all the paths of

length ` on Q. The multiplication of K〈〈Q〉〉 is defined in terms of the concatenation of

paths.

The vertex span R is obviously a subring of K〈〈Q〉〉 (actually, a K-subalgebra), but it is

often not a central subring. Despite of this, any ring automorphism ϕ : K〈〈Q〉〉 → K〈〈Q〉〉
such that ϕ|R = 11R will be said to be an R-algebra automorphism of K〈〈Q〉〉.

Definition 2.1. Let Q be a quiver and S,W ∈ K〈〈Q〉〉 be potentials on Q. We will say

that:

2The Markov quiver arises as the quiver associated to any triangulation of the once-punctured torus.



4 JAN GEUENICH, DANIEL LABARDINI-FRAGOSO AND JOSÉ LUIS MIRANDA-OLVERA

(1) two cycles a1 · · · a` and b1 · · · bm on Q are rotationally equivalent if a1 · · · a` =

b1 · · · bm or a1 · · · a` = bk · · · bmb1 · · · bk−1 for some k ∈ {2, . . . ,m};
(2) S and W are rotationally disjoint if no cycle appearing in S is rotationally equiv-

alent to a cycle appearing in W ;

(3) S and W are cyclically equivalent if, with respect to the m-adic topology of K〈〈Q〉〉,
the element S −W belongs to the topological closure of the vector subspace of

K〈〈Q〉〉 spanned by all elements of the form a1 · · · a` − a2 · · · a`a1 with a1 · · · a`
running through the set of all cycles on Q; notation: S ∼cyc W ;

(4) S and W are right-equivalent if there exists a right equivalence from S to W , i.e.,

an R-algebra automorphism ϕ : K〈〈Q〉〉 → K〈〈Q〉〉 that acts as the identity on the

set of idempotents {ej | j ∈ Q0} and satisfies ϕ(S) ∼cyc W ; notation: S ∼r.e. W ;

(5) S and W are weakly right-equivalent if S and λW are right-equivalent for some

non-zero scalar λ ∈ K.

Throughout the paper, (Σ,M) will be a punctured closed surface of positive genus. That

is, Σ will be a compact, connected, oriented two-dimensional real differentiable manifold

with positive genus and empty boundary, and M will be a non-empty finite subset of Σ.

It is very easy to show that there exists at least one triangulation τ of (Σ,M) such that

every puncture has valency at least 4 with respect to τ ;(2.1)

for any two arcs i and j of τ , the quiver Q(τ) has at most one arrow from j to i.(2.2)

Throughout the paper, we will permanently suppose that τ satisfies (2.1) and (2.2).

Following Ladkani [10] we define two maps f, g : Q(τ)1 → Q(τ)1 as follows. Each

triangle 4 of τ gives rise to an oriented 3-cycle α4β4γ4 on Q(τ). We set f(α4) = γ4,

f(β4) = α4 and f(γ4) = β4. Now, given any arrow α of Q(τ), the quiver Q(τ) has

exactly two arrows starting at the terminal vertex of α. One of these two arrows is f(α).

We define g(α) to be the other arrow.

Note that the map f (respectively g) splits the arrow set of Q(τ) into f -orbits (respec-

tively g-orbits). The set of f -orbits is in one-to-one correspondence with the set of triangles

of τ . All f -orbits have exactly three elements. The set of g-orbits is in one-to-one corre-

spondence with the set of punctures of (Σ,M). For every arrow α of Q(τ), we denote the

size of the g-orbit of α by mα (mα ≥ 4 by (2.1)). Note that gmα−1(α)gmα−2(α) · · · g(α)α is

a cycle surrounding the puncture p corresponding to the g-orbit of α. We denote this cycle

by G(α) or G(p). On the other hand, for every arrow β of Q(τ) and any non-negative inte-

ger r, we use the notation G(r, β) to denote the path gr−1(β)gr−2(β) · · · g(β)β. Similarly,

we use the notation F (r, β) to denote the path f r−1(β)f r−2(β) · · · f(β)β.

Let x = (xp)p∈M be a choice of a non-zero scalar xp ∈ K for each puncture p ∈ M.

For ideal triangulations which satisfy (2.1) and (2.2) the potential S(τ,x) defined by the

second author [8] takes a simple form, namely,

S(τ,x) = T (τ) +
∑
p∈P

xpG(p),

with T (τ) ∼cyc

∑
α∈Γ(f 2(α)f(α)α) for any fixed set Γ containing exactly one arrow from

each triangle of τ .
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Lemma 2.2 (Types of cycles). Let (Σ,M) be a punctured surface with empty bound-

ary, and let τ be a triangulation of (Σ,M) that satisfies (2.1) and (2.2). Then every cycle

in Q(τ) is rotationally equivalent to a cycle of one of the following types:

(f -cycles) (f 2(α)f(α)α)n for some n ≥ 1;

(g-cycles) (gmβ−1(β)gmβ−2(β) · · · g(β)β)n for some n ≥ 1;

(fg-cycles) f 2(a)f(a)λ for some arrow a and some path λ, such that λ = g−1f(a)λ′ with

λ′ of positive length.

Proof. Let ξ = α1 · · ·αr be any cycle on Q(τ). Write αr+1 = α1, and notice that, for

every ` = 1, . . . , r, we have either α` = f(α`+1) or α` = g(α`+1). Let sξ be the length-r

sequence of fs and gs that has an f at the `th place if α` = f(α`+1) and a g otherwise.

If sξ consists only of fs, then ξ is rotationally equivalent to (f 2(α)f(α)α)n for some

arrow α and some n ≥ 1. Furthermore, if sξ consists only of gs, then ξ is rotationally

equivalent to (gmβ−1(β)gmβ−2(β) · · · g(β)β)n for some arrow β and some n ≥ 1. Therefore,

if sξ involves only fs or only gs, then ξ is an f -cycle or a g-cycle.

Suppose that at least one f and at least one g appear in sξ. Rotating ξ if necessary,

we can assume that sξ starts with an f followed by a g, i.e., sξ = (f, g, . . .). This means

that, if we set a := f−1(α2), then α1 = f 2(a), α2 = f(a) and α3 = g−1f(a). By (2.2), a is

the only arrow in Q(τ)1 such that α1α2a is a cycle. Since α3 = g−1f(a) 6= a, this implies

ξ = f 2(a)f(a)g−1f(a)λ′ with λ′ of positive length. �

Remark 2.3. As in the case of cycles, every path falls within exactly one of three types

of paths: f -paths, g-paths, and fg-paths.

By Lemma 2.2, up to cyclical equivalence we can write every potential S in Q(τ) as

S = Sf + Sg + Sfg, where

Sf =
∑
4

∞∑
n=1

z4,n(f 2(α4)f(α4)α4)n,

Sg =
∑
p∈P

∞∑
n=1

νp,n(G(p))n,

Sfg =
∑

a∈Q(τ)1

f 2(a)f(a)ωa,

with each z4,n, νp,n ∈ K, and ωa a possibly infinite linear combination of paths of the

form g−1f(a)λ′ for each a ∈ Q(τ).

Lemma 2.4. Let (Σ,M) be a punctured surface with empty boundary, and let τ be a

triangulation of (Σ,M) that satisfies (2.1) and (2.2). Every non-degenerate potential S

on Q(τ) is right-equivalent to a potential of the form T (τ) + U for some U rotationally

disjoint from T (τ).
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Proof. By (2.2) the hypotheses of [3, Corollary 2.5] are satisfied. So, if S is a non-

degenerate potential, then every f -cycle f 2(α)f(α)α appears in S. Hence,

S ∼cyc

∑
4

z4,1f
2(α4)f(α4)α4 + U ′,

with all z4,1 6= 0 and U ′ rotationally disjoint from T (τ).

We define an R-algebra automorphism ϕ : K〈〈Q(τ)〉〉 → K〈〈Q(τ)〉〉 by means of the

rule

ϕ(α4) =
1

z4,1
α4.

We see that ϕ(S) ∼cyc T (τ)+U , for some potential U rotationally disjoint from T (τ). �

Lemma 2.5 (Replacing f-potentials and fg-potentials by longer ones). Let

(Σ,M) be a punctured surface with empty boundary, and let τ be a triangulation of (Σ,M)

that satisfies (2.1) and (2.2). Let φ be one of the symbols f and fg, and let ν be the other

symbol, so that {φ, ν} = {f, fg} as sets of symbols. If W,A ∈ K〈〈Q(τ)〉〉 are potentials

rotationally disjoint from T (τ), and if Aφ 6= 0, then there exists a potential B ∈ K〈〈Q(τ)〉〉
which is rotationally disjoint from T (τ) and satisfies the following four conditions:

short(Bφ) > short(Aφ);

short(Bg) ≥ min(short(Ag), short(Aφ) + 1);

short(Bν) ≥ min(short(Aν), short(Aφ) + 1);

(Q(τ), T (τ) +W + A) ∼r.e. (Q(τ), T (τ) +W +B).

Proof. Let us deal with the case φ = f . Write

Af =
∑
4

∑
n≥

short(Af )

3

z4,n
(
f 2(α4)f(α4)α4

)n
,

and define an R-algebra homomorphism ϕ : K〈〈Q(τ)〉〉 → K〈〈Q(τ)〉〉 by means of the rule

ϕ(α4) = α4 −
∑

n≥
short(Af )

3

z4,nα4
(
f 2(α4)f(α4)α4

)n−1
.

Then ϕ is a unitriangular automorphism of depth short(Af )− 3, and

ϕ(T (τ) +W + A) = T (τ)− Af +W + A+ (ϕ(W + A)− (W + A)).

Consequently, if we set B = Ag + Afg + (ϕ(W + A)− (W + A)), then:

• ϕ(T (τ) +W + A) = T (τ) +W +B;

• short(ϕ(W + A)− (W + A)) ≥ depth(ϕ) + short(W + A) ≥ short(Af )− 3 + 4 =

short(Af ) + 1;

• short(Bf ) = short((ϕ(W + A)− (W + A))f ) ≥ short(Af ) + 1;

• short(Bg) ≥ min(short(Ag), short((ϕ(W + A)− (W + A))g)

≥ min(short(Ag), short(Af ) + 1); and

• short(Bfg) ≥ min(short(Afg, short((ϕ(W + A)− (W + A))fg))

≥ min(short(Afg), short(Af ) + 1).
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Now we deal with the case φ = fg. Write

Afg =
∑

a∈Q(τ)1

f 2(a)f(a)ωa,

with ωa ∈ eh(a)K〈〈Q(τ)〉〉et(a) for each a ∈ Q(τ)1. Furthermore, we define an R-algebra

homomorphism ϕ : K〈〈Q(τ)〉〉 → K〈〈Q(τ)〉〉 by means of the rule ϕ(a) = a − ωa for

a ∈ Q(τ)1. Then ϕ is a unitriangular automorphism of depth short(Afg)− 3, and

ϕ(T (τ) +W + A) =
∑
4

(
f 2(α4)− ωf2(α4)

) (
f(α4)− ωf(α4)

) (
α4 − ωα4

)
+W + A+ (ϕ(W + A)− (W + A))

∼cyc T (τ) +W + Af + Ag + (ϕ(W + A)− (W + A))

+
∑

a∈Q(τ)1

f 2(a)ωf(a)ωa −
∑
4

ωf2(a4)ωf(a4)ωa4 .

Consequently, if we set

B = Af + Ag + (ϕ(W + A)− (W + A)) +
∑

a∈Q(τ)1

f 2(a)ωf(a)ωa −
∑
4

ωf2(a4)ωf(a4)ωa4 ,

then:

• ϕ(T (τ) +W + A) ∼cyc T (τ) +W +B;

• short (ϕ(W + A)− (W + A)) ≥ depth(ϕ) + short(W +A) ≥ short(Afg)− 3 + 4 =

short(Afg) + 1;

• short
(∑

a∈Q(τ)1
f 2(a)ωf(a)ωa

)
≥ 2 short(Afg)− 3 ≥ short(Afg) + 4− 3

= short(Afg) + 1 (since short(Afg) ≥ 4);

• short
(∑

4 ωf2(a4)ωf(a4)ωa4

)
≥ 3 short(Afg)− 6 ≥ short(Afg) + 8− 6

≥ short(Afg) + 1;

• short(Bfg) ≥ min
(

short (ϕ(W + A)− (W + A)) , short
(∑

a∈Q(τ)1
f 2(a)ωf(a)ωa

)
,

short
(∑

4 ωf2(a4)ωf(a4)ωa4

))
≥ short(Afg) + 1;

• short(Bg) ≥ min
(

short(Ag), short (ϕ(W + A)− (W + A)) ,

short
(∑

a∈Q(τ)1
f 2(a)ωf(a)ωa

)
, short

(∑
4 ωf2(a4)ωf(a4)ωa4

))
≥ min (short(Ag), short(Afg) + 1); and

• short(Bf ) ≥ min
(

short(Ag), short (ϕ(W + A)− (W + A)) ,

short
(∑

a∈Q(τ)1
f 2(a)ωf(a)ωa

)
, short

(∑
4 ωf2(a4)ωf(a4)ωa4

))
≥ min (short(Af ), short(Afg) + 1).

Lemma 2.5 is proved. �

Proposition 2.6 (Replacing potentials by sums of powers of g-cycles). Let

(Σ,M) be a punctured surface with empty boundary, and let τ be a triangulation of (Σ,M)

satisfying (2.1) and (2.2). If U,Z ∈ K〈〈Q(τ)〉〉 are potentials rotationally disjoint from

T (τ), then there exist a unitriangular automorphism ϕ : K〈〈Q(τ)〉〉 → K〈〈Q(τ)〉〉 of depth
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at least short(U)− 3 and a potential W ∈ K〈〈Q(τ)〉〉 involving only positive powers of g-

cycles, such that short(W ) ≥ short(U) and ϕ is a right-equivalence (Q(τ), T (τ)+Z+U)→
(Q(τ), T (τ) + Z +W ).

Proof. SetW0 = Ug and U0 = U−Ug. We obviously have short(U0), short(W0) ≥ short(U).

Claim 1. There exist sequences (Un)n≥1 and (Wn)n≥1 of potentials on the quiverQ(τ), and

a sequence (ϕn)n≥1 of unitriangular automorphisms of K〈〈Q(τ)〉〉, such that the following

properties are satisfied for every n ≥ 1:

• ϕn is a right-equivalence

(Q(τ), T (τ) + Z + Un−1 +Wn−1)→ (Q(τ), T (τ) + Z + Un +Wn);

• depth(ϕn) = short(Un−1)− 3;

• each of Un and Wn is rotationally disjoint from T (τ), Un does not involve powers

of g-cycles, and Wn involves only powers of g-cycles;

• short(Wn −Wn−1) ≥ short(Un−1) + 1;

• short(Un+1) ≥ short(Un−1) + 1.

We shall produce the three sequences (Un)n≥1, (Wn)n≥1 and (ϕn)n≥1 recursively. Fix

a positive integer n. If Un−1 = 0, we set Un to be Un−1, Wn to be Wn−1 and ϕn
to be the identity of K〈〈Q(τ)〉〉. Otherwise, let φn−1, νn−1 ∈ {f, fg} be symbols such

that {φn−1, νn−1} = {f, fg} and short((Un−1)φn−1) ≤ short((Un−1)νn−1). By the proof of

Lemma 2.5, there exist a potential Vn ∈ K〈〈Q(τ)〉〉 rotationally disjoint from T (τ) and a

unitriangular automorphism ϕn : K〈〈Q(τ)〉〉 → K〈〈Q(τ)〉〉 such that

• depth(ϕn) = short(Un−1)− 3;

• ϕn is a right-equivalence

(Q(τ), T (τ) + Z +Wn−1 + Un−1)→ (Q(τ), T (τ) + Z +Wn−1 + Vn);

• short((Vn)φn−1) > short((Un−1)φn−1);

• short((Vn)g) ≥ min(short((Un−1)g), short((Un−1)φn−1)+1) = short((Un−1)φn−1)+1;

• short((Vn)νn−1) ≥ min(short((Un−1)νn−1), short((Un−1)φn−1) + 1).

We set Un = Vn − (Vn)g and Wn = Wn−1 + (Vn)g. It is clear that the first four properties

stated in the claim are satisfied. For the fifth property, note that, if φn = φn−1, then

short((Un)φn) > short((Un−1)φn−1), whereas, if φn 6= φn−1, then

short((Un+1)φn) > short((Un)φn) ≥ short(Un−1)

and

short((Un+1)φn−1) ≥ min(short((Un)φn−1), short((Un)φn) + 1)

≥ min
(

short((Un−1)φn−1) + 1,

min
(

short((Un−1)νn−1), short((Un−1)φn−1) + 1
)

+ 1
)

> short((Un−1)φn−1).

These facts, together with the observation that for each n ≥ 0 we have short((Un)φn) =

short(Un), allow us to deduce that short(Un+1) ≥ short(Un−1) + 1 for all n ≥ 1, thus

completing the proof of Claim 1.
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From the claim, we see that

lim
n→∞

short(Un) =∞, lim
n→∞

short(Wn −Wn−1) =∞ and lim
n→∞

depth(ϕn) =∞.

Hence, if we set W = limn→∞Wn, then ϕ := limn→∞ ϕn ◦ · · · ◦ ϕ1 is a right-equivalence

(Q(τ), T (τ) + Z + U)→ (Q(τ), T (τ) + Z +W ). Proposition 2.6 follows. �

Lemma 2.7. Let (Σ,M) be a punctured surface with empty boundary, let τ be a triangu-

lation of (Σ,M) satisfying (2.1) and (2.2), and let x = (xp)p∈M be any choice of non-zero

scalars. Suppose that m and t are positive integers and U,W ∈ K〈〈Q(τ)〉〉 are potentials

rotationally disjoint from S(τ,x) that satisfy the following properties:

(1) short(U) ≥ m;

(2) 2 short(W )− 3 > m;

(3) W = λf(a)aG(t, g−t(a))c for some non-zero scalar λ ∈ K, some arrow a, and

some path c.

Then there exists a unitriangular R-algebra automorphism ζ : K〈〈Q(τ)〉〉 → K〈〈Q(τ)〉〉 of

depth short(W ) − 3 that serves as a right-equivalence between the QPs (Q(τ), S(τ,x) +

U + W ) and (Q(τ), S(τ,x) + U + U ′ + W ′) for some potentials U ′,W ′ ∈ K〈〈Q(τ)〉〉 that

satisfy:

(1) short(U ′) > m;

(2) short(W ′) > short(W );

(3) W ′ = λ′f(b)bG(t− 1, g−(t−1)(b))c′ for some non-zero scalar λ′, some arrow b, and

some path c′.

Proof. Let ζ : K〈〈Q(τ)〉〉 → K〈〈Q(τ)〉〉 be the R-algebra homomorphism given by the rule

ζ(f−1(a)) = f−1(a)− λG(t, g−t(a))c.

Since τ satisfies (2.2), short(W ) − 3 is a positive integer by Lemma 2.2, and hence ζ

is actually a unitriangular automorphism of K〈〈Q(τ)〉〉. The depth of ζ is obviously

short(W )− 3.

The arrow f−1(a) connects two arcs of τ . Let pf−1(a) be the puncture at which these

arcs are incident. Direct computation shows that

ζ(S(τ,x) + U +W ) ∼cyc S(τ,x)−W − λxpf−1(a)
G(mf−1(a) − 1, gf−1(a))G(t, g−t(a))c

+ U +W + (ζ(U +W )− (U +W ))

= S(τ,x)− λxpf−1(a)
G(mf−1(a) − 2, g2f−1(a))gf−1(a)g−1(a)G(t− 1, g−t(a))c

+ U + (ζ(U +W )− (U +W ))

∼cyc S(τ,x)− λxpf−1(a)
gf−1(a)g−1(a)G(t− 1, g−ta)cG(mf−1(a) − 2, g2f−1(a))

+ U + (ζ(U +W )− (U +W )) .
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So, the lemma follows if we remember that gf−1(a) = fg−1(a) and set

U ′ := ζ(U +W )− (U +W ),

λ′ := −λxpf−1(a)
,

b := g−1(a),

c′ := cG(mf−1(a) − 2, g2f−1(a))

and W ′ := λ′f(b)bG(t− 1, g−(t−1)(b))c′.

Indeed, property (3) is obviously satisfied, whereas the inequalities short(U) ≥ m,

depth(ζ) > 0 and 2 short(W )− 3 > m imply that

short(U ′) ≥ min(short(ζ(U)− U), short(ζ(W )−W ))

≥ min(depth(ζ) + short(U), depth(ζ) + short(W ))

= min(depth(ζ) + short(U), 2 short(W )− 3)

> m.

Furthermore, we also have

short(W ′) = mf−1(a) − 2 + short(W )− 1 > short(W ),

where the inequality follows from the fact that τ satisfies (2.1). �

Corollary 2.8 (Replacing certain cycles by sums of long g-cycles). Un-

der the hypotheses of Lemma 2.7, if the path c is assumed to be an arrow, then there

exists a unitriangular R-algebra automorphism Π : K〈〈Q(τ)〉〉 → K〈〈Q(τ)〉〉 of depth

at least min(m − 3, short(W ) − 3) that serves as a right-equivalence between the QPs

(Q(τ), S(τ,x) + U + W ) and (Q(τ), S(τ,x) + U + ξ) for some potential ξ that involves

only positive powers of g-cycles and satisfies short(ξ) > m.

Proof. This corollary follows from an inductive use of Lemma 2.7. Set U0 = U , W0 = W ,

a0 = a, c0 = c, and λ0 = λ. Using Lemma 2.7, we obtain a unitriangular automorphism

ζ1 : K〈〈Q(τ)〉〉 → K〈〈Q(τ)〉〉, potentials Z1,W1 ∈ K〈〈Q(τ)〉〉, an arrow a1, a path c1, and

a non-zero scalar λ1, such that:

(1) depth(ζ1) = short(W0)− 3;

(2) ζ1 is a right-equivalence (Q(τ), S(τ,x)+U0+W0)→ (Q(τ), S(τ,x)+U0+Z1+W1);

(3) short(Z1) > m and short(W1) ≥ short(W0) + 1;

(4) W1 = λ1f(a1)a1G(t− 1, g−(t−1)(a1))c1.

Setting U1 = U0+Z1, we see that U1, W1, a1, c1 and λ1 satisfy the hypotheses of Lemma 2.7

for the integers m and t− 1.

Assuming that for i ∈ {0, . . . , t − 1} we have Ui, Wi, ai, ci and λi satisfying the

hypotheses of Lemma 2.7 for the integers m and t − i, we can produce a unitriangular

automorphism ζi+1 : K〈〈Q(τ)〉〉 → K〈〈Q(τ)〉〉, potentials Zi+1,Wi+1 ∈ K〈〈Q(τ)〉〉, an

arrow ai+1, a path ci+1, and a non-zero scalar λi+1, such that:

(1) depth(ζi+1) = short(Wi)− 3;
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(2) ζi+1 is a right-equivalence

(Q(τ), S(τ,x) + Ui +Wi)→ (Q(τ), S(τ,x) + Ui + Zi+1 +Wi+1);

(3) short(Zi+1) > m and short(Wi+1) ≥ short(Wi) + 1;

(4) Wi+1 = λi+1f(ai+1)ai+1G(t− i− 1, g−(t−i−1)(ai+1))ci+1.

Setting Ui+1 = Ui+Zi+1, we see that Ui+1, Wi+1, ai+1, ci+1 and λi+1 satisfy the hypotheses

of Lemma 2.7 for the integers m and t− (i+ 1).

The composition ζ = ζt◦ζt−1◦· · ·◦ζ1 is a unitriangular automorphism of K〈〈Q(τ)〉〉 that

has depth at least short(W )−3 and serves as a right-equivalence (Q(τ), S(τ,x)+U+W )→
(Q(τ), S(τ,x) + Ut +Wt). Notice that Ut = U +

∑t
i=1 Zi, that short

(∑t
i=1 Zi

)
> m, and

that short(Wt) ≥ short(W ) + t = 2 short(W )− 3 > m.

By Proposition 2.6, there exists a unitriangular automorphism ϕ : K〈〈Q(τ)〉〉 →
K〈〈Q(τ)〉〉 of depth greater than m − 3 that makes (Q(τ), S(τ,x) + U +

∑t
i=1 Zi + Wt)

right-equivalent to (Q(τ), S(τ,x) +U + ξ) for some potential ξ ∈ K〈〈Q(τ)〉〉 that involves

only powers of g-cycles and satisfies short(ξ) ≥ short
(∑t

i=1 Zi +Wt

)
> m.

From the two previous paragraphs we deduce that the automorphism Π := ϕ◦ζ satisfies

the desired conclusion of Corollary 2.8. �

3. Once-punctured surfaces

In [6] and [8], the second author showed that the potentials S(τ,x) are well behaved

with respect to flips and mutations, in the sense that, if two triangulations are related

by a flip, then the associated QPs are related by the corresponding QP-mutation. In this

section, we show that for once-punctured closed surfaces the same result is true for a wider

class of potentials. Namely, given a triangulation τ of a once-punctured closed surface

of positive genus (Σ,M), a scalar x 6= 0 and a positive integer n, we define a potential

S(τ, x, n) as

S(τ, x, n) = T (τ) + xG(p)n,

where p is the only puncture in (Σ,M).

Theorem 3.1. Let (Σ,M) be a once-punctured closed surface of positive genus, n be any

positive integer, and x ∈ K be any scalar. If τ and σ are triangulations of (Σ,M) that are

related by the flip of an arc k ∈ τ , then the QPs µk(Q(τ), S(τ, x, n)) and (Q(σ), S(σ, x, n))

are right-equivalent.

Proof. Let ai, bi, ci, i = 1, 2, be the arrows in the two triangles with one side k as in

Figure 1.
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a2

c2 b2

a1

b1 c1

k

Figure 1. The two triangles with one side k.

Up to rotation we can write G(p) = a1Aa2B. Notice that b2c1, b1c2 are factors of G(p),

but b1c1 and b2c2 are not. The potential µ̃k(S(τ, x, n)) is cyclically equivalent to

[T (τ)] + x([a1Aa2B])n + c∗1b
∗
2[b2c1] + c∗2b

∗
1[b1c2] + c∗1b

∗
1[b1c1] + c∗2b

∗
2[b2c2]

= T (σ) + a1[b1c1] + a2[b2c2] + c∗1b
∗
1[b1c1] + c∗2b

∗
2[b2c2] + x(a1[A]a2[B])n,

where the paths [A], [B] are the result of replacing b2c1, b1c2 in A,B by [b2c1], [b1c2], re-

spectively.

a1

a2

BA

Q(τ)

b∗1 c∗1

c∗2 b∗2

[B][A]

Q(σ)

Figure 2. The cycle on Q(τ) and Q(σ) surrounding the puncture.
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We define R-algebra homomorphisms ϕ1, ϕ2 : K〈〈Q(τ)〉〉 → K〈〈Q(τ)〉〉 by means of the

rules

ϕ1(a1) = a1 − c∗1b∗1;

ϕ2([b1c1]) = [b1c1]− x
n−1∑
j=0

(−1)j[A]a2[B]((a1 − c∗1b∗1)[A]a2[B])n−j−1(c∗1b
∗
1[A]a2[B])j.

Applying ϕ1 to µ̃k(S(τ, x, n)), we get

ϕ1(µ̃k(S(τ, x, n))) ∼cyc T (σ) + a1[b1c1] + a2[b2c2] + c∗2b
∗
2[b2c2] + x((a1 − c∗1b∗1)[A]a2[B])n

∼cyc T (σ) + a1[b1c1] + a2[b2c2] + c∗2b
∗
2[b2c2] + x(−1)n(c∗1b

∗
1[A]a2[B])n

+ x
n−1∑
j=0

(−1)ja1[A]a2[B]((a1 − c∗1b∗1)[A]a2[B])n−j−1(c∗1b
∗
1[A]a2[B])j.

The potential ϕ2ϕ1(µ̃k(S(τ, x, n))) is cyclically equivalent to

ϕ2ϕ1(µ̃k(S(τ, x, n))) ∼cyc T (σ) + a1[b1c1] + a2[b2c2] + c∗2b
∗
2[b2c2] + x(−1)n(c∗1b

∗
1[A]a2[B])n.

In an analogous way, we define R-algebra homomorphisms ϕ3, ϕ4 : K〈〈Q(τ)〉〉 →
K〈〈Q(τ)〉〉 by means of the rules

ϕ3(a2) = a2 − c∗2b∗2;

ϕ4([b2c2]) = [b2c2]

− x(−1)n
n−1∑
j=0

(−1)j[B]c∗1b
∗
1[A]((a2 − c∗2b∗2)[B]c∗1b

∗
1[A])n−j−1(c∗2b

∗
2[B]c∗1b

∗
1[A])j.

We obtain

ϕ4ϕ3ϕ2ϕ1(µ̃k(S(τ, x, n))) ∼cyc T (σ) + a1[b1c1] + a2[b2c2] + x(c∗1b
∗
1[A]c∗2b

∗
2[B])n

∼cyc S(σ, x, n) + a1[b1c1] + a2[b2c2].

Therefore, the QPs µk(Q(τ), S(τ, x, n)) and (Q(σ), S(σ, x, n)) are right-equivalent. �

Remark 3.2. (1) For once-punctured closed surfaces, Theorem 3.1 constitutes a gen-

eralization of the second author’s results [6, Theorem 30] and [8, Theorem 8.1].

(2) It was observed by Ladkani [11, Proposition 3.1] that the proof of [6, Theorem 30]

can be applied without change to produce a proof of Theorem 3.1 above for x = 0.

(3) In his Master thesis [4], the first author of this paper proved Theorem 3.1 for the

once-punctured torus and x 6= 0.

(4) Motivated by the first author’s Master thesis, the third author proved Theorem 3.1

in his Undergraduate thesis [12].

Proposition 3.3. Let (Σ,M) be a once-punctured closed surface of positive genus, τ a

triangulation of (Σ,M), and x ∈ K a non-zero scalar. If the characteristic of the field K

is zero, then

dimK(P(Q(τ), S(τ, x, n))) <∞ and lim
n→∞

dimK(P(Q(τ), S(τ, x, n))) =∞.
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Proof. For the proof of finite-dimensionality we follow ideas suggested by Ladkani in his

proof of [10, Proposition 4.2], whereas our proof that the limits of the dimensions are ∞
follows ideas that appear in the first author’s Master thesis.

First, note that when we compute the cyclic derivative of S(τ, x, n) with respect to an

arrow α, we get

(3.1) ∂α(S(τ, x, n)) = f 2(α)f(α) + xnG(nmα − 1, g(α)).

So, f 2(α)f(α) and −xnG(nmα − 1, g(α)) become equal in the Jacobian algebra P(Q(τ),

S(τ, x, n)).

Every fg-path of length three has the form f 2(α)f(α)g−1f(α) or gf 2(α)f 2(α)f(α) for

some arrow α, and it is hence equal to

−xnG(nmα − 1, g(α))g−1f(α) = −xnG(nmα − 3, g3(α))g2(α)g(α)f−1g(α)

or

−xngf 2(α)G(nmα − 1, g(α)) = −xnfg−1(α)g−1(α)g−2(α)G(nmα − 3, g(α))

in P(Q(τ), S(τ, x, n)). Thus, in P(Q(τ), S(τ, x, n)), every fg-path of length three is equal

to another fg-path of length greater than three. In the same vein, an easy inductive

argument shows that, in the Jacobian algebra, every fg-path is equal to an arbitrarily

long fg-path, and therefore equal to 0 ∈ P(Q(τ), S(τ, x, n)).

Any f -path F (r, f(β)) = F (r−2, β)f 2(β)f(β) of length r greater than three is equal to

the fg-path −xnF (r−2, β)G(nmβ−1, g(β)) in P(Q(τ), S(τ, x, n)), and, in this way, to 0.

Furthermore, any g-path of the form G(r, g(β)) = G(r − nmβ + 1, β)G(nmβ − 1, g(β))

with length greater than nmβ is equal to the fg-path x−1n−1G(r−nmβ +1, β)f 2(β)f(β),

hence equal to 0 in the Jacobian algebra. Notice that, here, we have used that K is a

field of characteristic zero.

Thus far, we have shown that every path of length greater than nmα is equivalent to 0

in the Jacobian algebra P(Q(τ), S(τ, x, n)), and therefore the latter has finite dimension.

On the other hand, as the cyclic derivative of S(τ, x, n) with respect to any arrow α is

equal to the sum of an f -path of length two and a scalar multiple of a g-path of length

nmα − 1 (cf. (3.1)), and since no g-path is a multiple of any f -path of length greater

than one, we conclude that for any a, b ∈ K〈〈Q(τ)〉〉, no g-path of length smaller than

nmα − 1 appears in the expression of the element a∂α(S(τ, x, n))b as a possibly infinite

sum of paths on the quiver Q(τ). From this, it follows that no finite linear combination

of g-paths of lengths smaller than nmα − 1 can be written as a limit of finite sums

of elements of the form a∂α(S(τ, x, n))b, i.e., the set of g-paths of length smaller than

nmα − 1 is linearly independent in the Jacobian algebra P(Q(τ), S(τ, x, n)). Therefore,

dimK(P(Q(τ), S(τ, x, n))) ≥ nmα − 2. �

Corollary 3.4. Over a field of characteristic zero, the quiver of any triangulation of

a once-punctured closed surface of positive genus admits infinitely many non-degenerate

potentials up to weak right-equivalence.

Remark 3.5. (1) In the case of the once-punctured torus, Proposition 3.3 was proved

by the first author in his Master thesis [4].



QP’S OF TRIANGULATIONS OF CLOSED SURFACES WITH AT MOST TWO PUNCTURES 15

(2) In his Undergraduate thesis [12], the third author has computed an actual K-

vector space basis of P(Q(τ), S(τ, x, n)) for each n ≥ 1, showing in particular

that different values of n never yield Jacobian algebras with the same dimension.

This implies that different values of n always yield potentials that are not weakly

right-equivalent.

4. Twice-punctured surfaces

In this section we prove part (2) of Theorem 1.1, as formulated in the next theorem.

Theorem 4.1. Let (Σ,M) be a twice-punctured closed surface of positive genus, and let

τ be any (tagged) triangulation of (Σ,M). Over an algebraically closed field, any two

non-degenerate potentials on the quiver Q(τ) are weakly right-equivalent.

Since any two ideal triangulations of (Σ,M) are related by a finite sequence of flips (see

[13]), the first paragraphs of the proof of [3, Lemma 8.5] imply that the mere exhibition

of a single triangulation τ of (Σ,M), with Q(τ) having only one weak right equivalence

class of non-degenerate potentials, suffices in order to prove Theorem 4.1.

Example 4.2. Figure 3 sketches a triangulation τ of a positive-genus twice-punctured

surface with empty boundary. The triangulation is easily seen to satisfy (2.1) and (2.2).

Note that the puncture p has valency 8g, and the other puncture q has valency 4g.

1

2

1

2

2g − 1

2g

2g

q

pp

pp

pp

pp

2g + 1

2g + 2

2g + 4

2g + 3

6g

6g − 1

6g − 3

6g − 2

Figure 3. A triangulation τ of a twice-punctured closed surface (Σ,M) of

positive-genus.
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1

2

1

2

2g − 1

2g

2g

q

pp

pp

pp

pp

a1

b1c1

a3

c3

b3

a4g−1

b4g−1

c4g−1

a2

c2

b2

a4

b4

c4

a4g

b4g

c4g

a4g−2

c4g−2

b4g−2

Figure 4. The associated quiver Q(τ) to the triangulation τ .

Lemma 4.3. Let (Σ,M) be a twice-punctured closed surface of positive genus, and let τ be

the triangulation of (Σ,M) shown in Figure 3. If V ∈ K〈〈Q(τ)〉〉 is a potential involving

only ≥ 2-powers of g-cycles, then (Q(τ), S(τ,x) +V ) is right-equivalent to (Q(τ), S(τ,x))

for any choice x = (xp, xq) of non-zero scalars.

Proof. Let g be the genus of (Σ,M). Then

V ∼cyc

∞∑
n=2

νp,n(G(p))n +
∞∑
n=2

νq,n(G(q))n

for some scalars νp,n and νq,n for n ≥ 2. Note that short(V ) ≥ 2 valτ (q) = 8g.

Claim 2. There exist a sequence (Vm)∞m=8g of potentials onQ(τ), and a sequence (ϕm)∞m=8g

of unitriangular R-algebra automorphisms of K〈〈Q(τ)〉〉, satisfying the following proper-

ties:

(1) V8g = V ;

(2) limm→∞ depth(ϕm) =∞;

(3) for every m ≥ 8g:

(a) ϕm is a right-equivalence (Q(τ), S(τ,x) + Vm)→ (Q(τ), S(τ,x) + Vm+1);

(b) Vm involves only ≥ 2-powers of g-cycles;

(c) short(Vm) ≥ m.

For the proof of the claim, we start by setting V8g = V . Let ap (respectively aq) be an

arrow lying in the g-orbit that surrounds p (respectively q). Suppose that for a fixed value

of m ≥ 8g we have already defined a potential Vm involving only ≥ 2-powers of g-cycles
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and satisfying short(Vm) ≥ m. We shall use Vm to define Vm+1 and ϕm. Write

Vm ∼cyc

∞∑
n=2

λp,n(G(ap))
n +

∞∑
n=2

λq,n(G(aq))
n

with λp,n, λq,n ∈ K for n ≥ 2. Set rp,m (respectively rq,m) to be the first value of n for

which λp,n 6= 0 (respectively λq,n 6= 0) if such an n exists, and ∞ if such an n does not

exist. Note that short(Vm) = min(8grp,m, 4grq,n) ≥ 8g.

Define an R-algebra homomorphism Υp,m : K〈〈Q(τ)〉〉 → K〈〈Q(τ)〉〉 by means of the

rule

Υp,m : ap 7→ ap −
λp,rp,m
xp

ap(G(ap))
rp,m−1.

Since rp,m − 1 > 0, Υp,n is a unitriangular automorphism, and its depth is 8g(rp,m − 1).

Direct computation shows that

Υp,m(S(τ,x) + Vm) ∼cyc S(τ,x) + U +W,

where

U = −λp,rp,m(G(ap))
rp,m + Υp,m

 ∞∑
n=rp,m

λp,n(G(ap))
n

+
∞∑

n=rq,m

λq,n(G(aq))
n,

W = −
λp,rp,m
xp

f(ap)ap(G(ap))
rp,m−1f 2(ap).

Note that short(U) ≥ m and 2 short(W ) − 3 = 2 · 8g(rp,m − 1) + 3 ≥ 8grp,m + 3 >

8grp,m ≥ m. So, applying Corollary 2.8, we see that there exists a unitriangular R-

algebra automorphism Πp,m of K〈〈Q(τ)〉〉 that has depth at least min(m− 3, 8g(rp,m− 1))

and serves as a right-equivalence between S(τ,x) + U +W and S(τ,x) + U + ξ for some

potential ξ that involves only positive powers of g-cycles and satisfies short(ξ) > m ≥ 8g.

These last inequalities imply that, actually, ξ involves only ≥ 2-powers of g-cycles.

Now, we can definitely write

U ∼cyc

∞∑
n=rp,m+1

κp,n(G(ap))
n +

∞∑
n=rq,m

λq,n(G(aq))
n

for some scalars κp,n ∈ K. Define an R-algebra homomorphism Υq,m : K〈〈Q(τ)〉〉 →
K〈〈Q(τ)〉〉 by means of the rule

Υq,m : aq 7→ aq −
λq,n
xq

aq(G(aq))
rq,m−1.

Since rq,m − 1 > 0, Υq,m is a unitriangular automorphism, and its depth is 4g(rq,m − 1).

Direct computation shows that

Υq,m(S(τ,x) + U + ξ) ∼cyc S(τ,x) + U ′ +W ′,
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where

U ′ = −λq,rq,m(G(aq))
rq,m +

∞∑
n=rp,m+1

κp,n(G(ap))
n + Υq,n

 ∞∑
n=rq,m

λq,n(G(aq))
n

+ Υq,m(ξ),

W ′ = −
λq,rq,m
xq

f(aq)aq(G(aq))
rq,m−1f 2(aq).

Note that short(U ′) > m and 2 short(W ′) − 3 = 2 ∗ 4g(rq,m − 1) + 3 ≥ 4grq,m + 3 >

4grq,m ≥ m. So, applying Corollary 2.8, we see that there exists a unitriangular R-

algebra automorphism Πq,m of K〈〈Q(τ)〉〉 that has depth at least min(m− 3, 4g(rq,m− 1))

and serves as a right-equivalence between S(τ,x) +U ′+W ′ and S(τ,x) +U ′+ ξ′ for some

potential ξ′ that involves only positive powers of g-cycles and satisfies short(ξ′) > m ≥ 8g.

These last inequalities imply that, actually, ξ′ involves only ≥ 2-powers of g-cycles.

It is clear that U ′ involves only positive powers of g-cycles; these powers are ac-

tually greater than 1 because short(U ′) > m ≥ 8g. So, if we set Vm+1 = U ′ + ξ′

and ϕm = Πq,mΥq,mΠp,mΥp,m, we see that ϕm is a right-equivalence (Q(τ), S(τ,x) +

Vm) → (Q(τ), S(τ,x) + Vm+1), that Vm+1 involves only ≥ 2-powers of g-cycles, and that

short(Vm+1) ≥ m+ 1.

From the previous paragraph we deduce that the sequences (Vm)m≥8g and (ϕm)m≥8g sat-

isfy the third condition stated in Claim 2. Moreover, since m ≤ short(Vm) = min(8grp,m,

4grq,m) for every m ≥ 8g, we deduce that limm→∞ rp,m = ∞ = limm→∞ rq,m. This and

the inequalities

depth(ϕm) ≥ min(depth(Πq,m), depth(Υq,m), depth(Πp,m), depth(Υp,m))

≥ min
(

min
(
m− 3, 4g(rq,m − 1)

)
, 4g(rq,m − 1),

min
(
m− 3, 8g(rp,m − 1)

)
, 8g(rp,m − 1)

)
imply that limm→∞ depth(ϕm) =∞.

This completes the proof of Claim 2.

Lemma 4.3 now follows from an obvious combination of Claim 2 and [8, Lemma 2.4]. �

Proposition 4.4. Let (Σ,M) be a twice-punctured closed surface of positive genus, and

let τ be the triangulation of (Σ,M) shown in Figure 3. If W ∈ K〈〈Q(τ)〉〉 is a potential

that involves only positive powers of g-cycles and such that (Q(τ), T (τ) + W ) is a non-

degenerate QP, then W involves each of the g-cycles that arise from the two punctures p

and q of (Σ,M), that is, T (τ)+W = S(τ,x)+V for some choice x = (xp, xq) of non-zero

scalars and some potential V involving only ≥ 2-powers of g-cycles.
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Proof. With the notation of Figures 3 and 4, let us write

W = ya1a2 · · · a4g + A

+ z

(
g−1∏
j=0

b4(g−j)c4(g−j)−2b4(g−j)−3c4(g−j)−1b4(g−j)−2c4(g−j)b4(g−j)−1c4(g−j)−3

)
+B,

with A =
∞∑
n=2

yn(a1a2 · · · a4g)
n and

B =
∞∑
n=2

zn

(
g−1∏
j=0

b4(g−j)c4(g−j)−2b4(g−j)−3c4(g−j)−1b4(g−j)−2c4(g−j)b4(g−j)−1c4(g−j)−3

)n

.

If we set I = {2g + 1, 2g + 2, . . . , 6g − 1, 6g}, then (Q(τ), T (τ) + W ) and I satisfy the

hypotheses of [3, Proposition 2.4]. We deduce that y 6= 0.

Note that, for every k ∈ {1, . . . , 2g−1}, the quiver µ̃kµ̃k−1 · · · µ̃2µ̃1(Q(τ)) does not have

2-cycles incident to the vertex labelled k + 1. Therefore, the QP µ2gµ2g−1 · · ·µ2µ1(Q(τ),

T (τ)+W ) is right-equivalent to the reduced part of the QP µ̃2gµ̃2g−1 · · · µ̃2µ̃1(Q(τ), T (τ)+

W ), whose underlying quiver and potential are µ̃2g · · · µ̃1(Q(τ)) and

µ̃2g · · · µ̃1(T (τ) +W ) =

(
4g∑
j=1

aj[bjcj]

)
+ ya1 · · · a4g + A+ [B]

+ z

(
g−1∏
j=0

[b4(g−j)c4(g−j)−2][b4(g−j)−3c4(g−j)−1][b4(g−j)−2c4(g−j)][b4(g−j)−1c4(g−j)−3]

)

+

(
2g∑
j=1

(
c∗jb
∗
j [bjcj] + c∗j+2b

∗
j [bjcj+2] + c∗jb

∗
j+2[bj+2cj] + c∗j+2b

∗
j+2[bj+2cj+2]

))
.

Consider the QP (µ̃2g · · · µ̃1(Q(τ)), S), where

S =

(
4g∑
j=1

aj[bjcj]

)
+ ya1 · · · a4g + A+

(
2g∑
j=1

(
c∗jb
∗
j [bjcj] + c∗j+2b

∗
j+2[bj+2cj+2]

))
,

and let (Q,S) be its reduced part, computed according to the limit process with which

Derksen, Weyman and Zelevinsky [2, Theorem 4.6] prove their Splitting Theorem. Note

the presence of the sum
∑4g

j=1 aj[bjcj] in S. Then Q = Q(σ), where σ is a triangulation

that can be obtained from τ by applying an orientation-preserving homeomorphism of

(Σ,M) that exchanges p and q (thus τ and σ have the same shape, sketched in Figure 4;

see also Example 4.5 below). Moreover, since no arrow of the form aj or [bjcj] appears in

any of the terms of the potential

W ′ := z

(
g−1∏
j=0

[b4(g−j)c4(g−j)−2][b4(g−j)−3c4(g−j)−1][b4(g−j)−2c4(g−j)][b4(g−j)−1c4(g−j)−3]

)
+ [B]

+

(
2g∑
j=1

c∗j+2b
∗
j [bjcj+2] + c∗jb

∗
j+2[bj+2cj]

)
,
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the QP (Q(σ), S + W ′) is a reduced part of (µ̃2g · · · µ̃1(Q(τ)), µ̃2g · · · µ̃1(T (τ) + W )) and

hence is (right-equivalent to) the mutation µ2g · · ·µ1(Q(τ), T (τ)+W ). Furthermore, from

the fact that no arrow of the form [bjc`] with j 6= ` appears in any of the terms of S, we

deduce that the coefficient in S of any of the rotations of the cycle(
g−1∏
j=0

[b4(g−j)c4(g−j)−2][b4(g−j)−3c4(g−j)−1][b4(g−j)−2c4(g−j)][b4(g−j)−1c4(g−j)−3]

)
is 0. Therefore, the coefficient of this cycle in S + W ′ is z (and its proper rotations do

not appear).

The non-degeneracy of (Q(τ), T (τ)+W ) implies the non-degeneracy of (Q(σ), S+W ′).

Furthermore, it is easy to see that if we set I = {2g + 1, 2g + 2, . . . , 6g − 1, 6g}, then

(Q(σ), S+W ′) and I satisfy the hypotheses of [3, Proposition 2.4], from which we deduce

that z 6= 0. This finishes the proof of the proposition. �

Example 4.5. Figure 5 sketches the flip sequence in the proof of Proposition 4.4 in the

case of a twice-punctured torus. Note that the first and last triangulations have the same

shape.
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Figure 5. Proving Proposition 4.4 for the twice-punctured torus.

Proof of Theorem 4.1. Let (Σ,M) a be twice-punctured closed surface of positive genus,

and let τ be a triangulation of (Σ,M) satisfying (2.1) and (2.2). By Lemma 2.4, every

non-degenerate potential on Q(τ) is right-equivalent to a potential of the form T (τ) + U

for some U which is rotationally disjoint from T (τ). By Proposition 2.6, T (τ)+U is right-

equivalent to T (τ) +W for some potential that involves only positive powers of g-cycles.

Theorem 4.1 now follows from Proposition 4.4, Lemma 4.3 and [3, Lemma 8.5]. �
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