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SMOOTHNESS OF SCHUBERT VARIETIES INDEXED BY
INVOLUTIONS IN FINITE SIMPLY LACED TYPES

AXEL HULTMAN AND VINCENT UMUTABAZI

Abstract. We prove that in finite, simply laced types, every Schubert variety in-
dexed by an involution which is not the longest element of some standard parabolic
subgroup is singular.

1. Introduction

Let w be an involution in the symmetric group Sn. In [12] Hohlweg proved
that the Schubert variety Xw is smooth if and only if w is the longest element of
some standard parabolic subgroup of Sn. He arrived at this result by exploiting
Lakshmibai and Sandhya’s [15] classical pattern avoidance criterion for smoothness
of type A Schubert varieties.

It is natural to wonder to what extent this surprisingly simple characterisation
generalises. The main result of this paper, Theorem 3.1 below, extends Hohlweg’s
result to arbitrary finite, simply laced types. Namely, if W is a simply laced Weyl
group, and w ∈ W is an involution, Xw is smooth if and only if w is the longest
element of a standard parabolic subgroup of W . Our proof relies solely on Carrell–
Peterson type criteria for smoothness of Schubert varieties; in particular it does not
depend on the classification of finite root systems.

As was anticipated in an earlier version of this manuscript [14], it is indeed also
possible to arrive at Theorem 3.1 using the root system pattern avoidance criteria
for smoothness pioneered by Billey and Postnikov [2]. Namely, an anonymous ref-
eree has provided a very neat argument in terms of Richmond and Slofstra’s [18]
so-called staircase diagrams. Let us sketch the referee’s argument here. Using the
fact that flipping a staircase diagram corresponds to inverting a group element [18,
Theorem 3.8] and that smooth Schubert varieties in simply laced types correspond
to maximally labelled staircase diagrams [18, Corollary 6.4], one deduces that Schu-
bert varieties indexed by involutions are smooth precisely when they correspond to
maximally labelled diagrams that are fixed under flipping. It is not hard to see
that those are exactly the diagrams that correspond to longest elements of standard
parabolic subgroups, which yields the desired conclusion. In this argument, it is in
the crucial correspondence given by [18, Corollary 6.4] that pattern avoidance enters
the picture. The key result which this corollary rests on is [17, Theorem 5.1] which
requires a careful type by type analysis and extensive computer calculations; see the
discussion in [17] for a detailed account.
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In Section 2 below, we recall properties of Coxeter systems and Bruhat graphs
which can be used to study smoothness of Schubert varieties in a combinatorial way.
In Section 3, we prove Theorem 3.1.

2. Preliminaries

In this section some properties of Bruhat graphs of Coxeter groups are recalled.
For more on these concepts, see e.g. [3] or [9].

A Coxeter group is a group W generated by a set S of simple reflections s under
relations of the form s2 = e and (ss′)m(s,s′) = e for all s, s′ ∈ S where e is the identity
element and m(s′, s) = m(s, s′) ≥ 2 is the order of ss′ for s 6= s′. The pair (W,S) is
called a Coxeter system, and each element w ∈ W is a product of generators si ∈ S,
i.e., w = s1s2 · · · sj. If j is minimal among all such expressions for w, then j is called
the length of w, denoted `(w) = j. The Coxeter system (W,S) is simply laced if
m(s, s′) ≤ 3 for all s, s′ ∈ S; otherwise it is multiply laced.

If W is finite, there exists a longest element w0 ∈ W . It is an involution and
satisfies `(v) < `(w0) for all other elements v ∈ W . In fact w0 is the unique element
in W such that `(sw0) < `(w0) for all s ∈ S.

From now on let us fix a Coxeter system (W,S). Let T = {wsw−1 : w ∈ W, s ∈ S}
be the set of reflections in W . For v, w ∈ W define:

(i) v → w if w = vt for some t ∈ T with `(v) < `(w).
(ii) v ≤ w if v = v0 → v1 → · · · → vm = w for some vi ∈ W .

The Bruhat graph BgS(W ) of (W,S) is the directed graph whose vertex set is W
and whose edge set is E

BgS(W )
= {(u,w) : u → w}. The Bruhat order is the partial

order relation on W given by (ii).

Example 2.1. Denote by W (A2) the Coxeter group of type A2 with set of simple
reflections S(A2) = {s1, s2} satisfying m(s1, s2) = 3. Then BgS(A2)(W (A2)) is as
shown in Figure 1.

The map v 7→ v−1 is an automorphism of the Bruhat order:

Lemma 2.2. For all v, w ∈ W , v < w if and only if v−1 < w−1.

Define the left descent set of w as DL(w) = {s ∈ S : `(sw) < `(w)}. The following
fundamental result about the Bruhat order is sometimes called the lifting property.

Lemma 2.3 (Verma [19]). Suppose v < w and s ∈ DL(w) \DL(v). Then, v ≤ sw
and sv ≤ w.

2.1. Reflection subgroups. Maintain the Coxeter system (W,S) and its set of
reflections T as defined above. Then W ′ is a reflection subgroup of W if W ′ =
〈W ′ ∩ T 〉. A reflection subgroup W ′ is called dihedral if W ′ = 〈t, t′〉 for some
t, t′ ∈ T , with t 6= t′.

Lemma 2.4 (Dyer [9]). Suppose t1, t2, t3, t4 ∈ T and t1t2 = t3t4 6= e. Then
W ′ = 〈t1, t2, t3, t4〉 is a dihedral reflection subgroup of W .
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Figure 1. The Bruhat graph of (W (A2), S(A2)).

It turns out that reflection subgroups of W are themselves Coxeter groups. For
w ∈ W , define N(w) := {t ∈ T : `(tw) < `(w)}. This is the set of inversions of w.

Theorem 2.5 (Deodhar [7], Dyer [8]). Let W ′ be a reflection subgroup of W
and define X = {t ∈ T : N(t) ∩W ′ = {t}}. Then we have:

(1) W ′ ∩ T = {ut′u−1 : u ∈ W ′, t′ ∈ X}.
(2) (W ′, X) is a Coxeter system.

Coxeter described all types of affine groups generated by reflections and their
reflection subgroups [6]. The following lemma is a very special case. It can be seen
directly, e.g. by considering root lengths.

Lemma 2.6. Every reflection subgroup of a finite simply laced group is itself simply
laced.

For any subset Y ⊆ W define the Bruhat graph of Y , denoted BgS(Y ), as the
directed subgraph of BgS(W ) induced by Y .

Theorem 2.7 (Dyer [9]). Let W ′ be a reflection subgroup of W and let X be as
in Theorem 2.5. Then BgS(W ′) = BgX(W ′).

2.2. Schubert varieties. Let G be an algebraic group over C and B a Borel sub-
group containing a maximal torus T . Then G/B is called the flag variety and it is
the disjoint union of Schubert cells BwB/B where w ∈ W and W = N(T )/T is the

Weyl group (which is a finite Coxeter group). The closure Xw := BwB/B is called
a Schubert variety. Note that G/B = Xw0 for w0 the longest element of W . More
on Schubert varieties can for example be found in [1].
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Next, we review ways to detect singularities of Schubert varieties by inspecting
Bruhat graphs. For a lower interval [e, w] = {z ∈ W : e ≤ z ≤ w} write BgS(w) for
the Bruhat graph of [e, w]. Let z be a vertex in BgS(w). The degree of z, denoted
degw(z), is the number of edges incident to z in BgS(w) (where directions of edges
are ignored).

The following result holds in any Coxeter group. In that generality it is due to
Dyer [10]. In our context, where W is a (finite) Weyl group, other proofs given by
Carrell and Peterson [4] and Polo [16] also apply.

Theorem 2.8. Let w ∈ W . Then the degree of any vertex in BgS(w) is at least `(w).

In any Bruhat graph BgS(w), it is known that `(w) = |N(w)| = degw(w). In
particular, if BgS(w) is regular (i.e., every vertex of BgS(w) has the same number
of edges), then degw(e) = `(w).

Theorem 2.9 (Carrell–Peterson [4]). The Schubert variety Xw is rationally
smooth if and only if BgS(w) is regular.

The next theorem says that smoothness and rational smoothness are equivalent
for simply laced Weyl groups.

Theorem 2.10 (Carrell–Kuttler [5]). Suppose W is simply laced. Then, for
any w ∈ W , Xw is smooth if and only if it is rationally smooth.

Corollary 2.11. If W is simply laced then Xw is smooth if and only if BgS(w) is
regular.

In general smoothness is stronger than rational smoothness when W is not simply
laced. For example Xs1s2s1 is rationally smooth but not smooth if W is of type C2

generated by the simple reflections s1 and s2 with s1 corresponding to the short
root.

The next definition provides another characterisation which can be used to prove
that a given Schubert variety is not rationally smooth (see Theorem 2.14 below).

Definition 2.12 ([13]). Let x, u, v ≤ w. The Bruhat interval [e, w] contains the
broken rhombus (x, u, v) if the conditions below are satisfied:

(1) x← u→ v;
(2) There is some y ∈ W with x→ y ← v;
(3) If x→ y ← v, then y � w.

Example 2.13. Consider the group W (D4) of type D4 with set of simple reflections
S(D4) = {s1, s2, s3, s4} where m(si, s2) = 3 for i = 1, 3, 4 and m(si, sj) = 2 for i, j 6=
2. Figure 2 shows BgS(D4)(w) for w = s2s1s3s4s2. We use 1, 2, 3, 4 for s1, s2, s3, s4,
respectively, for brevity. Thus, for example, w is represented by 21342. The interval
[e, w] contains the broken rhombus (s2s3, s2, s1s2) since there is no y ≤ w such that
s2s3 → y ← s1s2 although s2s3 → s1s2s3 ← s1s2. Moreover note that BgS(D4)(w) is
not regular. Hence, Xw is not smooth for w = s2s1s3s4s2 ∈ W (D4).
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The following result is proved in [13] as a direct application of Theorem 2.9. It
can also be deduced using the main result of Dyer [11].

Theorem 2.14. The Schubert variety Xw is rationally smooth if and only if [e, w]
contains no broken rhombus.

Corollary 2.15. Suppose W is simply laced and let w ∈ W . Then, the Schubert
variety Xw is smooth if and only if [e, w] contains no broken rhombus.

e
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Figure 2. The Bruhat graph of s2s1s3s4s2 ∈ W (D4).
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3. Schubert varieties indexed by involutions

In this section, which contains the main result, we consider Schubert varieties
indexed by involutions of finite simply laced groups.

Again let (W,S) be an arbitrary Coxeter system. A standard parabolic subgroup
of W is a subgroup of the form WJ = 〈J〉 for J ⊆ S. If WJ is finite its longest
element will be denoted by w0(J).

For v ∈ W define S(v) := {s ∈ S : s ≤ v}. Then WS(v) is the minimal standard
parabolic subgroup of W which contains v.

Theorem 3.1. Suppose (W,S) is finite and simply laced and let v ∈ W be an
involution. Then the Schubert variety Xv is smooth if and only if v = w0(J) for
some J ⊆ S.

Proof. The “if” assertion is obvious: Xw0(J) is a (smooth) flag variety. For the “only
if” direction, let v be an involution which is not the longest element of any standard
parabolic subgroup WJ of W . Since v 6= w0(S(v)), there exists s ∈ S(v) such that
v < sv. If degv(e) 6= `(v), BgS(v) is not regular and, by Corollary 2.11, Xv is not
smooth. Thus, we may assume degv(e) = `(v). Since degsv(e) is the number of
t ∈ T such that t ≤ sv and that degree is at least `(sv), there exists a reflection
t ≤ sv such that t � v. Since t ≤ sv, by Lemma 2.2, t−1 ≤ v−1s, which implies
that t ≤ vs. Moreover we must have st < t. To see this we use Lemma 2.3 in the
following way: since s ∈ DL(sv), if we would have t < st then by using the lifting
property this would imply that t 6 ssv = v which is a contradiction. Now since
st < t, by Lemma 2.2 we see that ts < t. Because ts < t and t ≤ vs, we have
ts < vs. Since s 6∈ DL(st), we have s ∈ DL(sv) \DL(st) and then by Lemma 2.3 we
get st ≤ v. Consider the dihedral subgroup D = 〈s, sts〉 of W . Since W is finite and
simply laced, then, by Lemma 2.6, D is also simply laced. By Theorem 2.7, BgS(D)
equals the Bruhat graph of (D,X), where X is as in Theorem 2.5. Since, moreover,
st→ t, D is not Abelian and hence |D| = 6. Therefore, D = {e, s, sts, ts, st, t}, and
BgS(D) is as shown in Figure 3.

st

sts

e

s

ts

t

Figure 3. The Bruhat graph of D.

Now ts, st ≤ v but t 6≤ v. From Figure 3, (st, sts, ts) is a broken rhombus of
[e, v] because there is no x ≤ v such that there are directed edges from st and ts
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to x. To see this, suppose that st → x ← ts. So there exist t′, t′′ ∈ T with t′ 6= t′′

such that stt′ = tst′′. Then t′t′′ = tsts 6= e. By Lemma 2.4 we therefore have a
dihedral subgroup W ′ = 〈sts, t, t′, t′′〉 of W , and W ′ is simply laced since W is (by
Lemma 2.6). Clearly D ⊆ W ′. Since W ′ has no more than six elements, W ′ = D.
So stt′ = x ∈ D. Since there is a directed edge from st to x, x = t � v. Since
(st, sts, ts) is a broken rhombus of [e, v], by Corollary 2.15, Xv is not smooth. �

When W is not simply laced, there may exist an involution w ∈ W which is not
the longest element of any standard parabolic subgroup of W but for which Xw is
smooth. For example, in type C2 there are two involutions of length three. One of
them indexes a smooth Schubert variety (and, as was mentioned above, the other one
indexes a rationally smooth but not smooth Schubert variety). This example shows
that Theorem 3.1 cannot be extended to multiply laced types. We do, however, not
know what happens in infinite simply laced types.
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Sup. 4 (1971), 393–398.

Department of Mathematics, Linköping University, SE-581 83 Linköping, Sweden
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